
Exploiting SIMD for Complex Numerical Predicates

Dongxiao Song, Shimin Chen*

State Key Laboratory of Computer Architecture

Institute of Computing Technology

Chinese Academy of Sciences
{songdongxiao,chensm}@ict.ac.cn

Abstract—We study the use of SIMD instructions to support
complex conjunctive numerical predicates. Compared to previous
studies, we aim to model more realistic use scenarios, where
different data types, different comparison operations, and dif-
ferent predicate types can be mixed in a single filtering clause.
Moreover, the evaluation of the predicates on a set of columns can
take advantage of multiple processor cores for maximum speed.
We find that the diversity of the predicates and the introduction
of multiple threads pose significant challenges in modeling and
optimizing complex predicates. We propose a code framework
based on three alternative SIMD algorithms for conjunctive
predicates. Then, we investigate cost models for both single-
threaded and multi-threaded evaluation of filtering predicates.
Our experimental results on synthetic data show that an optimal
SIMD plan can achieve up to 10.4x speedup over the best no
SIMD plan, and up to 6.8x speedup over sub-optimal SIMD plans.

I. INTRODUCTION

Filtering is a common operation in both database systems
and big data systems. It removes irrelevant data from consid-
eration, and often significantly reduces the amount of data to
be processed. As the main memory capacity increases expo-
nentially, main memory database systems/engines are moving
to the main stream. All the major relational database vendors
now have their own main memory database solutions [5], [1],
[4], [7]. Scan-based filtering operations are widely employed
to support analytical queries. Unlike disk-oriented database
systems, I/Os are no longer the bottleneck for scans in main
memory. Instead, it is important to examine and optimize the
filtering algorithm in order to more efficiently support scan-
based operations [9], [10], [11], [6], [8], [3].

Wider and wider SIMD instructions are becoming avail-
able in the mainstream processors. The current Intel Haswell
architecture supports 256-bit AVX2 SIMD instructions. Every
256-bit instruction can process four 64-bit types, eight 32-bit
types, 16 16-bit types, or 32 8-bit types at a time, thereby
significantly improving the performance of the corresponding
computation. The next generation mainstream processor ar-
chitecture from Intel, Skylake, will be equipped with 512-bit
SIMD instructions (a.k.a. AVX-512).

In this paper, we are interested in exploiting SIMD in-
structions for evaluating filtering predicates in main mem-
ory. In related work, Ross optimized the implementation of
conjunctive predicates with the C programming language,
choosing either the logical AND (&) or the branching AND
(&&) C operators to connect predicates [9]. Sitaridi and Ross
studied the evaluation of conjunctive predicates on GPUs [10].

*Corresponding author

Recently, Polychroniou et al. studied SIMD optimizations for
relational operations [8]. The work exploits SIMD memory
gather and scatter operations mainly on the Xeon Phi MIC
processor. However, it considers only a particular type of
predicates in the selective scan study. Moreover, several recent
studies on scanning compressed columnar data consider the use
of SIMD for decompression and/or predicate evaluation [11],
[6], [3]. However, since their focus is on the structure of the
compressed data, they do not provide systematic studies of
various predicate conditions.

Compared to previous work, we would like to model and
support realistic predicate use cases that are more complex.
We study three representative types of predicates, six common
comparison operators, and six numerical data types. We con-
sider the combination of three different SIMD algorithms. We
propose an algorithm framework to capture the essence of the
three algorithms, where a plan consists of one or multiple steps,
a step consists of one or multiple functions, and a function
evaluates one or multiple predicates. This framework allows
a large number of alternative plans for a given conjunctive
clause. Moreover, we propose a linear cost model for the
single-threaded execution of a plan. Based on the linear model,
we consider the effect of memory bandwidth saturation and
propose a cost model for multi-threaded executions. Finally,
we describe two algorithms that search the plan space for the
optimal plan.

The rest of the paper is organized as follows. Section II
describes the algorithm framework and the code generation
process. Then, Section III presents our cost models and opti-
mizes conjunctive predicates. Preliminary experimental results
are presented inline in this section. Finally, Section IV con-
cludes the paper and discusses future work.

II. SUPPORTING COMPLEX NUMERICAL PREDICATES

In this paper, we focus on conjunctive numerical predi-
cates1. That is, the where clause in a SQL select statement
consists of a conjunction of multiple predicates as follows:

clause = pred | pred AND clause
pred = col op val | col op col | col IN [valuelist]
op = < | ≤ | = | <> | ≥ | >

We consider three typical types of predicates: (i) a comparison
between a column and a constant value, (ii) a comparison
between two columns, and (iii) a test to see if a column is in a

1Note that filtering clauses that contain disjunctions can be canonically
written as disjunctions of conjunctive sub-clauses. Our solution can be applied
to compute each conjunctive sub-clause. The full result is a union of the results
from each sub-clause.

given list of constant values. There are six types of comparison
operations: <, ≤, =, <>, ≥, and >. The columns and the
values are 8-bit, 16-bit, 32-bit, 64-bit integers, single precision
or double precision floating point numbers.

Compared to previous studies, there are several distinct
features of our study. First, we model more realistic use
scenarios where different predicate types, different comparison
types, and different data types can be mixed in a single clause.
Every predicate type requires its own SIMD implementation.
Different data types are often of different sizes with different
memory access and comparison costs. Second, we consider the
SIMD algorithms for multiple conjunctive predicates. We pro-
pose an algorithm framework that combines three alternative
algorithms into a set of potential execution plans. We perform
template based code generation and cost-based optimization to
choose the best plan. Finally, we consider and model multi-
threaded implementation of the SIMD based computation.

In the following, we first motivate and describe three alter-
native SIMD based algorithms to compute multiple predicates
in Section II-A. Then, we combine the three algorithms into
an algorithm framework and employ template based code
generation in Section II-B. Finally, we discuss the multi-
threaded implementation in Section II-C.

A. Algorithms for Computing Multiple Predicates

We assume a column oriented main memory database
environment, similar to MonetDB [2] and SAP HANA [7].
A numerical attribute is stored as a column in memory, i.e.
an array of numerical values. All the attributes of a table are
stored in the same order. That is, the array index corresponds
to the record ID (a.k.a. RID) of the record, and the attributes of
the same record can be retrieved from the associated columns
at the same index. The result of the evaluation of a clause
is a list of RIDs of the records that satisfy the conjunctive
predicates in the clause.

We implement and evaluate our solution on the mainstream
Intel Haswell architecture supporting 256-bit SIMD instruc-
tions. In the following, we present our algorithms based on
the Haswell AVX2 instruction set.

Supporting a Single Predicate. We show the example SIMD
code for the three types of predicates in Figure 1. Since their
code structures are similar, we show the full code in Figure 1(a)
for col > val, and show only the comparison portion of
the codes for col > col2 and col IN [valuelist] in
Figure 1(b) and (c), respectively. __m256i is the C data type
for the 256-bit SIMD register. We use a special prefix, s_,
to denote variables that are 256-bit SIMD values. All the
examples in Figure 1 use 32-bit integer columns and values.
A 256-bit AVX2 instruction can process eight 32-bit integer
values at a time.

In Figure 1(a), the constant val is loaded into all the eight
32-bit integer locations in a SIMD register (s_val). Then, the
main loop loads and compares eight records from the input
col[] in every loop iteration. The comparison result is in a
256-bit bit mask, where every 32 bits are either 0xFFFF if
the comparison outcome is true, or 0x0000 if false. The next
portion of the code converts the SIMD bit mask into a normal
bit mask, uses bit manipulation instructions to find the position

i n t n r e s u l t = 0 ;
m256i s v a l = mm256 set1 epi32 (v a l) ;

f o r (i n t i =0 ; i +8<= n r e c o r d s ; i +=8) {
/ / compare 256 b i t a t a t i m e and s e t t h e mask

m256i s c o l = mm256 load si256 (& c o l [i]) ;
m256i s msk= mm256 cmpgt epi32 (s c o l , s v a l) ;

/ / c o n v e r t mask and p u t r i d s i n t o r e s u l t []
unsigned i n t mask= mm256 movemask ps (s msk) ;
f o r (i n t m= mm popcnt u32 (mask) ; m>0; m−−) {

i n t which= b i t s c a n f o r w a r d (mask) ;
r e s u l t [n r e s u l t ++]= i + which ;
mask= b l s r u 3 2 (mask) ;

}
}
/ / p r o c e s s t h e r e s t o f t h e i n p u t

(a) col > val

m256i s c o l = mm256 load si256 (& c o l [i]) ;
m256i s c o l 2 = mm256 load si256 (& c o l 2 [i]) ;
m256i s msk= mm256 cmpgt epi32 (s c o l , s c o l 2) ;

(b) SIMD comparison code for col > col2

m256i s c o l = mm256 load si256 (& c o l [i]) ;
m256i s v a l = mm256 set1 epi32 (i n l i s t [0]) ;
m256i s msk= mm256 cmpeq epi32 (s c o l , s v a l) ;
m256i s msk2 ;

f o r (k =1; k<in num ; k ++) {
s v a l = mm256 set1 epi32 (i n l i s t [k]) ;
s msk2= mm256 cmpeq epi32 (s c o l , s v a l) ;
s msk = mm256 or si256 (s msk , s msk2) ;

}

(c) SIMD comparison code for col IN [value list]

Fig. 1. Supporting a single predicate with SIMD. (The inputs are 32bit
integer columns and values. There are nrecords records. The result RIDs
are in result[0..nresult].)

of every 1 in the mask, and compute the result RID by adding
the 1’s position and the starting array index of the iteration.

Note that we have chosen the above implementation of
the mask conversion after testing a number of alternative
implementations. For example, one alternative implementation
is to test every bit in the mask with an if branch. However,
this alternative implementation incurs significant testing cost
when the selectivity is low and many branch mispredictions
when selectivity is medium.

Figure 1(b) and (c) omit the main loop and the mask
conversion code, which are the same as in Figure 1(a). To
compute col > col2, the code in Figure 1(b) loads eight
values from both columns and compares them using a SIMD
instruction. The code in Figure 1(c) can handle any number of
values in the value list. It achieves this by using a loop2, where
s_col is compared to every value in the list. The generated bit
masks are OR-ed together, since a record satisfies the condition
if it matches any value in the value list.

To support a different data type and/or a different com-
parison type, we modify the above example codes. The code
structure remains the same. The main change is to use the
SIMD instructions of the specific data type and/or the spe-
cific comparison type. The number of records to process per

2Note that our code generation process unrolls the loop into sequential code
as in_num is known given the value list, as explained in Section II-B.

f o r (i n t i =0 ; i +num<=n r e c o r d s ; i +=num) {
unsigned i n t mask= 0xFFFF ;
/ / p r o c e s s p r e d i c a t e 1
unsigned i n t msk1= 0 ;
f o r (i n t j =0 ; j<num ; j +=n1) {

l o a d d a t a and compute s msk ;
msk1 =(msk1<<n1) | mm256 movemask ps (s msk) ;

}
mask &= msk1 ;
/ / p r o c e s s more p r e d i c a t e s
c o n v e r t mask and p u t r i d s i n t o r e s u l t [] ;

}

(a) Algorithm 1: evaluating all predicates together

1 . Compute P r e d i c a t e 1 on a l l r e c o r d s ,
p u t RIDs i n t o r e s u l t 1 [] ;

2 . Compute P r e d i c a t e 2 on r e c o r d s g i v e n by
r e s u l t 1 [] , p u t RIDs i n t o r e s u l t 2 [] ;

.
k . Compute P r e d i c a t e k on r e c o r d s g i v e n by

r e s u l t k 1 [] , p u t RIDs i n t o r e s u l t k [] ;

(b) Algorithm 2: evaluating predicates one by one

1 . Compute P r e d i c a t e 1 on a l l r e c o r d s ,
s t o r e t h e r e s u l t s i n a b i tmap ;

2 . Compute P r e d i c a t e 2 on a l l r e c o r d s ,
s t o r e t h e r e s u l t s i n a tempbmp ;
b i tmap = bi tmap b i t −wise−AND tempbmp ;

.
k . Compute P r e d i c a t e k on a l l r e c o r d s ,

s t o r e t h e r e s u l t s i n a b i tmapk ;
b i tmap = bi tmap b i t −wise−AND tempbmp ;

k +1 . c o n v e r t b i tmap t o RIDs ;

(c) Algorithm 3: evaluating predicates then combining bitmaps

Fig. 2. Algorithms for multiple conjunctive predicates.

iteration is adjusted as:

nrecPerIter =
256

8 · sizeof(type)
(1)

Next, we describe three baseline algorithms to process
multiple conjunctive predicates. Algorithm 1 scans through
all the relevant columns at the same time, evaluating all the
predicates. In comparison, Algorithm 2 and Algorithm 3 scan
columns one by one. They differ in two aspects: (i) a predicate
is evaluated either on all the records or on only the records that
satisfy previous predicates, (ii) intermediate results are stored
either as RID lists or as bitmaps. The following provides more
details of the three algorithms.

Algorithm 1: Evaluating All Predicates Together. Our first
algorithm to evaluate multiple conjunctive predicates is to
extend the comparison code in Figure 1 to compute all the
predicates. In the loop body, the predicates are evaluated one
by one to generate a bit mask per predicate. Then all the bit
masks are AND-ed together to obtain the conjunctive result.
Finally, the resulting bit mask is converted to RIDs in a similar
fashion as in Figure 1(a).

However, this simple solution does not work if columns
with different data sizes are present in the conjunctive pred-
icates. Suppose n1, n2, ... are the number of records per
iteration (or loop stride) as computed by Equation 1 for every

predicate, respectively. The problem arises if n1, n2, ... are
not the same. Our solution is illustrated in Figure 2(a). We
set num = LCM(n1, n2, ...), which is the least common
multiple of the individual loop strides. Then, for a predicate
(e.g., predicate 1), an inner loop is introduced to compute and
concatenate num

n1 bit masks before AND-ing the concatenated
mask to the global mask. Note that the smallest data size is
one byte, and thus num is at most 256

8 = 32. Therefore, 32-bit
unsigned int is large enough for the concatenated mask.

Algorithm 2: Evaluating Predicates One by One. The sec-
ond algorithm evaluates a predicate entirely before evaluating
the next predicate, as shown in Figure 2(b). Step 1 in the
algorithm is exactly the same as in Figure 1. The rest of
the steps are also very similar. The main difference is that
they do not directly load contiguous data from the underlying
columns because the records that satisfy all previous predicates
usually scatter across the column. Therefore, we employ a
SIMD gather operation to retrieve the data values with the
RIDs (i.e. the array indices) given by the previous result[].

Algorithm 3: Evaluating Predicates then Combining
Bitmaps. The third algorithm evaluates every predicate sep-
arately. As shown in Figure 2(c), every predicate is evaluated
on all the records. The evaluation is similar to Figure 1 except
that the mask conversion is omitted. Instead, the bit mask is
copied to an intermediate buffer that will hold the entire bitmap
of the comparison result. All the bitmaps are bit-wise AND-ed
together. In the end, the result bitmap is converted into RIDs.

Both Algorithm 1 and Algorithm 3 compute the predicates
on all the records regardless of selectivity, while Algorithm 2
avoids predicate computation for records that do not satisfy
previous predicates. Therefore, Algorithm 2 may perform
better when selectivity is low. On the other hand, when
selectivity is high, Algorithm 2 pays higher overhead for the
saving and reading of the intermediate results and the SIMD
gather operations. Comparing Algorithm 1 and 3, we see that
Algorithm 1 will typically be faster because it consumes the
bit masks on the fly without storing the intermediate bitmaps.
However, Algorithm 1 requires generating and compiling code
for a set of predicates. In contrast, the high-level logic of
Algorithm 3 in Figure 2(c) is generic. It is also feasible to
pre-generate the code for each predicate type, comparison type,
and data type combination, which is 3*6*6= 108 combinations
here. Therefore, this solution is interesting for ad-hoc queries
where code generation cost may be significant.

B. Template Based of Code Generation

Code Framework. We propose a code framework to combine
the three algorithms into an execution plan for evaluating
multiple conjunctive predicates as follows:

• plan: an execution plan consists of one or multiple
steps, using the high-level structure of Algorithm 2 in
Figure 2(b). Every step returns an RID list containing
records that satisfy the predicates up to this step. If
there are multiple steps, then Step k evaluates only the
records in the RID list generated by Step k-1, (k≥2);

• step: a step consists of one or multiple functions. If
it has only one function, then the function computes

an RID list as in Algorithm 1. If it has multiple
functions, then every function computes a bitmap, and
the step follows the high-level structure of Algorithm
3 to merge all the bitmaps and generate an RID list.

• function: a function evaluates one or multiple pred-
icates. If it is the only function in a step, then the
function performs Algorithm 1. Otherwise, the func-
tion omits the mask conversion portion of the code,
and computes a bitmap as the result.

We write a plan as a sequence of predicates. We use → to
separate steps, parentheses to separate functions, and commas
to separate predicates in a function.

For example, given a clause with four predicates

p1 AND p2 AND p3 AND p4

the plan for Algorithm 1 is (p1, p2, p3, p4). It has a single
step with a single function. The function evaluates all four
predicates. A plan for Algorithm 2 is (p1) → (p2) → (p3) →
(p4). It has four steps, each having a single function. And the
plan for Algorithm 3 is (p1)(p2)(p3)(p4). It contains a single
step. The step combines the bitmaps from four functions.

In addition to the above three algorithms, the code frame-
work allows execution plans that combine features from the
three algorithms. For example, (p1, p2) → (p3, p4) is a plan
that performs two subsequent steps. The first step computes
both p1 and p2 together in a function. The second step exam-
ines only the records satisfying the first step and computes p3
and p4 in a function.

Code Generation. Given a plan, we take a template based
approach to generate code in C/C++. Then, we compile the
code into a dynamic library with g++ with -mavx2, load the
dynamic library with dlopen, and run the code.

We take advantage of C preprocessing macros in com-
posing the code templates. In addition, we design a pattern
parser that supports the patterns defined in Table I to facilitate
code generation. For example, the SIMD comparison can be
implemented in the template as follows:

mm256i s mask= ${simd cmp } (s c o l , s v a l) ;

Our code generation module specifies simd_cmp based on
the column data type and the comparison operation in a
specific predicate. In this way, the same code template can
be effectively reused.

The ’if’ pattern is used to select a snippet of code from
multiple alternative code snippets. For example, we put the
code snippets of the three predicate types into the same
template, and use a key to control which code snippet should
be compiled.

The ’for’ pattern repeats a portion of the code template.
This is useful for supporting multiple values in an IN value
list, multiple predicates in a function, multiple functions in
a step, and multiple steps in a plan. The code is unrolled
into sequential code to enable better optimizations by C/C++
compilers.

TABLE I. CODE TEMPLATE PATTERNS.

${key}
Substitute the occurrence with symbol[key]

${key[id]}
Substitute the occurrence with symbol[key[id]].
If symbol[id] exists, then first substitute id with
symbol[id].
#if ${key} == value

STATEMENTS1

#else

STATEMENTS2

#endif

If symbol[key] is value, then produce STATEMENTS1, oth-
erwise produce STATEMENTS2
${for (key=start; key < end; key+=step)}

STATEMENTS

${endfor}
start, end, step must be integers or they are defined
in the symbol table as integers. The for loop has (end -

start)/step iterations. In each iteration, key takes a dif-
ferent integer value, and STATEMENTS are produced with key
substituted by the integer value.

C. Multi-threaded Implementation

We support multi-threaded evaluation of conjunctive pred-
icates. There are two concerns. First, we would like to balance
the loads across the threads. Second, we would like the data
to be evaluated in every thread to start at 32-byte address
boundaries so that efficient aligned SIMD loads can be used.

To address the concerns, we allocate all the columns
starting at 32-byte boundaries. Given m threads, we divide
the total number (N) of records into m conceptual chunks
so that Chunk 0 to Chunk m− 2 contain the same number of
records, while the last Chunk m−1 may contain slightly fewer
records. Chunk k is assigned to thread k to process. Therefore,
the threads have similar amount of loads.

Moreover, we make sure that the number of records in
Chunk 0 to Chunk m − 2 is a multiple of 32. That is, the
number of records in Chunk 0 is 32 · ⌈ N

32m⌉. In this way, it
is easy to see that all the columns in all the chunks start at
32-byte boundaries regardless of column data types.

III. MODELING AND OPTIMIZING PLANS

We propose a linear cost model for a single-threaded plan
in Section III-A. Then, based on this model, we consider
the memory bandwidth saturation problem and propose a
cost model for multi-threaded evaluation in Section III-B.
Finally, we describe how to perform cost-based optimization
in Section III-C.

A. Modeling Single-threaded Plans

The cost of a plan is a linear combination of all the steps:

Cplan =

nstep
∑

i=1

Cstepi

The cost of a step depends on whether or not the step is the first
step and whether the step consists of one or multiple functions:

Cstepi =


















Ca1,1 if i = 1 and nfun1 = 1
∑nfun1

j=1 Cb1,j + Cmerge if i = 1 and nfun1 > 1

Seli−1Cci,1 if i > 1 and nfuni = 1

Seli−1(
∑nfuni

j=1 Cdi,j + Cmerge) if i > 1 and nfuni > 1

The first step reads the original records, while the subsequent
steps all read a subset of records. Seli−1 is the combined
selectivity of the first i− 1 steps. If there is a single function,
the step simply calls the function. In contrast, If there are
multiple functions, the cost of the step consists of the cost of
every function and the cost to merge the bitmaps.

The cost of a function is a linear combination of the cost of
evaluating every predicate, the cost of converting masks into
RIDs (in Ca and Cc) or copying bit masks into intermediate
bitmaps (in Cb and Cd), and certain fixed cost to set up and
run the function.

Ca1,1 = Cfixed +Niter(
∑npred1,1

k=1 Cpred1,1,k + Sel1Cmaskconv)
Cb1,j = Cfixed +Niter(Cpred1,j,1 + Sel1Cmaskcopy)
Cci,1 = Cfixed +Niter(

∑npredi,1

k=1 C ′

predi,1,k + SeliCmaskconv)
Cdi,j = Cfixed +Niter(C

′

predi,j,1 + SeliCmaskcopy)

The subscript x, y, z means Step x Function y Predicate
z. Ca and Cc evaluates multiple predicates in a function
and generates an RID list, while Cb and Cd evaluates a
single predicate and computes an entire bitmap. Note that
Cpredi, j, k and C ′predi, j, k are the same except that the
latter retrieves column values using the SIMD gather operation.

The cost of a predicate consists of the SIMD memory read
cost and the SIMD comparison cost. The read cost and the
comparison cost are dependent on the data type. We find that
for a given numerical type, the SIMD comparison instruction
of different comparison operation usually has the same latency
and throughput. Therefore, the predicate cost can be computed
as follows:

Cpred =














Cread(type) + Ccmp(type) if col op val

2Cread(type) + Ccmp(type) if col op col2

Cread(type) + Ccmp(type) if col IN [valuelist]

+(nin − 1)Ccmp2(type)

For Cpredi, j, k and C ′predi, j, k, we use two sets of read
parameters

Parameter Estimation and Model Precision. We generate
synthetic columns of data, synthetic predicates, and various
plans. We measure the execution time of evaluating the plans.
Using the linear model, we obtain a set of linear equations as
follows:







c1
c2
...
cu






=







w11 w12 ... w1v

w21 w22 ... w2v

...
wu1 wu2 ... wuv













p1
p2
...
pv







There are u measurements and v unknown parameters. ws are
the parameters that can be computed from either the plan or
the data, such as the numbers of iterations, the numbers of

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

n
u
m

e
x
p
e
ri
m
e
n
ts

relative error

0.0

0.5

1.0

1.5

2.0

2.5

3.0

8 64 512 4096

ti
m
e
p
e
r
re
co
rd

(n
s)

data size (KB)

sel=1%

sel=50%

sel=100%

L1 L2

L3

(a) Error distribution (b) Impact of memory hierarchy

Fig. 3. Modeling single-threaded plans.

records and the selectivities. In this case, there are v = 57
unknown parameters. We compute the unknown parameters by
using non-negative least squares since the parameters should
be non-negative.

All the experiments are run on a ThinkCentre M8500t
workstation equipped with an Intel Haswell I7-4770 CPU (4
cores, 8 threads, 32KB L1D, 256KB L2, and 8MB L3 cache)
and 16GB DRAM, running Ubuntu 14.04 LTS. The Linux
kernel version is 3.13.0-24-generic and the GCC version is
4.8.2. We generate synthetic data that are randomly uniformly
distributed. We generate the six types of data and the three
types of predicates. We vary the number of columns and
the constructed plans. Altogether, we generate 648 different
configurations to run experiments.

Figure 3(a) shows the precision of our single threaded cost
model. We see that 52% of the experiments have less than 5%
of errors, 84% of the experiments see less than 10% of errors,
and the average error is 5.9%.

An interesting question to ask is whether the CPU cache
sizes play a significant role in determining the performance.
Figure 3(b) shows the micro-benchmark result of evaluating a
single predicate on a 32-bit integer column while varying the
selectivity and the underlying data size. When selectivity is
low, the average run time of a record has only minor changes
when the data size changes. On the other hand, there is a clear
upward trend when selectivity is 50% and 100%. This means
that the SIMD loading performance is not very sensitive when
the data does not fit into the cache, while the writing of the
RIDs is quite sensitive. Our cost model does not yet consider
the cache effect, which will be interesting future work.

B. Modeling Multi-threaded Plans

We consider cost models for multi-threaded evaluation of
plans. Figure 4 shows the idea of our solution. We divide
the linear components of the single-threaded model into two
categories: compute related components and memory related
components. If a component is compute related, then its contri-
bution to the overall run time is considered fully parallelizable
because the computation can be performed on different CPU
cores without significantly interfering with each other. On the
other hand, if a component is memory related, we observe
that the memory bandwidth is often saturated with only a
small number of threads (e.g., 3). Therefore, the contribution
of the component must reflect this saturation effect as shown
in Figure 4. The total cost is the sum of the two parts.

1 2 3 4 5 6 7 8
num threads

total

memory

compute

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40

n
u
m

e
x
p
e
ri
m
e
n
ts

relative error

(a) Illustration of model (b) Error distribution

Fig. 4. Modeling multi-threaded plans.

We rewrite the single-threaded cost model:

C plan = C compute+ C memory

Then, the cost model for m threads is as follows:

C plan(m) =
C compute

m
+max(

C memory

m
,C saturate)

Here, C saturate has the same form as C memory except
that all the parameters are replaced with new (unknown)
parameters. We call these new parameters in the saturated case,
saturated parameters.

We can estimate the model parameters in a similar fash-
ion as the single-threaded case. Here, given a configuration
with a plan and a set of columns, we can compute the
single-threaded C plan, C compute and C memory using
the single-threaded model. Then we can measure the multi-
threaded execution time, C plan(m). In this way, we can find
the saturated cases and use them to formulate a linear squares
problem for the saturated parameters.

Figure 4 shows the error distribution for the multi-threaded
cost model. We see that 85% of the experiments see less
than 5% errors, 96% of the experiments see less than 10%
errors, and the average errors are 3.0%. This means that the
saturation effect helps improve the model precision compared
to the single-threaded case.

C. Plan Optimization

We implemented two algorithms for selecting the optimal
plans. The first algorithm enumerates all the possible plans
and finds the best plan with the lowest cost. Ross [9] pointed
out that the number of plans grows factorially for evaluating
conjunctive predicates without SIMD. The code structure in-
volves more flexibility than the no SIMD cases. Therefore, the
number of SIMD plans grows at least factorially. Consequently,
the enumeration algorithm will soon become intractable when
the number of predicates becomes large.

We also implemented a greedy approximation algorithm to
find a good plan. The algorithm works as follows. It first puts
all the predicates into a single function. Then, it tries to move
every predicate to the second step and computes the benefit.
From all the predicates, it greedily moves the best predicate
with a positive benefit (if any) to the second step. After that, it
repeats to see if any more predicates should be moved to the
second step. When there are no more predicates to be moved
to the second step, it goes on to examine if any predicates
should be moved from the second to the third step, and so on.
In most of the cases that we see, two steps are good enough.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

ti
m
e
p
e
r
re
co
rd

(n
s)

number of threads

nosimd

(p1,p2,p3,p4,p5,p6)

(p1)(p2)(p3)(p4)(p5)(p6)

(p1)✄>(p2)✄>(p3)✄>(p4)✄>(p5)✄>(p6)

(p1,p5)✄>(p2,p3,p4,p6)

Fig. 5. Experimental result for a 6-predicate clause on synthetic data.

Figure 5 is the experimental result for evaluating a clause
with 6 conjunctive predicates:

Colint8 < 30 AND Colint16 < 80
AND Colint32 < 100 AND Colint64 < 50
AND Colfloat < 10.0 AND Coldouble < 90.0

The data type is marked as the subscript of the Col. We
randomly generate 1024000 records. Each data value in every
column is uniformly distributed in [0, 99]. Therefore, the
selectivity of a predicate (e.g., Colint8 < 30) can be easily
seen (e.g., 30%).

In Figure 5, we vary the number of threads on the X-
axis. The Y-axis reports the average time for processing every
record. The lower the better. We have evaluated five plans.
We implement and optimize no SIMD plans by following the
description in the previous work [9]. The optimal no SIMD
plan performs the worst among all the plans. This clearly
shows the benefit of exploiting SIMD for predicate evaluation.
The three middle plans correspond to the three Algorithms in
Section II-A. The optimal plan consists of two steps the first
predicate and the fifth predicate are evaluated in Step 1. The
combined selectivity is 3%. Then the rest of the predicates are
evaluated in Step 2. Our approximation algorithm achieves the
same optimal plan as the enumeration algorithm in this case.

Overall, the optimal plan achieves 6.3–10.4x speedups
over the best no SIMD plan, and 3.0–6.8x speedups over
the other SIMD plans. Interestingly, the best performance is
reached with three threads. This means that there is plenty
of CPU power left unused because of the memory bandwidth
bottleneck.

IV. CONCLUSION AND FUTURE WORK

In conclusion, SIMD can be effectively exploited to im-
prove the performance of conjunctive numerical predicates.
However, the actual algorithm employed may have a very
significant impact on the achieved performance. We have pro-
posed a SIMD code framework, and cost models for modeling
both the single-threaded and multi-threaded execution of the
generated code. Our experiments show that the errors of the
cost models are lower than 10% in most cases. The optimal
plans computed based on the cost models achieve significantly
better performance than both the no SIMD plan and the other
SIMD plans.

As the next step, we would like to perform more extensive
evaluation of our solution. We would like to use TPCH data
and real-world data in the evaluation. Moreover, we plan
to integrate our implementation with an open-source main

memory database system, and measure the performance of
using our optimizations in the real system. Furthermore, there
are several use cases that are worth considering if time allows.
The comparison operation may link two expressions instead
of columns or values as considered in this paper. Numerical
type conversion may be necessary if multiple columns in the
expressions have different data types. Note that value types
can be easily converted during query parsing if needed.

ACKNOWLEDGMENT

The second author is partially supported by the CAS
Hundred Talents program, by NSFC Project No. 61572468,
and by NSFC Innovation Research Group No. 61221062.

REFERENCES

[1] R. Barber, G. M. Lohman, V. Raman, R. Sidle, S. Lightstone, and
B. Schiefer. In-memory BLU acceleration in ibm’s DB2 and dashdb:
Optimized for modern workloads and hardware architectures. In ICDE,
pages 1246–1252, 2015.

[2] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture
optimized for the new bottleneck: Memory access. In VLDB, pages
54–65, 1999.

[3] Z. Feng, E. Lo, B. Kao, and W. Xu. Byteslice: Pushing the envelop of
main memory data processing with a new storage layout. In SIGMOD,
pages 31–46, 2015.

[4] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, and el al. Oracle
database in-memory: A dual format in-memory database. In ICDE,
pages 1253–1258, 2015.

[5] P. Larson, E. N. Hanson, and M. Zwilling. Evolving the architecture of
SQL server for modern hardware trends. In ICDE, pages 1239–1245,
2015.

[6] Y. Li and J. M. Patel. Bitweaving: fast scans for main memory data
processing. In SIGMOD, pages 289–300, 2013.

[7] H. Plattner. The impact of columnar in-memory databases on enterprise
systems. PVLDB, 7(13):1722–1729, 2014.

[8] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking SIMD
vectorization for in-memory databases. In SIGMOD, pages 1493–1508,
2015.

[9] K. A. Ross. Conjunctive selection conditions in main memory. In
PODS, pages 109–120, 2002.

[10] E. A. Sitaridi and K. A. Ross. Ameliorating memory contention of
OLAP operators on GPU processors. In DaMoN, pages 39–47, 2012.

[11] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner. Simd-scan: Ultra fast in-memory table scan using on-chip
vector processing units. PVLDB, 2(1):385–394, 2009.

