Engineering Better Software at Microsoft

Jason Yang
jasony@microsoft.com

Principal Development Lead
Windows Engineering Desktop
Microsoft Corporation

Who we are

Windows Engineering Desktop — Analysis Technologies Team

Develops and supports some of the most critical compile-time program analysis
tools and infrastructures used at Microsoft.

/ global analyzer

— local analyzer

Source-level

> PREfix &«

> PREfast/Esp €
» SAL e

- Source code annotation

Binary-level

/ binary instrumentation

> Vulcan <
» Magellan L .

== code coverage

CMU, 11/30/2010 Jason Yang, Microsoft

—%Q\
A primer on SAL Qi&

=

An introduction to program analysis

A glimpse at the engineering process in Windows

CMU, 11/30/2010 Jason Yang, Microsoft

good APls + annotations + analysis tools

¥

significantly fewer code defects

CMU, 11/30/2010

Jason Yang, Microsoft

3,631,361 *

* number of annotations in Windows alone

more secure and reliable products

4] Do

L office .
5 OrOfessmnaI 2010

CMU, 11/30/2010 Jason Yang, Microsoft

Why SAL?

Manual Review
too many code paths to think about

Massive Testing
inefficient detection of simple programming errors

Global Analysis
long turn-around time

Local Analysis
lack of calling context limits accuracy

SAL
light-weight specifications make implicit intent explicit

CMU, 11/30/2010 Jason Yang, Microsoft

Evolution of Source Code Annotation Language (SAL)

buffer overrun

< | EspX
8 Buffer overrun
N | checker
~ | SAL 1.0 \‘j\‘/’tp'é’yed {‘/’.r t
§ Focuses on ndows vista

2007

SAL 2.0
Improves
coverage and

EspC usability
Concurrency

checker deployed
for Windows 7

2010

2003

CMU, 11/30/2010

PREfast &
PREfix
Starts to
support
annotations

2005

VS 2005
SAL aware

N
o
o
N

PFD

PREfast for
Drivers shipped
with DDK

compiler shipped
with Visual Studio

Jason Yang, Microsoft

SAL

For industrial strength C/C++

Tailored for compile-time analysis

Target critical problem areas

_Post Notnull wvoid *
foo(Pre Notnull int *p)

{ ..}

VS.

CO0 Contracts

For a subset of C

Current enforcement entirely based
on runtime analysis

May handle full functional
specification

void * foo(int *p)
//Rrequires p !'= NULL;
//Q@ensures \result !'= NULL;
{ ..}

_Pre _satisfies (p>q) €= //Qrequires p>q;
_Post _satisfies (p>q) €= //Qensures p>q;

CMU, 11/30/2010 Jason Yang, Microsoft 8

What do these functions do?

void * memcpy (
void *dest,
const void *src,
size t count

) ;

wchar t *wmemcpy (
wchar t *dest,
const wchar t *src,
size t count

) ;

CMU, 11/30/2010 Jason Yang, Microsoft

memcpy, wmemcpy ~“msdn

Visual Studio 2010 Other Versions «

Copies bytes between buffers. More secure versions of these functions are available; see memcpy_s, wmemcpy_s.

Copy
void *memcpy(
void *dest,
const void *src,
size_t count

)

wchar_t *wmemcpy (
wchar_t *dest,
const wchar_t *src,
size_t count

);
Remarks

memcpy copies count bytes from src to dest; wmemcpy copies count wide characters (two bytes). If the source and
destination overlap, the behavior of memcpy is undefined. Use memmove to handle overlapping regions.

Security Note Make sure that the destination buffer is the same size or larger than the source buffer. For more
information, see Avoiding Buffer Overruns.

CMU, 11/30/2010 Jason Yang, Microsoft

10

Remarks

memcpy copies count bytes from src to dest; wmemcpy copies count wide characters (two bytes). If the source and
destination overlap, the behavior of memcpy is undefined. Use memmove to handle overlapping regions.

Security Note Make sure that the destination buffer is the same size or larger than the source buffer. For more
information, see Avoiding Buffer Overruns.

CMU, 11/30/2010 Jason Yang, Microsoft

11

For every buffer API there’s usually a wide version.
Many errors are confusing “byte” vs. “element” counts.

Remarks
A

4)
memcpy copies count bytes from src to dest; wmemcpy copies count wide characters (two bytes). If the source and

destination overlap, the behavior of memcpy is undefined. Use memmove to handle overlapping regions.

Security Note Make sure that the destination buffer is the same size or larger than the source buffer. For more
information, see Avoiding Buffer Overruns.

CMU, 11/30/2010 Jason Yang, Microsoft

12

For every buffer API there’s usually a wide version.
Many errors are confusing “byte” vs. “element” counts.

Remarks
A

4)
memcpy copies count bytes from src to dest; wmemcpy copies count wide characters (two bytes). If the source and

destination overlap, the behavior of memcpy is undefined. Use memmove to handle overlapping regions.

Security Note Make sure that the destination buffer is the same size or larger than the source buffe; For more
information, see Avoiding Buffer Overruns. Y

Vital property for avoiding buffer overrun.

CMU, 11/30/2010 Jason Yang, Microsoft

13

SAL speak

void * memcpy (
_Out writes bytes all (count) wvoid *dest,
_In reads bytes (count) const void *src,
size t count

) ;

wchar t *wmemcpy (
_Out writes all (count) wchar t *dest,

_In reads (count) const wchar t *src,
size t count

()
v Captures programmer intent.
v" Improves defect detection via tools.

v' Extends language types to encode program logic properties.

) ;

CMU, 11/30/2010 Jason Yang, Microsoft 14

Precondition: function can assume p to be non-null when called.

>A
4)

_Post Notnull void * foo(Pre Notnull int *p);

\ J
Y

\

Postcondition: function must ensure the return value to be non-null.

struct buf {
int n;
_Field size (n) int *data;

TN

Invariant: property that should be maintained.

CMU, 11/30/2010 Jason Yang, Microsoft

15

What: annotation specifies program property.

Where: At specifies annotation target.

\ n
4)

_At (ptr, When (flag !'= 0, Pre Notnull))
void Foo (

int *ptr,

int flag);

When: When specifies condition.

CMU, 11/30/2010 Jason Yang, Microsoft 16

Type

Types are used to describe
the representation of a value
in a given program state.

Enforced by compiler via type
checking.

Each execution step in a type-
safe imperative language
preserves types, so types by
themselves are sufficient to
establish a wide class of
properties without the need for
program logic.

CMU, 11/30/2010

VS.

Program Logic

Program logic describes
transitions between program
states.

Programming errors can be
detected by static analysis.

Types are often not descriptive
enough to avoid errors
because knowledge about
program logic is often implicit.

Jason Yang, Microsoft

17

Memory cell semantics

Memory allocated and can be written to but
unknown ”? nothing is known about its contents, for
example the result of malloc() (that does not
zero init the returned buffer)

valid Object has a “well-formed” value:
initialized + type specific invariants (if any)

read-only D Memory is read-only

null-terminated | A0’ Buffer is null-terminated

CMU, 11/30/2010 Jason Yang, Microsoft

18

Legend

Memory Cells ‘

unknown state

valid

P p P
read-only o, °

null-terminated

‘ Pointers

null »

non-null e—

maybe null e--::--- >

‘\0!

(a) (b) (c)

Diagram (a) abbreviates (b) or (c)

CMU, 11/30/2010

Jason Yang, Microsoft 19

CMU, 11/30/2010

Program state

. s

Jason Yang, Microsoft

20

Well-typed program state

char x = ‘@’

inty - 1

CMU, 11/30/2010 Jason Yang, Microsoft

Well-typed program state

char x > ‘a’
inty - 1

int *p =-»> @

CMU, 11/30/2010 Jason Yang, Microsoft 22

Well-typed program state

int *p > " .

[C type is not descriptive enough to avoid errors.]

CMU, 11/30/2010 Jason Yang, Microsoft 23

Program state with qualified type

char x = ‘@’

inty - 1

_Notnull int *p =->» .//V.

Use SAL as a qualifier to be more precise!]

CMU, 11/30/2010 Jason Yang, Microsoft

Qualified type is not always sufficient

void foo(Notnull Writable elements (1) int *p)

Which one is right?

\Problem: types don'’t capture state transitions!

CMU, 11/30/2010 Jason Yang, Microsoft

25

Pre/post conditions make up a contract

_Notnull Writable elements (1)
int *p => e > 2

Precondition

foo (&a) ;
Postcondition

~Notnull Valid int *p => e >.

CMU, 11/30/2010 Jason Yang, Microsoft 26

Contract for program logic

void foo(
Pre Notnull Pre Writable elements (1)

:PosE; _Notnull___Pogt_ ;Valid;
int *p) ,T‘

[_Post__Notnull can be removed because C is call by value.]

CMU, 11/30/2010 Jason Yang, Microsoft 27

Simplified, but still cumbersome to use!

void foo(
_Pre Notnull Pre Writable elements (1)
_Post Valid _
int *p)

CMU, 11/30/2010 Jason Yang, Microsoft

28

C preprocessor macros to the rescue

#define Out \
_Pre Notnull Pre Writable elements (1) \
_Post Valid

void foo(Out int *p)

{
=:|_;¢

}

[See how simple the user-visible syntax is!]

CMU, 11/30/2010 Jason Yang, Microsoft 29

Under the hood—two implementations

#define Out \
[SA Pre(Null=SA No, WritableElementsConst=1)] \ €— attributes
[SA Post(Valid=SA Yes)]

#define Out \

__declspec("SAL pre") _ declspec("SAL notnull") \
__declspec("SAL pre") \ <— declspecs
__declspec("SAL writableTo (elementCount(1l))") \

__declspec("SAL post") _ declspec("SAL valid")

-

Historically, there are some key differences between the two mechanisms.)
With the Visual Studio 2010 compiler, the gap is (almost) eliminated.
A consistent user-visible language makes the choice transparent. Y

C

MU, 11/30/2010 Jason Yang, Microsoft 30

validity

~Valid
_Notvalid

Basic Properties

const-ness

_Const

string termination

_Null terminated
NullNull terminated

buffer size

_Readable elements
_Writable elements
Readable bytes
:Writable:bytes:

null-ness

_Null
_Notnull
_Maybenull

-

Examples

“Pointer ptr may not be null.”
“String str is null terminated.”

“Length of string str is stored in count.”

“Object obj is guarded by lock ¢s.”

~N

J

CMU, 11/30/2010

Jason Yang, Microsoft

31

Popular annotations in Windows

SAL Count
In 1961906
Out 381083
_In_opt_ 253496
Inout 185008
Outptr 99447
_In_reads_(size) 71217
_Out_opt_ 63749
_Out_writes_(size) 56330
_In_reads_bytes (size) 43448
_Out_writes_bytes (size) 19888
_Inout_opt_ 18845
Inz 17932
_Inout_updates_(size) 14566
_Out_writes_opt_(size) 12701
_In_reads_opt_(size) 12247
_Outptr_result_maybenull_(size) 12054
_Outptr_result_buffer (size) 9597
_In_reads_bytes opt (size) 9138
_Outptr_result_bytebuffer (size) 7693
_Out_writes_bytes opt_(size) 7667
_Outptr_opt 6231
_Out_writes_to_(size, count) 5498

CMU, 11/30/2010 Jason Yang, Microsoft

Sing

e element pointers

‘ In_T*p ‘

Pre

Post

‘ _Out_T*p ‘
p
?
Pre
Post

‘ _lnout_T*p

Pre

Post

CMU, 11/30/2010

Jason Yang, Microsoft

33

Single element pointers that might be null

‘ In_opt_T*p ‘

‘_Out_opt_ T p‘

‘ _Inout_opt_ T*p ‘

CMU, 11/30/2010

Jason Yang, Microsoft

34

Null-terminated strings

‘ Inz Tp

Pre

Post

‘ Inoptz T*p ‘

‘ _Inout_ z T*p ‘

<

Pr

Post

Pre

Post

4

CMU, 11/30/2010

Jason Yang, Microsoft

35

Buffers

_In_reads_(n) T*p
_In_reads_bytes (n) T* p

_Out_writes_(n) T*p
_Out_writes_bytes (n) T* p

_Inout_updates_(n) T* p

_Inout_updates_bytes (n) T* p

p p P
2 ? 2
')
Y
Pre Pre n Pre
Post Post Post

CMU, 11/30/2010

Jason Yang, Microsoft

36

Shared-memory concurrency

A critical technique for improving application responsiveness.
Lock-based multithreaded programming is (still) the most dominant paradigm.

Threads are notoriously hard to get right, and the Multi-core, Many-core trend is
likely to exacerbate the problem.

\

We need tools to help developers write reliable multithreaded code.

CMU, 11/30/2010 Jason Yang, Microsoft

37

Concurrency annotations

‘ _Acquires_lock_(cs)

‘ <— Postcondition: lock count increased by 1

‘ _Releases_lock_(cs)

‘ <— Postcondition: lock count reduced by 1

‘ _Requires_lock_held_(cs)

‘ <— Precondition: lock held when called

‘ _Requires_lock_not_held_(cs)

‘ <— Precondition: lock not held when called

‘ _Guarded_by (cs) T data;

‘ <— |nvariant: data protected by lock

CMU, 11/30/2010

Jason Yang, Microsoft 38

A primer on SAL

An introduction to program analysis

A glimpse at the engineering process in Windows

CMU, 11/30/2010 Jason Yang, Microsoft

39

What is program analysis?

Abstract Syntax Trees (ASTs), Control Flow Graphs (CFGs),
type checking, abstract interpretation, constraint solving,
instrumentation, alias analysis, dataflow analysis, binary analysis,

dependency analysis, code coverage, automated

debugging, fault isolation, fault injection, testing,
symbolic evaluation, model checking,
specifications, ...

r _ A

code search == program analysis

program analysis == code search

CMU, 11/30/2010 Jason Yang, Microsoft 40

Accuracy

False positive:
report is not a bug.

VS.

Completeness

False negative:
bug is not reported.

don’t miss any bug + report only real bugs == mission impossible

_

/\

We need to deal with partial programs and partial specifications.

Any of the inputs could trigger a bug in the program.

» No false negative—we have to try all of the inputs.
If we do the inputs in bunches, we’ll have noise.

> No false positive—we have to try the inputs one by one.
But the domain of program inputs is infinite.

CMU, 11/30/2010

Jason Yang, Microsoft

41

Dynamic Analysis

Run the program.

Observe program behavior on
a single run.

Apply rules to identify deviant
behavior.

CMU, 11/30/2010

VS.

Static Analysis

Simulate many possible runes
of the program.

Observe program behavior on
a collection of runs.

Apply rules to identify deviant
behavior.

Jason Yang, Microsoft

42

Local Analysis

Single-function analysis
(e.g., PREfast)

Scales well enough to fit in
compilers.

Example: unused local
variable

void foo(int *q) {
int *r = q;
*q: 0;

CMU, 11/30/2010

VS.

Global Analysis

Cross-function analysis
(e.g., PREfix)

Can find deeper bugs.

Example: null dereference due
to broken contract

void bar (int *q) {
g = NULL;
foo(q) ;

}

void foo (int *p) {
*p:l;
}

Jason Yang, Microsoft

43

SAL turns global analysis into local analysis!

void bar (int *q)

{
q = NULL;
foo(q); // BUG: violating Pre Notnull from Out

void foo(Out int *p)
{

}

CMU, 11/30/2010 Jason Yang, Microsoft

44

How do pre/post conditions work?

Requirement on £oo’s callers: must pass a buffer that is count elements long.

void foo(Out writes (count) int *buf, int count)

{
Assumption made by foo: buf is count elements long.

Local checkers: do the assumptions imply the requirements?

Requirement on foo: argument buf is count*4 bytes long.
memset (buf, 0, count*sizeof (int));

}

Requirement on memset'’s callers: must pass a buffer that is 1en bytes long.

void *memset (
_Out writes bytes (len) void *dest,
int c,
size t len);

CMU, 11/30/2010 Jason Yang, Microsoft 45

EspX: checker for buffer overruns

void zero(Out writes (len) int *buf, int len)

{

int 1i;
for(i = 0; i <= len; i++)
buf[i] = 0;
} Constraints:
assume (sizeOf (buf) == len) (Cl) 1 >=0
. (C2) i <= len
l (C3) sizeOf (buf) == len
for(i = 0; 1 <= len; i++) Goal: i >= 0 && i < sizeOf (buf)
inv(i > 0 && i <= len) Subgoal 1: i >=0 by (C1)
! c3bgoal 2: i < len FAIL
assert(i >= 0 && i < sizeOf (buf))
v
buf[i] = 0;
| Warning: Cannot validate buffer access.
l Overflow occurs when i == len

CMU, 11/30/2010 Jason Yang, Microsoft 46

EspC: checker for concurrency rules

Requirement on £oo’s callers: must hold p->cs before calling foo.

_Requires lock held (p->cs)
void foo (S *p)

Assumption made by foo: p->cs is held.

EspC: does the assumption imply the requirement? Yes.

Requirement on access: p->cs must be held.
p->data = 1;

}

Invariant on accessing data: cs must be held.

typedef struct _S
{
CRITICAL SECTION cs;
_Guarded by (cs) int data;
}S;

CMU, 11/30/2010 Jason Yang, Microsoft

47

Global (cross-function) PREfix

Checker Global Esp
A A
Local (per-function) PREfast Plugins EspC Goldmine NullPtr
Plugins
! T T T
Esp Dataflow Analysis Framework
Analysis Frameworks ﬁ
PREfast Framework
Annotation Parsing (NMM); Reporting Infrastructure
A
Control Flow Graph (CFG)
Intermediate '1‘
Representation (IR)]
Phoenix HIR
Abstract Syntax Tree (AST) Phoenix T
Microsoft Intermediate Language
(MSIL)
C/C++ Analysis Compiler
C# Compiler T
Source Code C/C++/SAL J C#

CMU, 11/30/2010 Jason Yang, Microsoft 48

A primer on SAL

An introduction to program analysis

A glimpse at the engineering process in Windows

CMU, 11/30/2010 Jason Yang, Microsoft

49

CMU, 11/30/2010

The real world challenge

Code on a massive scale

Developers on a massive scale

Tight constraints on schedules

Jason Yang, Microsoft

50

Automated program analysis tools

Code Correctness
Static tools — PREfix, PREfast, Esp

Detects buffer overrun, null pointer, uninitialized memory, leak,
banned API, race condition, deadlock, ...

Code Coverage
Code coverage tool — Magellan (based on Vulcan)

Detects code that is not adequately tested

Architecture Layering
Dependency analysis tool — MaX (based on Vulcan)

Detects code that breaks the componentized architecture of product

CMU, 11/30/2010 Jason Yang, Microsoft 51

Build Architecture

main
branch
\ 4
team \ team &\ team
branch branch branch

4 4 4

A A A

| desktop I """ | desktop I """ | desktop I

7

Forward Integration (Fl): code flows from parent to child branch.
Reverse Integration (RI): code flows from child to parent branch.

.

J

CMU, 11/30/2010 Jason Yang, Microsoft

Local analysis on developer desktop

main
branch
) 4
team \ team &\ team
branch branch branch

4 4 4

l desktop | """ l desktop | """ l desktop |

(
Microsoft Auto Code Review (OACR)

» runs in the background
» intercepts the build commands
» launches light-weight tools like PREfast plugins

_

CMU, 11/30/2010 Jason Yang, Microsoft

Quality gates

main
branch
team \ team &\ team
branch branch branch
A A A
A A A
‘ desktop I """ ‘ desktop I """ ‘ desktop I
()

Quality Gates (static analysis “minimum bar”)
» Enforced by rejection at gate

_ » Bugs found in quality gates block reverse integration (RI))

CMU, 11/30/2010 Jason Yang, Microsoft

Global analysis via central runs

main
branch
\ 4
team \ team &\ team
branch branch branch

4 4 4

A A A

| desktop I """ | desktop I """ | desktop I

Heavy-weight tools like PREfix run on main branch.

CMU, 11/30/2010 Jason Yang, Microsoft

95

Methodology

Root Cagse Measurement
Analysis ﬂ

Engineering
Process

Analysis Resource
Technology Constraints

\
Understand important failures in a deep way.
Measure everything about the process.
Tweak the engineering process accordingly. Y

CMU, 11/30/2010 Jason Yang, Microsoft

What we’ve discussed

—Q./&&Q\
A primer on SAL -
7

An introduction to program analysis

A glimpse at the engineering process in Windows

CMU, 11/30/2010 Jason Yang, Microsoft 57

good APls + annotations + analysis tools

¥

significantly fewer code defects

Automated static analysis is applied pervasively at Microsoft.
SAL annotations have been drivers for defect detection and prevention.

Learn to leverage these technologies and don'’t treat specifications as afterthoughts!

_ J

CMU, 11/30/2010 Jason Yang, Microsoft 58

