Efficient Lossless Compression of Trees and Graphs *

Shenfeng Chen and John H. Reif
Department of Computer Science
Duke University
Durham, NC 27708

Abstract

In this paper, we study the problem of compressing a data structure (e.g.
tree, undirected and directed graphs) in an efficient way while keeping a similar
structure in the compressed form. To date, there has been no proven optimal
algorithm for this problem. We use the idea of building LZW tree in LZW com-
pression to compress a binary tree generated by a stationary ergodic source in
an optimal manner. We also extend our tree compression algorithm to compress
undirected and directed acyclic graphs.

1 Introduction

Data compression algorithms have been widely used in many areas to meet the de-
mand of storage and transfer of large size data. Most of the data compression al-
gorithms regard the input as a sequence of binary numbers and represent the com-
pressed data also as a binary sequence. However, in many areas such as programming
language (e.g. LISP and C)and compiler design, it is more desirable to have a com-
pression algorithm which compresses a data structure which is not a binary sequence
and which keeps similar data structure in compressed form as the original data. In
this paper, we study the problem of compressing tree and graphs into a similar but
smaller form so that many properties of the original data structure are kept in the
compressed form. Undirected and directed graph are widely used in representing data
structures in programming languages. For example, directed graph is a natural choice
for expressing recursive relations. In Holm’s system [5], recursively typed languages
are represented by directed graphs. Thus the task of checking a given recursive type
is reduced to a pattern matching problem on the directed graph. In addition to
reducing storage space, a compressed graph also has the benefit of searching for a

*Email addresses: reif@cs.duke.edu and chen@cs.duke.edu. This work was supported by
NSF Grant NSF-IRI-91-00681, Rome Labs Contracts F30602-94-C-0037, ARPA/SISTO contracts
N00014-91-J-1985, and N00014-92-C-0182 under subcontract KI-92-01-0182.

pattern match more efficiently than in the original graph. Therefore, a compressed
graph may be useful to efficiently execute operations on graphs.

Our paper is organized as follows. In section 2, we first define notations and ter-
minology used throughout this paper and the problems with which we are concerned.
Section 3 presents an algorithm for compressing binary trees. The algorithm is readily
extendible to general trees. We will show that the tree compression algorithm gives
an optimal compression for the original tree when size of the tree grows to infinity.
In section 4, we will extend our algorithm to compress undirected graph and DAG
(directed acyclic graphs). Section 5 gives the conclusion and future work.

2 Background and Terminology

2.1 Tree and Graph Data Structure

An undirected graph G = (V, E) consists of a set of vertices V' of size n, and a set of
edges E of size m. Each edge is an unordered pair (v, w) of disjoint vertices v and w.
The standard representation of a undirected tree is to use a linked list representing
edges connecting to a node. The total number of bits required to represent the graph
is therefore O((n + m)logn). However, this representation is not efficient in the
case where the graph is a binary tree. Let 7 denote a binary tree. We can use
the following encoding method to reduce the storage space for 7' to O(n). Recall
depth first search of 7" has a unique path. We define an alphabet A containing three
elements {0,1,#}. Each element represents a “move” in depth first search of 7.
Specifically, 0 represents a move going down to the left child of the current node, 1
represents a move going down to the right child of the current node, and # represents
a move going upwards to the parent of the current node. We can encode T easily by
following the depth first search. Also we can reconstruct 7" just by simulating a depth
first search if we are given an encoded sequence of T'. Since the depth first search
visits each nodes at most twice, the total size of the encoded sequence for T is O(n)
where n is the number of nodes in 7. This encoding scheme extends to general trees.
However, because of simplicity of presentation, we still regard O(nlogn) as the size
of standard representation of a tree while O((n + m)logn) for a general undirected
graph throughout this paper.

2.2 LZW Compression Algorithm and LZW Tree

Data compression algorithms try to encode a given input in a more efficient way so
that the storage of the input takes less space and transmitting the input takes less
time. Lempel-Ziv compression (LZ) [8, 7] is a well known algorithm that uses a dic-
tionary to encode the original input. LZ compression parses the original sequence
into subsequences by maximum prefix match and it is proven that LZ compression
achieves optimal compression ratio when the size of the input goes to infinity. LZW
compression is a popular version of LZ method and has been implemented as “com-
press” command on UNIX systems.

The main data structure used in LZW is a suffix trie. For simplicity purposes, we
can view the suffix trie as a multiway tree although the actual efficient implementation
of the trie involves hash tables instead of a linked list representation.

The construction of the LZW tree is as follows. We start the dictionary as an
empty set. At each step, we find the longest prefix match of the remaining input to
the current LZW tree. We then add the new node into the dictionary which contains
the longest prefix match plus the first character of the remaining input string.

The LZW tree has many interesting properties which are critical in achieving opti-
mality of compression. All internal nodes in LZW tree have indices in the dictionary.
The shape of the LZW tree is an approximation of the actual probability distribution
of the original inputs. Intuitively, each time we update the LZW tree by adding a new
leaf, every prefix of that leaf which are already stored in the dictionary, appears one
more time. Also, each leaf in the LZW tree has approximately the same probability
of being reached when we parse the input string into a series of distinct substrings.

2.3 Stochastic Properties of Binary Tree

We define a number of stochastic properties of a binary tree in this section. For any
given binary tree T, let V' be the set of nodes and E the set of edges contained in 7.
Also let n denote the size of T' (the size of E'is n — 1).

Consider the following way of generating a random binary tree with n leaves.
We first expand the root node by adding two leaves. And then we expand the 2
leaves at random. At time k, we choose one of the k£ — 1 leaves according to a uniform
distribution and expand it until n leaves have been generated. We call the binary tree
T, we obtained a randomly generated tree. Note that every possible binary tree can
be generated using this method. We can estimate the entropy H(7,,) (the minimum
number of bits needed to represent a m-node binary tree 7, using this expanding
method) by writing out the recurrence relation (see page 73 [4]). The entropy rate
H(T,) grows linearly with n. In other words, . there exists a constant ¢ > 0 such that
the number of all possible randomly generated binary trees with n leaves is less than
2", A randomly generated tree with n leaves has less than n internal nodes. Thus
the number of all possible binary trees with n nodes (counting both internal nodes
and leaves) is less 2°%/2.

In our tree compression algorithm, we use breadth first search (BFS) trees to parse
the original tree into subtrees. Let D,, denote the set of all BFS trees each containing
n nodes. Note that D, is only a subset of all trees with n nodes. Let ¢; = 242, we
have the following lemma:

Lemma 1 The number of distinct binary trees containing n nodes is less than c¢12"
where ¢; 18 a constant.

The randomly generated tree we just described is an example of trees generated
by a stochastic process. We use X = {Xi, Xy,...} to denote a stochastic process
which generates binary trees in a breadth first search order according to a certain
probability distribution. The probability space of X is defined as (zi, za, ..., z,) for

3

Figure 1: Parsing a tree via breadth first search.

n = 1,2... where (21,9, ...,x;) € D; and D; is the set of all distinct BFS trees with
1 nodes. We call X' is a stationary process if the joint probability distribution of any
subset of the sequence is invariant with respect to shifts in the time index, i.e.,

PT’{(Xl,XQ, ,Xn) = ($1,$2, ,xn)} = PT{(X1+k,X2+k, ---aXn—I—k) = (.’12'1,.%2, ,Jﬂn)} (1)

for every time shift £ and for all (x1, 2, ...,z,) € X. In the case of tree generation,
at each time index k, X starts to generates new trees from a leaf according to the
same probability distribution as it starts at time index 0. In other words, if we cut
any edge in the binary tree generated by X', the subtree below this edge has the same
probability distribution as the original tree.

We define entropy rate H(X) of a stochastic process X' as the follows:

o1
H(X) = nh_)rgo EH(Xl,XQ, ey X)) (2)
For a stationary stochastic process X, let p,, denote the optimal compression ratio
for any sequence it generates, the following holds [4]:

H(X) = — 3)

popt

3 Our Tree-Compress Algorithm

We describe our tree-compress algorithm in the case of binary trees. It is readily
extendible to general trees. The tree compression algorithm proceeds in a similar
fashion as LZW data compression. The dictionary D now contains indices each
pointing to a BFS (breadth first search) tree. Initially D only contains a single index
which points to a BFS tree consisting only one node. We proceed by traversing the
input tree T" by a breadth first search. In addition, we use a queue structure S to keep
track of the traversal. Asin LZW compression, we first parse T into distinct subtrees
and construct a dictionary D which contains BFS subtrees. Each time we visit a new
node a = z;, we find the maximum match of the subtree under o to the BFS trees
already stored in D. Let subtree match(«) be the maximum match. If the whole

4

subtree under « is already stored in D, we skip the subtree and continue parsing in
breadth-first order. If match(a) is not equal to the whole subtree of o, we add one
more index to D which points to a new BFS tree containing the maximum match
plus the next node in breadth-first search order x;,;. We then update the number
of visits to every BFS subtrees in D. Then we repeat the process in a breadth first
search manner, i.e., we parse one subtree from the leftmost subtree and break it into
subtrees, then work on the second leftmost subtree and so on until the whole tree is
parsed. The queue S is used to keep track of the roots of the subtrees.

After we parse T" and construct D, we retain only a subset of BFS subtrees in D
to compress the tree which ensures a distinct parsing of 7. This is accomplished by
removing all the trees with size bigger than k = y/n from D and identify all the BFS
trees which is not a prefix tree of any other in D. We calculate the probability of each
BFS tree remaining in D by using the counter associated with it. Specifically, let n be
the sum of all the counters associated with trees in D and ¢, be the number of visits
of BFS subtree v in D, then the probability p, of v is calculated as ¢,/n. We then
assign Huffman codes [4] to each subtree according to the probability distribution of
these trees. Using this set of subtrees, we reparse 7" into a group of BFS subtrees and
construct a tree 7" which is a compressed form of 7" where each node in 7" contains
the Huffman code for the corresponding subtree in 7.

It remains to describe how to compress the edges. Given D, The edges in T" can be
classified into two kinds: internal edges and bridging edges. Internal edges are those
edges in T which are contained in one of the parsed subtrees of D. They are readily
represented by the subtree which it belongs to. Bridging edge is an edge connecting
two different parsed subtrees in D. Assume e is an bridging edge. We represent e by
encodings of v; and v, which are the two nodes in 7" that e connects. To encode vy,
we first find the subtree ¢ that v; belongs to after parsing. Then we find the position
j of vy in the left-to-right order of the leaves of this subtree. We then encode e as
1#j where # is a separator.

Tree-Compress (T; D, T")
Input a tree T generated by a stationary ergodic stochastic process;

Step 1(Initialization)
Initialize D to contain a single index representing a BFS tree
containing only one node;
Initialize a queue S to contain roots of subtrees traversed in BF'S;
Step 2(Parsing)
Traverse T in breadth first search order
While (search not completed) do
Let a be the current node in 7' we are visiting
Starting from «; find the maximum match match(a) in D for the subtree below « (subtree(a));
If match(a) = subtree(a),
update the counters for subtree(a) in D;
insert all roots of the subtrees below subtree(a) into S;
let a be the next root of a subtree from S

Else
form a BFS tree by adding the next node in breadth first search of T' to match(«);
add this new BFS tree into D;
update the counters for all the prefix trees of this new BFS tree in D;
insert all roots of the subtrees into S after cutting the new BFS tree from T
pop a root of a subtree from S and let it be «;
Step 3(Encoding)
Remove all trees in D with size bigger than k = y/n;
Retain only those trees in D which are not prefix tree of any other tree;
Calculate the probability of occurrences for each tree in D and assign corresponding Huffman code to it;
Reparse T' using D and encode the subtrees by assigning dictionary code;
Identify and encode bridging edges;

Output a dictionary D containing a set of distinct BFS trees and a compressed tree T".

3.1 Proof of Correctness of Tree Compression

We show that the tree compression algorithm compresses an binary tree 7' into a
compressed form 7" with smaller size. Recall that we originally represent nodes of T’
by logn bits each.

Assume that e is an edge in T'. If e is an internal edge, e is contained in a parsed
subtree of 7. The node in 7" which represents this subtree already encodes e so no
extra space is needed for encoding e in 7".

If e is a bridging edge in 7, e is encoded by a concatenation of two binary numbers.
Assume that v; and vy are the two nodes in G that e connects and vy is below v;.
Let T} be the parsed subtree that v; belongs to and 75 be the parsed subtree that
vy belongs to. Note that v; is a leave of 77 and v, is the root of 75. The edge €' in
T' contains the subtree number in the dictionary for 75 and the position of the v,
in the left-to-right order of the leaves of 77. The node number for 75 takes at most
1/2logn bits since the total number of the nodes in T; is bounded by y/n. The total
number of leaves in 77 is also bounded by & = /n. Thus the size of €' is bounded
by 1/2logn + 1/2logn = logn which is the size of e. Thus the encoded form of the
bridging edge is of the same length as the original form.

3.2 Proof of Optimality of Tree Compression

We prove that our tree compression algorithm achieves optimal compression, i.e. the
dictionary used to parse the tree is optimally selected so that the compression ratio
p=1/H(X) where H(X) is the entropy rate of a stationary ergodic source X from
which the binary tree is generated.

Let X = (Xi, Xy, ...) be a stationary ergodic process that generates the binary
trees in depth first search order. Let P(zi, 2o, ...,%,) be the underlying probability

mass function for X. For a fixed integer k, we define the kth order Markov approxi-
mation to P as

n

Qr(x1, T9..., T H x3|x (4)

where 2} = (4, Zit1, -, 2;),1 < j. We will show that the algorithm is optimal when
n — 0o.

Theorem 1 The tree compression algorithm is optimal when n — oo where n is the
size of the tree T which is generated by a stationary ergodic source.

Proof: We approximate the stationary ergodic source X’ by k-th order Markov source
Q. where the probability of the next state is only dependent on the previous £ states.
When k£ — oo, Q) — X in the limit. In the construction of the final dictionary D’
in our compression algorithm, we estimate the probability distribution of the leaves
above k-th level. Let v be an arbitrary leaf in the dictionary and p, be the probability
that v appears in T'. Let e, be the estimation of the probability of v in (). We show
that for any given € > 0, Prob(|p, — e,| < €) — 1 when the size of the tree n — oo.
Also as n — 0o, k = y/n — oo and @y — X in the limit.

Recall that each subtree in T" has the same probability distribution. Therefore
the number of occurrences of v after we parse n’ < n times after v appears in the
dictionary. Assume that v has a probability p, in), the number of occurrences U
of v in n' parses forms a binomial distribution with probability p,.

Applying Chernoff bounds to the binomial distribution, we obtain the following,

2 !
e P 1
! —
Prob(U > (1+€)pyn’) < 9 ©)
and

—Zpon
P b U < 1 . < e E"PyT _ 1 6
rob(U < (1 —¢)pyn’) < 3) (6)

for any given € > 0. As e, = U/n', we have Prob(le, — p,| <€) — 1 as n' — oc.

As the Huffman coding based on the probability distribution of the leaves at
k-th level is optimal for encoding the source)k, our dictionary achieves optimal
compression in the limit when the size of the input tree 7" grows to infinity. O

4 Compression of Graphs

Our algorithm for compressing a given undirect connected graph G works in two
steps. First we traverse G using breadth first search to obtain a BF'S tree 7" and then
apply the tree-compress algorithm to construct a dictionary D and a compressed
form T" of T. We then traverse G again to identify all back edges (see definitions in
[2]) and encode them using the similar technique for encoding bridging edges in tree

7

compression algorithm. The edges of G can be classified as internal edges, bridging
edges and back edges. The first two kinds of edges are contained in the BFS tree
of G and are compressed in the tree compression algorithm. The back edges are
compressed in the second traversal using the same technique of compressing bridging
edges in the tree compression algorithm. However, the size of compressed form of a
back edge may exceed the size of the original encoding. More specifically, if e is a back
edge connecting v; and v, in the original graph, let 77 and 7% be the subtrees in the
dictionary which contains v; and vy respetively. The encoded form e’ of e is stored in
the node in G’ representing T} and e’ consists binary numbers representing 75, v; and
vy (the pre-order for v; in 7} and ve in Ty). We expect that our algorithm is efficient
when the number of back edges is small comparing to the total number of internal
and bridging edges thus the loss in compressing back edges is well compensated by
the gain in compressing the other edges.

Graph-Compress (G; D, G')
Input an undirected graph G;

Step 1
Traverse G using breadth first search and construct BFS tree T for G;
Step 2
Apply Tree-Compress Algorithm on 7" and achieve dictionary D and compressed tree T";
Step 3
Traverse G again using breadth first search;
Compress back edges using similar strategy of compressing
bridging edges in Tree-Compress Algorithm;
Combine T" and compressed back edges to form compressed graph G;
Output a dictionary D containing a set of distinct trees and a compressed graph G'.

For a directed acyclic connected graphs (DAG), our algorithm above works sim-
ilarly except that the depth first search now follows the direction of the edge. We
encode the cross edges using similar method of encoding back edges in the case of
compressing an undirected graph. Note the compressed edges in this case are also
directed edges. Our method of compressing undirected graphs and directed acyclic
graphs may not always yield a compressed form with a smaller size since the back
edges and cross edges may not be compressed efficiently. However, if the back and
cross edges can be identified easily (e.g., when the graph is generated by randomly
adding edges to an existing tree) and the number of back edges and cross edges is
only a small portion of the number of edges in the original graph, we expect that
our compression scheme to perform well. Furthermore, if the graph can be parsed
into a series of trees (e.g., in the case of parallel-series graph), we can apply our
Tree-Compress algorithm to the parsed trees and achieve optimal compression.

5 Conclusions

In programming languages such as LISP, it requires a large database organized ac-
cording to some data structure (tree, undirected graph, DAG, etc). To preserve the
space for storing such a database, it is desirable to have a compression scheme which
compresses the original data structure into one with smaller size. This paper tries to
outline a compression scheme to compress the database while keeping a similar struc-
ture. However, in most cases, the data contained in each node of the data structure
may vary widely thus our compression scheme has only limited applicability in those
kinds of actual databases. In other words, the compressibility of such data structure
is small. Nonetheless, if the data structure has many repeated patterns (e.g. the
identical subtrees in a tree structure) and the data contained in each node varies
infrequently, our algorithm is proven to be efficient.

References

[1] T.C.Bell and J.G.Cleary and I.H.Witten, Text Compression, Prentice Hall Com-
pany, 1990.

[2] T.H.Cormen, C.E.Leiserson and R.L.Rivest, Introduction to algorithms,
McGraw-Hill Book Company, 1990.

[3] S. Chen and J. H. Reif. Using difficulty of prediction to decrease computation:
Fast sort, priority queue and computational geometry for bounded-entropy in-
puts. 34th Symposium on Foundations of Computer Science, 104—112, 1993.

[4] T.M.Cover and J.A.Thomas. Elements of Information Theory. John Wiley and
Sons, New York, NY, 1991.

[6] K.H. Holm. Graph matching in operational semantics and typing. In Proceedings
of Colloguium on Trees in Algebra and Programming, pages 191-205, 1990.

[6] D.E.Knuth. The Art of Computer Programming. Volume 3: Sorting and Search-
ing. Addison-Wesley, Reading, Massachusetts, 1973.

[7] V.S.Miller and M.N.Wegman, Variations on a theme by Ziv and Lempel, Com-
binatorial algorithms on words, edited by A.Apostolico and Z.Galil, 131-140,
NATO ASI Series, Vol. F12., Springer-Verlag, Berlin.

[8] J.Ziv and A.Lempel, A universal algorithm for sequential data compression,
IEEE Trans. Information Theory, 23, 3, 337-343(1977).

