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Motivation 

• Design patterns reflect engineering practice and experience, but 

• Complexity and performance implications often unknown 

• Several patterns exist for event processing: 
– Reactor 

– Half-Sync/Half-Async 

– Leader/Followers 

– Proactor 

• All patterns have been evaluated before 
– But never in the same context 

– Always under a specific application 

– Not on multicore systems 

 

• Our aim: 
– Evaluation of all patterns in the same application-agnostic context 

– On embedded multicore system 



Parallel Design Patterns 

• Thread-per-Connection (multi-threading strategy) 
– Each thread serves one connection exclusively 

– Thread terminates after connection was torn down 

 

• Reactor (pattern) 
– Single threaded  avoids all multithreading overhead 

– Used in Half-Sync/Half-Async & Leader/Followers 

 

• Half-Sync/Half-Async (pattern) 
– Distinguish between asynchronous and synchronous services 

– Asynchronous services are triggered by external event sources 

– Synchronous services poll a queue and processes data further 
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Parallel Design Patterns 

• Leader/Followers (pattern) 
– Threads take turn accessing the set of event sources 

– At most one thread is Leader 

– Idle threads are Followers waiting to become Leader 

 

 

 

• Proactor (pattern) 
– Uses asynchronous I/O and message processing 
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Evaluation Settings 

• Evaluation system 
– Cavium Octeon Plus CN5650 

• 12 MIPS cores @ 800MHz 

• Designed for embedded telecommunication applications 

 

• Measurement settings 
– 128 TCP connections maintained by 2 threads 

– Messages are1 byte long 

– With 1 - 12 threads (Half-Sync/Half-Async, Leader/Followers, Proactor) 

– With 1 – 12 cores (Thread-per-Connection) 

– Additional work load per message of 0 to 200 µs 



• No additional load per message 

 

 

 

 

 

 

 

• 200µs load per message 
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• Comparison of Half-Sync/Half-Async with 4 threads against Reactor pattern 
– Low throughput caused by asynchronous service (implemented using Reactor pattern) 

More frequent invocation of event de-multiplexing induces high latency 

Evaluation Results 
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• Proactor with 2 threads 
– Increasing load does not decrease throughput  limited by I/O 

One thread created for each I/O completion handler 

Evaluation Results 

Proactor pattern 
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Lessons learnt & Future Work 

• Lessons learnt so far 
– Considerable performance differences between patterns 

– Distribute event de-multiplexing over multiple threads 

– Distribute event sources as well 

Avoiding the bottleneck of a single thread 

– The wrong multi-threading architecture is worse than none 

Reactor partly performed better than Half-Sync/Half-Async 

 

• Future Work 
– Include: 

• Shared resources, 

• Connection establishment / termination overhead etc. 

– Use alternative I/O primitives (epoll) and mechanics (POSIX signals) 

– Expand measurement with CPU utilization, cache usage etc. 


