
Evaluation of Parallel Design Patterns for Message 

Processing Systems on Embedded Multicore Systems 

Ronald Strebelow 
Institute of Computer Science 

University of Augsburg 

Christian Prehofer 
Fraunhofer Institute for 

Communication Systems ESK 



Motivation 

• Design patterns reflect engineering practice and experience, but 

• Complexity and performance implications often unknown 

• Several patterns exist for event processing: 
– Reactor 

– Half-Sync/Half-Async 

– Leader/Followers 

– Proactor 

• All patterns have been evaluated before 
– But never in the same context 

– Always under a specific application 

– Not on multicore systems 

 

• Our aim: 
– Evaluation of all patterns in the same application-agnostic context 

– On embedded multicore system 



Parallel Design Patterns 

• Thread-per-Connection (multi-threading strategy) 
– Each thread serves one connection exclusively 

– Thread terminates after connection was torn down 

 

• Reactor (pattern) 
– Single threaded  avoids all multithreading overhead 

– Used in Half-Sync/Half-Async & Leader/Followers 

 

• Half-Sync/Half-Async (pattern) 
– Distinguish between asynchronous and synchronous services 

– Asynchronous services are triggered by external event sources 

– Synchronous services poll a queue and processes data further 

Queue 

R 
A 

A 

event 

source 

asynchronous 

services 

synchronous 

services 



Parallel Design Patterns 

• Leader/Followers (pattern) 
– Threads take turn accessing the set of event sources 

– At most one thread is Leader 

– Idle threads are Followers waiting to become Leader 

 

 

 

• Proactor (pattern) 
– Uses asynchronous I/O and message processing 

Leader 

Worker 

Followers 

event 

source 

async message processing processing-completed handler 

issues 

calls back 

async receive 

async send 

send-completed handler 

receive-completed handler 

issues 

calls back 

issues 

calls back 



Evaluation Settings 

• Evaluation system 
– Cavium Octeon Plus CN5650 

• 12 MIPS cores @ 800MHz 

• Designed for embedded telecommunication applications 

 

• Measurement settings 
– 128 TCP connections maintained by 2 threads 

– Messages are1 byte long 

– With 1 - 12 threads (Half-Sync/Half-Async, Leader/Followers, Proactor) 

– With 1 – 12 cores (Thread-per-Connection) 

– Additional work load per message of 0 to 200 µs 



• No additional load per message 

 

 

 

 

 

 

 

• 200µs load per message 

0 50 100 150 200 250 300

Proactor

Leader/Followers

Half-Sync/Half-Async

Reactor

Thread-Per-Connection

throughput [1000 msg/s] 

0 10 20 30 40 50 60

Proactor

Leader/Followers

Half-Sync/Half-Async

Reactor

Thread-Per-Connection

throughput [1000 msg/s] 

Evaluation Results 

Peak performance 



• Comparison of Half-Sync/Half-Async with 4 threads against Reactor pattern 
– Low throughput caused by asynchronous service (implemented using Reactor pattern) 

More frequent invocation of event de-multiplexing induces high latency 

Evaluation Results 

Half-Sync/Half-Async pattern 

0

10

20

30

40

50

60

70

80

0μs 50μs 100μs 200μs 

th
ro

u
g

h
p

u
t 

[1
0

0
0

 m
s

g
/s

] 

load per message 

Reactor Half-Sync/Half-Async (4 Threads)



• Proactor with 2 threads 
– Increasing load does not decrease throughput  limited by I/O 

One thread created for each I/O completion handler 

Evaluation Results 

Proactor pattern 

8400

8500

8600

8700

8800

8900

9000

9100

9200

9300

9400

0μs 50μs 100μs 200μs 

th
ro

u
g

h
p

u
t 

[m
s
g

/s
] 

load per message 



Lessons learnt & Future Work 

• Lessons learnt so far 
– Considerable performance differences between patterns 

– Distribute event de-multiplexing over multiple threads 

– Distribute event sources as well 

Avoiding the bottleneck of a single thread 

– The wrong multi-threading architecture is worse than none 

Reactor partly performed better than Half-Sync/Half-Async 

 

• Future Work 
– Include: 

• Shared resources, 

• Connection establishment / termination overhead etc. 

– Use alternative I/O primitives (epoll) and mechanics (POSIX signals) 

– Expand measurement with CPU utilization, cache usage etc. 


