
1

Exponential Golomb and Rice Error Correction
Codes for Generalized Near-Capacity Joint Source

and Channel Coding
Matthew F. Brejza, Tao Wang, Wenbo Zhang, David Al-Khalili, Robert G. Maunder, Bashir M. Al-Hashimi

and Lajos Hanzo
Department of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK

Email: {mfb2g09, tw1106, wz4g11, rm, bmah, lh}@ecs.soton.ac.uk

Abstract—The recently proposed Unary Error Correction
(UEC) and Elias Gamma Error Correction (EGEC) codes
facilitate the near-capacity Joint Source and Channel Coding
(JSCC) of symbol values selected from large alphabets at
a low complexity. Despite their large alphabet, these codes
were only designed for a limited range of symbol value
probability distributions. In this paper, we generalize the family
of UEC and EGEC codes to the class of Rice and Exponential
Golomb (ExpG) Error Correction (RiceEC and ExpGEC)
codes, which have a much wider applicability, including the
symbols produced by the H.265 video codec, the letters of
the English alphabet and in fact any arbitrary monotonic
unbounded source distributions. Furthermore, the practicality
of the proposed codes is enhanced to allow a continuous
stream of symbol values to be encoded and decoded using only
fixed-length system components. We explore the parameter
space to offer beneficial trade-offs between error correction
capability, decoding complexity, as well as transmission-energy,
-duration and -bandwidth over a wide range of operating
conditions. In each case, we show that our codes offer sig-
nificant performance improvements over the best of several
state-of-the-art benchmarkers. In particular, our codes achieve
the same error correction capability, as well as transmission-
energy, -duration and -bandwidth as a Variable Length Error-
Correction (VLEC) code benchmarker, while reducing the
decoding complexity by an order of magnitude. In comparison
with the best of the other JSCC and Separate Source and
Channel Coding (SSCC) benchmarkers, our codes consistently
offer Eb/N0 gains of between 0.5 dB and 1.0 dB which only
appear to be modest, because the system operates close to
capacity. These improvements are achieved for free, since they
are not achieved at the cost of increasing transmission-energy,
-duration, -bandwidth or decoding complexity.

NOMENCLATURE

ACS Add-Compare-Select
CC Convolutional Code
CRC Cyclic Redundancy Check
DCMC Discrete-Input Continuous-Output Memoryless

Channel
ExpGEC Exponential Golomb Error Correction
EG Elias Gamma
EGEC Elias Gamma Error Correction
EXIT EXtrinsic Information Transfer
FLC Fixed Length Code
IID Independent and Identically Distributed

The authors wish to gratefully acknowledge the financial support of
the ERSPC, Swindon UK under the auspices of grant EP/J015520/1 and
EP/L010550/1, as well as the TSB, Swindon UK under the auspices
of grant TS/L009390/1. The research data for this paper is available at
DOI:10.5258/SOTON/393928

JSCC Joint Source and Channel Coding
LLR Logarithmic Likelihood Ratio
Log-BCJR Logarithmic Bahl-Cocke-Jelinek-Raviv
QPSK Quadrature Phase Shift Keying
RiceEC Rice Error Correction
RV Random Variable
SBSD Soft Bit Source Decoding
SER Symbol Error Ratio
SSCC Separate Source and Channel Coding
UEC Unary Error Correction
URC Unity Rate Coding
VLEC Variable Length Error-Correction

LIST OF SYMBOLS

Ao
1, Ao

2 Area beneath the inverted UEC or FLC-CC
EXIT function.

a, b, c Bit or LLR vector lengths.
C DCMC capacity.
d Stream of symbols at the transmitter.
x, t Stream of sub-symbols at the transmitter.
y, z, u, v, w Bit vectors at the transmitter.
d̂ Stream of decoded symbols.
x̂, t̂ Stream of decoded sub-symbols.
ỹ Vector of a posteriori LLRs at the receiver.
z̃a, ũa, ṽa, w̃a Vector of a priori LLRs at the receiver.
z̃e, ũe, ṽe, w̃e Vector of extrinsic LLRs at the receiver.
H Symbol entropy.
kExpG Parameter of the ExpG code.
l1, l2 Average codeword length of the unary or FLC.
L Symbol alphabet cardinality.
MRice Parameter of the Rice code.
n1, n2 Codeword length of the UEC trellis and CC

trellis.
p1 Probability of the value 1 in a zeta distribution.
Ri

1, Ri
2 Puncturing or doping rate or the UEC or FLC-

CC.
Ro

1, Ro
2 Average coding rate of the UEC or FLC-CC.

r1, r2 Number of states in the UEC trellis and CC
trellis.

s Parameter of the zeta function.
xmax, dmax Maximum value of sub-symbol considered by

the FLC decoder.
η Effective throughput.

I. INTRODUCTION

The encoding of multimedia information such as video
and audio typically results in symbol values that are se-

2

lected from large or infinite alphabets. For example, the
H.265 video encoder represents source video information
using transform coefficients and motion vectors [1], which
correspond to a large alphabet of symbol values in the
range spanning from 1 to around L = 1000, as shown in
Figure 1a. It may be observed that these symbols obey Zipf’s
law [2], with low-valued symbols occurring frequently and
high valued symbols occurring infrequently, as shown in
Figure 1a. Owing to this, the occurrence of these symbol
values may be modeled by a zeta probability distribution,
as was previously observed for the H.264 video encoder in
[3].

In order to facilitate the reliable and bandwidth-efficient
transmission of multimedia information, both source coding
and channel coding is required. where the state-of-the-art
has evolved with the contributions listed in Table I. Shannon
[4] postulated that near-capacity operation may be achieved
using Separate Source and Channel Coding (SSCC). Here,
a near-capacity channel code such as a turbo code [5] or
Low-Density Parity-Check (LDPC) code [6] may be com-
bined with a separate near-entropy source code, such as an
arithmetic code [7] or Lempel-Ziv code [8]. However, these
near-entropy source codes are typically impractical, since
they assume that infinite complexity and/or latency can be
afforded. For example, both the arithmetic code and Lempl-
Ziv code require accurate knowledge of the probability of
occurrence of each symbol value at both the transmitter
and receiver. This imposes both an excessive complexity
and memory requirement when the symbols are selected
from an alphabet having a large or infinite cardinality, as
it is typical for the encoding of multimedia information.
In adaptive schemes, the transmitter and receiver learn the
symbol value probabilities from the transmitted symbols, but
any transmission errors result in de-synchronization between
the transmitter and receiver, introducing a large number of
decoding errors from that point onwards [9].

On the other hand, universal codes can encode source
symbol values selected from large and infinite alphabets,
without incurring the issues associated with near-entropy
source codes. More specifically, a source code is said to be
universal if it represents the source symbol vector using a bit
vector that is guaranteed to have a finite average length for
any monotonic source symbol probability distribution. These
universal codes include the Elias Gamma code [13], Elias
omega code [13], Stout code [15], Fibonacci code [18] and
the Exponential Golomb (ExpG) [23] code. These codes are
capable of operating without any knowledge of the source
symbol value probabilities, granting them immunity to the
deleterious synchronization problems that detrimentally af-
fect both the arithmetic and Lempl-Ziv codes. However,
typically non-negligible redundancy remains in the encoded
bitstreams produced by these source codes, which leads
to capacity loss, when combined with a separate channel
code. Motivated by this, JSCC [24] may be employed for
exploiting the residual redundancy that remains after source
encoding for enhancing the attainable error correction capa-
bility. A particular example of JSCC is constituted by the
classic family of Variable Length Error-Correction (VLEC)
codes [25], [26], [27], [28], although they exhibit a decoding
complexity, which increases rapidly as the cardinality of
the source symbol value alphabet increases, preventing
its application for large or infinite alphabets. Against this

TABLE I: Major contributions in source and channel coding.

Year Author Contribution

1948 Shannon, C. [4] The foundations of information
theory.

1952 Huffman, D.A. [10] Huffman source code.

1960 Reed, I.S.; Solomon, G.
[11]

Reed-Solomon channel code.

1962 Gallager, R. [6] The original paper on LDPC chan-
nel code.

1967 Viterbi, A.J. [12] The Viterbi decoding algorithm.

1975 Elias, P. [13] Elias Gamma code, Elias Omega
code.

1977 Massey, J.L. [14] Non-iterative Joint Source and
Channel Coding (JSCC)

1978 Ziv, J.; Lempel, A. [8] Lempel-Ziv variable rate source
code.

1979 Rissanen, J. et al. [7] Arithmetic near-entropy source
coding.

1980 Stout, Q.F. [15] The Stout source code.

1988 Bernard, M.A. et al.
[16]

The VLEC JSCC.

1993 Berrou, C. et al. [17] The turbo code.

1996 Fraenkel, A.S. et al.
[18]

The Fibonacci code.

2000 Bauer, R.; Hagenauer,
J. [19]

Introduces iterative decoding of
VLECs.

2000,
2001

Görtz, N. [20] [21] The introduction of iterative JSCC
decoding.

2013 Maunder, R.G. et al. [3] The Unary Error Correction (UEC)
JSCC.

2014 Wang, T. et al. [22] The Elias Gamma Error Correction
(EGEC) JSCC.

background, the recently proposed UEC code [3] facilitates
the JSCC of source symbol values selected from alphabets
having large or infinite cardinalities, while maintaining near-
capacity operation and imposing only a modest decoding
complexity.

However the UEC code is only practical for a subset
of zeta distributions, which does not include those which
best model the H.264 and H.265 symbol distributions.
More specifically, since a UEC is not a universal code
[9], for some zeta distributions the UEC code results in a
bit vector having an infinite average length. Motivated by
this deficiency of the UEC code, we previously proposed
the class of EGEC codes [22]. Since the EGEC code is a
universal code created from the class of Elias Gamma (EG)
source codes, it produces bit vectors having a finite length
for any monotonic probability distribution, including all zeta
distributions. Despite its finite-length nature, it still produces
long bit vectors for some zeta distributions, hence potentially
resulting in low coding rates. To circumvent this problem,
excessive puncturing may be required, if a high coding rate
is desired, which potentially leads to increased complexity
relative to codes having higher original coding rates, as well
as to a degraded error correction performance [29]. As a
result, the EGEC code family was only characterized for a
limited set of zeta distributions in [22]. These limitations
of the UEC and EGEC codes imply that neither of them
exhibits general applicability, hence indicating that further
generalization is required.

3

π3
CC

Encoder

Trellis
Encoder

y

v

ExpGEC/RiceEC Encoder

FLC
Encoder

Unary
Encoder

S

π4

π1
z URC

Encoder

URC
Encoder

π5

π2

QPSK
Modulator

FLC-CC Encoder

UEC Encoder

π3

CC
Decoder

Trellis
Decoder

ExpGEC/RiceEC Decoder

FLC
Decoder

Unary
DecoderS

π4

π1

URC
Decoder

URC
Decoder

π5

π2

QPSK
DemodulatorFLC-CC Decoder

UEC Decoder

π3

π4

π1

x

t

d

u w

z̃a

z̃e

w̃a

w̃e

ỹx̂

t̂

d̂

ũa

ũe

-1

-1-1

-1

-1

Buffer

Buffer

Buffer

Buffer

0

Buffer

Buffer

Buffer

-1

ṽe

ṽa

Fig. 2: The proposed ExpGEC/RiceEC schemes. Here, the buffers facilitate operation on the basis of a stream of source
symbols, while maintaining fixed-length designs for the interleavers π1–π5.

Against this background, this paper extends and gener-
alizes the UEC code family of [3] and the EGEC code of
[22], so that they become attractive for encoding symbols
produced by all zeta distributions, hence granting them
general applicability. More specifically, we generalize the
EGEC code family by extending its schematic to produce the
class of Exponential Golomb Error Correction (ExpGEC)
codes, as shown in Figure 2. We also extend the EGEC
code to produce the Rice Error Correction (RiceEC) code
family, which represents a generalization of the UEC code.
We show that the proposed ExpGEC and RiceEC codes offer
a better error correction performance over a wider range of
source symbol distributions than that of its benchmarkers.
In particular, we consider the full range of zeta distributions
for the first time, allowing us to best represent a wider
range of source symbols, including the distribution of the
English alphabet, which has a cardinality of L = 27 when
including the space character, as characterized in Figure 1b.
Furthermore, we consider the specific distribution of sym-
bols produced by the H.265 video encoder, which we have
not previously considered. Motivated by this, we critically
appraise the infinite-cardinality zeta distribution of our pre-
vious work in the specific scenario of finite-cardinality zeta-
like distributions, where symbols can assume values in the
range {1, ..., L}. We investigate how a specific choice of the
parameter L affects the source symbol distribution, as well
as how the parameters of the proposed codes may be best
selected for optimizing their error correction performance.
For the first time, we also compare the proposed codes
and our previous codes to the classic VLEC code, although
this benchmarker only has a moderate complexity for low
values of L. Additionally, we further improve upon our
previous work by improving the practicality of the proposed
codes. More specifically, the EGEC scheme of [22] requires
five different interleavers, each having different lengths and

therefore designs, which change from frame to frame. Not
only is this arrangement challenging to implement, but
the overall error correction performance is dominated by
the worse-case performance, associated with the shortest
inverleaver lengths. By contrast, our proposed ExpGEC
and RiceEC schemes are designed for encoding continuous
streams of symbols, while maintaining constant interleaver-
lengths in every frame, hence significantly improving the
associated practicality and performance. Furthermore, we
prove that these modifications guarantee synchronization
between the transmitter and receiver.

II. ExpGEC and RiceEC encoder
Source symbols and their decomposition into sub-symbols
UEC sub-symbol encoder
FLC sub-symbol encoder
Integration into a transmitter

III. ExpGEC and RiceEC decoder
Integration into a receiver
UEC sub-symbol decoder
FLC sub-symbol decoder

IV. Fixed length interleavers
Fixed length interleavers for the UEC sub-code
Fixed length interleavers for the FLC-CC sub-code
Matching sub-symbols
Interleavers

V. Performance comparison with

Scenarios and benchmarkers
Near capacity analysis
EXIT chart matching
SER performance

V. Conclusions

benchmarkers

Fig. 3: The structure of the paper

As shown in Figure 3, we commence our discourse by
detailing the operation and characteristics of the proposed

4

H.265
Finite zeta-like

p1

d

P
(d
)

1000100101

100

10−1

10−2

10−3

10−4

10−5

10−6

(a) Distribution of H.265 symbols

English alphabet
Finite zeta-like

snioate

space

p1

d

P
(d
)

101

100

10−1

10−2

10−3

10−4

(b) Distribution of English letters and the space character

Fig. 1: The probability distribution of (a) letters of the
English alphabet and the space character, ordered according
to descending probability of occurrence, and (b) symbols
output from a H.265 encoder. Also shown is the finite zeta-
like distribution of (1) for p1 = {0.1, ..., 0.9} and with
L = 27 and L = 1000, respectively.

ExpGEC and RiceEC codes, where Sections II and III
consider the operation of the encoders and decoders, re-
spectively. Section IV describes the arrangement proposed
for processing streams of symbols, while maintaining fixed
interleaver lengths. Section V characterizes the error cor-
rection performance of the proposed codes, demonstrating
that they are superior to the best of several benchmakers
for a wide variety of source distributions, including the full
range of zeta distributions, as well as the H.265 and English
alphabet distributions. Finally, we offer our conclusions in
Section VI.

II. EXPGEC AND RICEEC ENCODER

In this section, we introduce the ExpGEC and RiceEC
encoders, which are shown in Figure 2. We commence in
Section II-A by describing how the proposed ExpGEC and
RiceEC encoders decompose the source symbols into sub-
symbols. Following this, Sections II-B and II-C describe
how the sub-symbols are encoded by the UEC encoder
and the Fixed Length Code-Convolutional Code (FLC-CC)
encoder, respectively. Finally, Section II-D describes how
the ExpGEC and RiceEC encoders may be integrated into
a transmitter, as shown in Figure 2.

A. Source symbols and their decomposition into sub-
symbols

As portrayed in Figure 2, the proposed ExpGEC and
RiceEC encoders operate on the basis of a stream of source
symbols d = [di], which may be modeled as a realization
of a stream of Independent and Identically Distributed (IID)
Random Variables (RVs) D = [Di]. In contrast to the infi-
nite symbol alphabet of our previous work [22], we consider
source symbols which are randomly selected from a finite
symbol set, as described in Section I. This introduces an
additional parameter, namely the cardinality L of the source
symbol set. More specifically, each RV Di adopts a value
in the set {1, 2, 3, ..., L}, according to a particular source
symbol distribution. Since Figure 1 shows that the H.265
symbols and the letters of the English alphabet obey Zipf’s
law, we consider a finite-cardinality zeta-like source symbol
distribution, where the probability Pr(Di = d) = P (d) is
given by

P (d) =
d−s∑L
d̂=1 d̂

−s
=

d−s

ζ̄(s, L)
, (1)

with ζ̄(s, L) =
∑L
d̂=1 d̂

−s being the finite Riemann zeta-
like function. Here, the variable s > 1 is related to the
probability of an RV Di adopting the value 1 according
to p1 = Pr(Di = 1) = 1/ζ̄(s, L), which parameterizes
the finite zeta-like distribution. The entropy of the source
symbols is given by

HD =

L∑
d=1

P (d) log2

1

P (d)
. (2)

Table II shows the first 18 unary, Rice, EG and ExpG
codewords, demonstrating how each of the corresponding
source encoders maps each symbol di from the stream d to
the codeword Unary(di), Rice(di), EG(di) or ExpG(di), re-
spectively. Here, the Rice code is parametrized by MRice ∈
{1, 2, 4, 8, 16, ...}, where MRice = 1 gives a special case
identical to the unary code. Likewise, the ExpG code is
parametrized by kExpG ∈ {0, 1, 2, 3, 4, ...}, where kExpG =
0 gives a special case identical to the EG code.

The length of an ExpG codeword ExpG(di) may be
expressed as lExpG(di) = 2blog2(di + 2kExpG − 1)c + 1 −
kExpG, while the length of a Rice codeword Rice(di) is
lRice(di) = ddi/MRicee + log2(MRice). Note that in the
special case of the unary code where MRice = 1, the length
of each corresponding codeword becomes equal to the value
of the encoded symbol lUnary(di) = di. When the source
symbols obey the finite zeta-like distribution, the average
length l =

∑L
d=1 P (d) · l(d) of the encoded ExpG, Rice,

and unary codewords is given by

lExpG = 1− kExpG +
1

ζ̄(s, L)

L∑
d=1

d−sblog2(d+ 2kExpG − 1)c,

(3)

lRice = log2(MRice) +
1

ζ̄(s, L)

L∑
d=1

d−sdd/MRicee, (4)

lUnary =
ζ̄(s− 1, L)

ζ̄(s, L)
. (5)

As shown using the dashed lines in Table II, each ExpG
and Rice codeword can be viewed as a concatenation of a

5

TABLE II: The decomposition of symbols di into sub-symbols xi and ti for the ExpG and Rice codes. The sub-codewords
yi and ui relate to the sub-symbols xi and ti according to yi = Unary(xi) and ui = FLC(ti), respectively. The concatenation
of yi and ui provides the codewords ExpG(di) or Rice(di), while the dashed line shows how these codewords are
decomposed into the sub-codewords.

Rice(di) MRice=1, Rice(di) Rice(di) Rice(di) ExpG(di) kExpG=0, ExpG(di) ExpG(di)
Unary(di) MRice=2 MRice=4 MRice=8 EG(di) kExpG=1 kExpG=2

di xi yi ui ti xi yi ui ti xi yi ui ti xi yi ui ti xi yi ui ti xi yi ui ti xi yi ui ti
1 1 1 0 1 1 0 0 1 1 00 0 1 1 000 0 1 1 0 1 1 0 0 1 1 00 0
2 2 01 0 1 1 1 1 1 1 01 1 1 1 001 1 2 01 0 0 1 1 1 1 1 1 01 1
3 3 001 0 2 01 0 0 1 1 10 2 1 1 010 2 2 01 1 1 2 01 00 0 1 1 10 2
4 4 0001 0 2 01 1 1 1 1 11 3 1 1 011 3 3 001 00 0 2 01 01 1 1 1 11 3
5 5 00001 0 3 001 0 0 2 01 00 0 1 1 100 4 3 001 01 1 2 01 10 2 2 01 000 0
6 6 000001 0 3 001 1 1 2 01 01 1 1 1 101 5 3 001 10 2 2 01 11 3 2 01 001 1
7 ...

...
...

4 0001 0 0 2 01 10 2 1 1 110 6 3 001 11 3 3 001 000 0 2 01 010 2
8 4 0001 1 1 2 01 11 3 1 1 111 7 4 0001 000 0 3 001 001 1 2 01 011 3
9 5 00001 0 0 3 001 00 0 2 01 000 0 4 0001 001 1 3 001 010 2 2 01 100 4
10 5 00001 1 1 3 001 01 1 2 01 001 1 4 0001 010 2 3 001 011 3 2 01 101 5
11 6 000001 0 0 3 001 10 2 2 01 010 2 4 0001 011 3 3 001 100 4 2 01 110 6
12 6 000001 1 1 3 001 11 3 2 01 011 3 4 0001 100 4 3 001 101 5 2 01 111 7
13 ...

...
...

...
4 0001 00 0 2 01 100 4 4 0001 101 5 3 001 110 6 3 001 0000 0

14 4 0001 01 1 2 01 101 5 4 0001 110 6 3 001 111 7 3 001 0001 1
15 4 0001 10 2 2 01 110 6 4 0001 111 7 4 0001 0000 0 3 001 0010 2
16 4 0001 11 3 2 01 111 7 5 00001 0000 0 4 0001 0001 1 3 001 0011 3
17 5 00001 00 0 3 001 000 0 5 00001 0001 1 4 0001 0010 2 3 001 0100 4
18 5 00001 01 1 3 001 001 1 5 00001 0010 2 4 0001 0011 3 3 001 0101 5

unary prefix yi = Unary(xi) and Fixed Length Code (FLC)
suffix ui = FLC(ti), where xi and ti are the sub-symbols
derived from a particular symbol di. For each symbol di,
the value of the sub-symbol xi is given by

ExpG: x(d) = blog2(d+ 2kExpG − 1)c+ 1− kExpG, (6)

Rice: x(d) =

⌈
d

MRice

⌉
. (7)

Here, the sub-codeword yi = Unary(xi) comprises (xi−1)
zeros, followed by a single logical one-valued bit. Likewise,
the value of the sub-symbol ti is given by

ExpG: t(d) = d− 2blog2(d+2kExpG−1)c + 2kExpG − 1, (8)
Rice: t(d) = mod((d− 1),MRice), (9)

where mod(a, b) provides the modulo of a when divided
by b. Here, the sub-codeword ui = FLC(ti) is obtained by
representing the sub-symbol ti in a binary form having a
particular length. In the case of the ExpG code, the length
of this suffix ui = FLC(ti) depends on the corresponding
value of xi, where lFLC(t) = x+ kExpG − 1. For the Rice
code, this suffix ui = FLC(ti) has a fixed length lFLC(t) =
log2(MRice), which is independent of the value of xi or
ti. Given the expressions (6) – (9), we may express di as
functions of xi and ti, according to

ExpG: d(x, t) = 2(x+kExpG−1) − 2kExpG + 1 + t, (10)
Rice: d(x, t) = MRice(x− 1) + t+ 1. (11)

Motivated by the observation that each ExpG and Rice
codeword comprises a unary prefix and an FLC suffix, the
ExpGEC/RiceEC encoder of Figure 2 employs a splitter
S. This uses (6)-(9) to decompose each symbol di in
the stream d = [di] into the sub-symbols xi and ti,
which are concatenated to form the streams x = [xi]
and t = [ti]. For example, given the symbol vector d =
[6, 1, 9, 3, 12, 4, 1, 2], the kExpG = 1 ExpGEC splitter yields
the sub-symbol vectors x = [2, 1, 3, 2, 3, 2, 1, 1] and t =
[3, 0, 2, 0, 5, 1, 0, 1], while the MRice = 4 RiceEC splitter
would yield the sub-symbol vectors x = [2, 1, 3, 1, 3, 1, 1, 1]

and t = [1, 0, 0, 2, 3, 3, 0, 1]. Following this, each sub-
symbol xi in the stream x is encoded by the UEC encoder of
Figure 2, which is based on the unary code, as described in
Section II-B. Meanwhile, each sub-symbol ti in the stream
t is encoded by the FLC-CC encoder, which is based on the
FLC code, as described in Section II-C.

B. UEC sub-symbol encoder

As shown in Figure 2, the input of the UEC encoder
is provided by the stream of sub-symbols x = [xi]. This
stream may be modeled as a realization of a stream of IID
RVs X = [Xi]. In the scenario where the RV Di obeys the
finite zeta-like distribution of (1), the probability Pr(Xi =
x) = P (x) is given by

ExpG: P (x) =
1

ζ̄(s, L)

min(2x+kExpG−2kExpG ,L)∑
d=2x+kExpG−1−2kExpG+1

d−s, (12)

Rice: P (x) =
1

ζ̄(s, L)

min(Mxi,L)∑
d=MRice(x−1)+1

d−s, (13)

while the entropy of each RV Xi is given by

ExpG: HX =

blog2(L+2kExpG−1)c
+1−kExpG∑

x=1

P (x) log2

(
1

P (x)

)
,

(14)

Rice: HX =

⌈
L

MRice

⌉∑
x=1

P (x) log2

(
1

P (x)

)
. (15)

Each sub-symbol xi in the stream x is encoded by the
unary encoder, which outputs the corresponding xi-bit unary
sub-codeword yi = Unary(xi), according to Table II. The

6

average length l1 of these unary sub-codewords is given by

l1 =

L∑
d=1

P (d) · x(d), (16)

ExpG: l1 = 1− kExpG

+
1

ζ̄(s, L)

L∑
d=1

blog2(d+ 2kExpG − 1)c · d−s,

(17)

Rice: l1 =
1

ζ̄(s, L)

L∑
d=1

⌈
d

MRice

⌉
· d−s. (18)

In [3], the unary code was employed for encoding the
source symbols di directly, but this produces long average
codeword lengths when p1 is low, according to (5). However,
in the scheme of Figure 2, the unary encoder is used for
encoding the sub-symbols xi instead. Since the sub-symbol
probability distributions P (x) of (12) and (13) are skewed
towards the most likely symbol value x = 1, the UEC code
may be used for their encoding without suffering from an
excessive average codeword lengths, when p1 is low. As
shown in Figure 2, the codewords in the stream produced
by the unary encoder are concatenated and partitioned into
a succession of bit-vectors y = [yj]

b
j=1, having a fixed

length of b bits, as it will be described in Section IV-A.
For example, given the sequence x = [2, 1, 3, 2, 3, 2, 1, 1]
comprising 8 sub-symbols, the unary encoder produces the
sequence y = 011001010010111 comprising b = 15 bits.

The bit vector y is entered into the trellis encoder of
Figure 2, which operates on the basis of the UEC trellis
of Figure 4. Here, UEC trellises comprising only r1 = 4
states are adopted, since our previous work [22] showed that
this is sufficient for avoiding any significant capacity loss
despite its low complexity, as it will be characterized for
the codes proposed in Section V-B. However, the option to
extend the trellis to more states remains open [3], facilitating
the elimination of even more capacity loss, at the cost of
increasing the associated complexity. For each successive
input bit yj in y = [yj]

b
j=1, the trellis transition emerges

from a previous state mj−1 ∈ {1, 2, 3, ..., r1} to a next state
mj ∈ {1, 2, 3, ..., r1}. The path pursued through the UEC
trellis when encoding the bit vector y may be represented
as m = [mj]

b
j=0, comprising b + 1 state values, where

m0 and mb are the start and end states of the trellis. Each
zero-valued bit yi in the unary-encoded bit vector triggers
transitions to states towards the outside of the trellis. By
contrast, each one-valued bit causes the trellis to transition
back to one of the central states, according to

mj =

{
1 + odd(mj−1) if yj = 1

min[mj−1 + 2, r1 − odd(mj−1)] if yj = 0
.

(19)

Here, the function odd(·) returns zero, if its operand is even,
or one if it is odd. Note that each unary codeword comprises
a sequence of zero-valued bits which is terminated by
a single one-valued bit. The trellis structure of Figure 4
exploits this for maintaining synchronization between the
unary-encoded symbols and the path through trellis. In
particular, the final one-valued bit yj in each unary codeword
is guaranteed to trigger a transition either to the state mj = 1
or to mj = 2. In the case where the unary-encoded bit vector

mj−1 yj/zj mj

1

3

2

4

1/10

0/01

0/00

1/11

0/10

1/01

1/00

0/11

1

3

2

4

Fig. 4: The UEC trellis utilizing r1 = 4 states, n1 = 2 output
bits and the codewords C = [01; 11]

y comprises a complete sequence of unary codewords and
the start state is m0 = 1, the path traversed by the trellis en-
coder will always end in either the state mb = 1 or mb = 2,
depending on whether the number of sub-symbols in x is
odd or even. For example, given the unary-encoded bit vec-
tor comprising the b = 15 bits of y = 011001010010111,
the path through the trellis can be formulated as the vector
m = [1, 3, 2, 1, 3, 3, 2, 4, 1, 3, 3, 2, 4, 1, 2, 1] of b + 1 = 16-
states. The path m may be modeled as a realization of a
vector of RVs M = [Mj]

b
j=0, where the probability of each

state being selected Pr(Mj = m|Mj−1 = m′) = P (m|m′),
is given by [3, Eqn. (9)]. The knowledge of these conditional
transition probabilities P (m|m′) may be exploited to aid the
receiver, as described in Section III-B.

Depending on the path selected through the UEC trellis,
each of the bits in the unary-encoded bit vector y is encoded
using a n1-bit codeword zj , which are concatenated to
form the bn1-bit UEC-encoded vector z = [zk]bn1

k=1. Each
codeword zj is selected from the set of r1/2 codewords
C = [c1; c2; c3; ...; cr1/2] or from the complementary set
C = [c1; c2; c3; ...; cr1/2], according to

zj =

{
cdmj−1/2e if yj 6= odd(mj−1)

cdmj−1/2e if yj = odd(mj−1)
. (20)

For example, the trellis of Figure 4 uses the set of code-
words C = [01; 11], as well as the complementary set
C = [10; 00]. In the case of the example path through the
trellis m provided above, the UEC-encoded bit vector z =
101110100011010010001101000110 comprising bn1 = 30
bits is produced, when using the r1 = 4-state, n1 = 2-
bit trellis of Figure 4. Since the top and bottom halves of
the UEC trellis use complementary codewords, the UEC-
encoded bits of z are guaranteed to have equiprobable binary
values. Due to this equiprobablity, the average coding rate
of the UEC encoder is given by

Ro
1 =

HX

l1n1
. (21)

Here the superscript ‘o’ is used to indicate this coding rate
relates to the outer code of a serial concatenation, namely
the UEC code of Figure 2.

7

C. FLC-CC sub-symbol encoder

As shown in Figure 2, the FLC-CC sub-symbol encoder
is used for encoding the sub-symbol stream t = [ti]. Here,
the FLC encoder of Figure 2 represents each sub-symbol
ti using a codeword ui, which is given by the fixed-point
binary representation of ti, having a particular length that
may depend on the particular value of the corresponding
sub-symbol xi, as described in Section II-B. Motivated by
this, we may model the sub-symbol stream t as a realization
of a stream of RVs T = [Ti], where each RV Ti is dependent
on the corresponding RV Xi. More specifically, in the case
where the RV Di obeys the finite zeta-like distribution of
(1), the joint probability Pr(Ti = t ∩Xi = x) = P (t ∩ x)
may be obtained according to

ExpG: P (t ∩ x) =
1

ζ̄(s, L)

(
2x+kExpG−1 − 2kExpG + 1 + t

)−s
,

(22)

Rice: P (t ∩ x) =
1

ζ̄(s, L)
(MRice(x− 1) + t+ 1)

−s
,

(23)

where 0 ≤ t < 2x−1+kExpG for the case of the ExpG and
0 ≤ t < MRice for the case of the RiceEC code.

These joint probabilities may be used for obtaining ex-
pressions for the corresponding conditional probabilities,
which may be exploited in the receiver to aid FLC-CC
decoding. In the case of the finite zeta-like distribution, the
conditional probability Pr(Ti = t|Xi = x) = P (t|x) is
given by

P (t|x) =
P (t ∩ x)

P (x)
, (24)

ExpG: P (t|x) =

(
2x+kExpG−1 − 2kExpG + 1 + t

)−s∑min(2x+kExpG−2kExpG ,L)

d=2x+kExpG−1−2kExpG+1
d−s

, (25)

Rice: P (t|x) =
(MRice(x− 1) + t+ 1)

−s∑min(Mx,L)
d=MRice(x−1)+1 d

−s
, (26)

where 0 ≤ t < 2x−1+kExpG for the case of the ExpGEC
code and 0 ≤ t < MRice for the RiceEC code. Finally, the
conditional entropy of the RV Ti is given by

HT |X =

L∑
d=1

P (t ∩ x) · log2

(
1

P (t|x)

)
. (27)

As described in Section II-B, each FLC codeword ui has
the length xi + kExpG− 1 in the case of the ExpGEC code,
where xi is the corresponding sub-symbol in the stream x.
Owing to this, the FLC-CC encoder requires knowledge of
the symbol stream x, as shown in Figure 2. In the case
of the RiceEC code, the length of the FLC codewords is
fixed at log2(MRice) and so the knowledge of x is not
required during FLC-CC encoding in this case. When the
sub-symbols of d obey the finite zeta-like distribution of
(1), the average length of the FLC codewords l2 is given by

ExpG: l2 =
1

ζ̄(s, L)

L∑
d=1

blog2(d+ 2kExpG − 1)c · d−s,

(28)
Rice: l2 = log2(MRice). (29)

Following FLC encoding, the resultant FLC codewords
are then concatenated together to form a bit-stream, which

is then partitioned into bit-vectors u = [uj]
c
j=1, comprising

c number of bits, as it will be detailed in Section IV-B. In our
example of using the kExpG = 1 ExpGEC code to encode
the sub-symbol vectors x = [2, 1, 3, 2, 3, 2, 1, 1] and t =
[3, 0, 2, 0, 5, 1, 0, 1], Table II may be used for producing the
c = 15-bit FLC-encoded vector u = 110010001010101. In
the case of the MRice = 4 RiceEC code, the FLC encoding
of the sub-symbol vector t = [1, 0, 0, 2, 3, 3, 0, 1] produces
the c = 16-bit vector u = 0100001011110001.

As shown in Figure 2, the FLC-encoded bit vector u
is interleaved in the block π3, in order to provide the bit
vector v = [vj]

c
j=1. This is then encoded by a r2-state, n2-

bit non-systematic recursive CC encoder having a design
selected from [3, Table II], in order to obtain the bit vector
w = [wk]cn2

k=1. The CC codes of [3, Table II] were shown
in our previous work [22] to mitigate capacity loss. More
explicitly, while the bits of u are not guaranteed to have
equiprobable values, the non-systematic recursive nature of
these CCs guarantees equiprobable values for the bits of w,
which mitigates capacity loss [3]. For example, the inter-
leaver π3 = [6, 14, 11, 10, 3, 1, 5, 8, 13, 16, 15, 2, 4, 7, 12, 9]
may be employed for transforming the example c = 16-
bit vector u provided above into the c = 16-bit vec-
tor v = 0011000001010111, where vj = uπ3(j). When
the r2 = 4-state, n2 = 2-bit CC encoder of [3, Ta-
ble II] is employed, this bit vector v is encoded into
the cn2 = 32-bit FLC-CC-encoded bit vector w =
00001101010000000011100001110110. The octally repre-
sented generator polynomials invoked for this CC encoder
are [4,7], while the octal feedback polynomial is 6. Finally,
the average coding rate of the FLC-CC encoder is given by

Ro
2 =

HT |X
l2n2

. (30)

D. Integration into a transmitter

The RiceEC and ExpGEC encoders may be integrated
into a transmitter by serially concatenating them with an
inner code. In the scheme of Figure 2, the bit vectors z
and w provided by the UEC and FLC-CC encoders are
interleaved in the blocks π1 and π4, before being encoded
by 2-state Unity Rate Coding (URC) encoders, which be-
have as accumulators. As discussed in Section III-A, these
URC codes will facilitate iterative decoding in the receiver,
enabling near capacity operation [30].

Following URC encoding, the pair of resultant bit vectors
are interleaved and optionally punctured or doped in the
blocks π2 and π5 of Figure 2, before they are multiplexed
and QPSK modulated onto the channel using Gray mapping.
Here, puncturing or doping may be employed for achieving
a particular effective target throughput η for the scheme.
As we will discuss further in Section V-C, puncturing and
doping may also be employed to provide unequal error
protection for the UEC and FLC-CC parts of the schemes,
in order to facilitate operation at lower channel SNRs.
Puncturing is achieved in the blocks π2 and π5 of Figure 2
and by removing the appropriate number of bits from the end
of the interleaved bit vector. By contrast, doping is achieved
in the blocks π2 or π5 by duplicating the appropriate number
of bits from the end of the interleaved bit vector and
concatenating them. The puncturing and doping rates of π2
and π5 are represented by Ri

1 and Ri
2 respectively, which

8

quantifies their ratio of input to output bits. Here, a value
of Ri > 1 represents puncturing, where Ri < 1 represents
doping. For example, Ri = 0.75 implies that one third of the
original bits have been duplicated, while Ri = 1.25 implies
that one fifth of the original bits have been discarded. Here,
the superscript i indicates relevance to the inner code. The
transmitter’s overall effective throughput in bits per symbol
is given by

η =
HD log2(Mmod)

l1n1/Ri
1 + l2n2/Ri

2

, (31)

where Mmod is the number of constellation points used by
the modulator, which is Mmod = 4 in the case of QPSK.

III. EXPGEC AND RICEEC DECODER

In this section, we detail the operation of the ExpGEC and
RiceEC decoders of Figure 2. Section III-A discusses the
integration of the UEC and FLC-CC sub-symbol decoders
of the ExpGEC and RiceEC decoders into the receiver of
Figure 2. Following this, the operation of the UEC sub-
symbol decoder is described in Section III-B, while the
operation of the FLC-CC sub-symbol decoder is described
in Section III-C.

A. Integration into a receiver

In the receiver of Figure 2, the QPSK demodulator con-
verts each received QPSK symbol into a pair of Logarithmic
Likelihood Ratios (LLRs), which pertain to the bits at the
transmitter. These LLRs convey the likelihood of the corre-
sponding bits being 1-valued or 0-valued. More specifically,
each LLR is defined by LLR = ln Pr(bit=1)

Pr(bit=0) , where a large
positive valued LLR represents a high confidence that the bit
has the value of logical one, while a large negative-valued
LLR represents a high confidence that the bit is logical zero-
valued. The LLRs are then demultiplexed and entered into
the blocks π−12 and π−15 of Figure 2. These blocks undertake
de-puncturing or de-doping as appropriate. De-puncturing
is achieved by replacing each of the bits removed during
puncturing with a zero-valued LLR, which reflects the ab-
sence of any knowledge about the value of the corresponding
bit. By contrast, de-doping is achieved by removing the
LLRs pertaining to the replicas of the duplicated bits and
summing them into the LLRs pertaining to the correspond-
ing duplicated bits. Following de-puncturing or de-doping
the resultant LLRs are deinterleaved and forwarded to the
URC decoders, which iteratively exchange their vectors of
LLRs with the UEC decoder or the FLC-CC decoder, as
appropriate. More specifically, the UEC trellis decoder and
first URC decoder perform iterative decoding by exchanging
the LLR vectors z̃a and z̃e, which pertain to the bits in z,
as shown in Figure 2. Likewise, the CC decoder and second
URC decoder perform iterative decoding by exchanging the
LLR vectors w̃a and w̃e, which pertain to the bits of w.
The UEC trellis decoder, CC decoder and URC decoder of
Figure 2 invoke the Logarithmic Bahl-Cocke-Jelinek-Raviv
(Log-BCJR) algorithm [5] for converting the input a priori
LLR vector into the extrinsic LLR output vector, as may
be characterized by their EXtrinsic Information Transfer
(EXIT) functions, exemplified in Figure 5.

Before initiating the first decoding iteration, the LLR
vectors w̃e and z̃e are populated with zero-valued LLRs.

URC Ri
2 = 1.088, 2.8 dB
RiceEC(FLC-CC)

URC Ri
1 = 1.301, 2.8 dB

RiceEC(UEC)

I(z̃e) or I(w̃e)

I
(z̃

a
)
or

I
(w̃

a
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Fig. 5: EXIT charts for the UEC and FLC-CC sub-codes
of the proposed RiceEC scheme, when the symbols of d
obey a finite zeta-like distribution having the parameters
p1 = 0.2 and L = 1000. The RiceEC scheme adopts the
parameters MRice = 32, n1 = 2, n2 = 2 and η = 0.9, for
the case of using QPSK modulation over an uncorrelated
narrowband Rayleigh fading channel. Here, the unequal
error protection of the UEC and FLC-CC sub-codes relies
on different puncturing rates Ri

1 and Ri
2, in order to ensure

that the corresponding EXIT charts open at the same Eb/N0

value of 2.8 dB.

The URC decoders then invoke the Log-BCJR algorithm for
converting the LLR vectors provided by the demodulator
into extrinsic LLR vectors that can be used for iterative
decoding. The deinterleavers π−11 and π−14 of Figure 2
convert these extrinsic LLR vectors into the a priori LLR
vectors z̃a = [z̃ak]bn1

k=1 and w̃a = [w̃a
k]cn2

k=1, respectively.
The UEC decoder and FLC-CC decoder then operate as
described in Sections III-B and III-C, in order to generate the
extrinsic LLR vectors z̃e = [z̃ek]bn1

k=1 and w̃e = [w̃e
k]cn2

k=1. The
interleavers π1 and π4 of Figure 2 convert these extrinsic
LLR vectors into a priori LLR vectors that can be provided
to the URC decoders. The iterations between the decoders
continue until a fixed complexity limit has been reached or
until the error-free decoding of x̂ and t̂ have been achieved,
which may be detected using a Cyclic Redundancy Check
(CRC) in practice. Note that the iterative UEC decoding
must be completed before the iterative FLC-CC decoding
can begin, since the latter takes the output x̂ of the former
as its input, as will be discussed in Section III-C. Finally, the
symbols d̂ are recovered using the de-splitter S−1, which
operates according to Equations (10) and (11).

B. UEC sub-symbol decoder

In this section, we describe the operation of the UEC
sub-symbol decoder of Figure 2. Here, the trellis decoder
invokes the Log-BCJR algorithm for the trellis of Figure 4
in order to convert the vector of a priori LLRs z̃a into
the vector of a posteriori LLRs ỹ, as well as the vector
of extrinsic LLRs z̃e. This extrinsic LLR vector z̃e is ex-
changed with the URC decoder in order to facilitate iterative

9

decoding, as described in Section III-A. The performance
of the UEC trellis decoder may be enhanced by exploiting
the knowledge of the conditional transition probabilities
P (mj |mj−1) of the trellis, as discussed in Section II-B.
More specifically, the decoder requires the knowledge of
the average unary codeword length l1 and of the first
r1/2− 1 values of P (x) in order to compute the transition
probabilities P (mj |mj−1) according to [3, Eqn. (9)]. These
conditional transition probabilities P (mj |mj−1) may be
exploited during the computation of the a priori transition
probabilities γ, which are employed by the logarithmic
version of the BCJR algorithm [17]. Note that if the source
distribution is unknown at the receiver, the trellis decoder
may initially operate without the transition probabilities
P (mj |mj−1), at the cost of a reduced error correction
performance [22]. Once a sufficiently high number of frames
have been decoded, the value of l1 and the first r1/2 − 1
values of P (x) may be estimated heuristically, and then
exploited for improving the error correction performance.

The transformation of z̃a into z̃e may be characterized
by the UEC trellis decoder’s inverted EXIT function [31],
as shown in Figure 5. Note that for both the ExpGEC and
RiceEC codes, the area Ao

1 beneath the inverted UEC EXIT
function may be closely approximated by [3], [32]

Ao
1 =

1

l1n1

r1/2−1∑
x=1

(
H[P (x)]

)
+

2

l1n1
H

1−
r1/2−1∑
x=1

P (x)


+

1

l1n1
H

l1 −R1/2 +

r1/2−1∑
x=1

P (x)(r1/2− x)


− 1

l1n1
H

l1 + 1− r1/2 +

r1/2−1∑
x=1

P (x)(r1/2− 1− x)

 .
(32)

Once a sufficiently high number of iterations have been
completed between the UEC trellis decoder and the URC
decoder, the trellis decoder outputs the a posteriori LLR
vector ỹ = [ỹj]

b
j=1, which is forwarded to the unary

decoder, as shown in Figure 2. Note that since each unary
codeword contains only a single logical one-valued bit, there
are guaranteed to be a number of one-valued bits in the
unary-encoded bit vector y. The unary decoder exploits this
observation by making logical one-valued hard decisions for
the a highest LLR values in the a posteriori LLR vector ỹ,
since high LLR values indicate that the corresponding bit
in y is likely to have a logical value of one. Following this,
zero-valued hard decisions are selected for the remaining
(b − a) LLRs in ỹ. Note that in practice the value of a
may be reliably conveyed to the receiver using a small
amount of side information. Alternatively, a logical one-
valued hard decision may be selected for all positive LLRs
in ỹ, while 0 may be selected for all the other LLRs, hence
avoiding the requirement of side information, but degrading
the error correction performance. Finally, the unary decoder
then converts the hard decision bit vector ỹ into sub-symbols
x̃ according to Table II.

C. FLC sub-symbol decoder

This section describes the FLC-CC decoder, which itera-
tively exchanges LLRs with the corresponding URC decoder

of Figure 2. More specifically, the CC decoder invokes
the Log-BCJR algorithm for processing the a priori LLR
vectors w̃a = [w̃a

k]cn2

k=1 and ṽa = [ṽaj]cj=1, where the
latter adopts all zero values at the start of the iterative
decoding process. In response, the CC decoder generates
the extrinsic LLR vectors w̃e = [w̃e

k]cn2

k=1 and ṽe = [ṽej]
c
j=1,

where the latter is iteratively exchanged with the FLC
decoder of Figure 2. More specifically, ṽe is de-interleaved
in the block π−13 for providing the a priori LLR vector
ũa = [ũaj]

c
j=1 for the FLC decoder. The FLC decoder

employs the Soft Bit Source Decoding (SBSD) algorithm
of [33] for converting the a priori LLR vector ũa into the
decoded sub-symbol vector t̂ = [ti]

a
i=1 and the extrinsic

LLR vector ũe = [ũej]
c
j=1, which is interleaved in the block

π3 to provide the a priori LLR vector ṽa = [ṽaj]cj=1 for the
next iteration of the CC decoder.

As shown in Figure 2, the FLC decoder requires the
knowledge of the decoded sub-symbol vector x̂ = [x̂i]

a
i=1,

which is provided by the UEC decoder, as described in
Section III-B. This allows the SBSD algorithm employed by
the FLC decoder to exploit the knowledge of the conditional
sub-symbol probabilities P (t|x) [33], where the correspond-
ing decoded sub-symbol x̂i is employed as a substitute for
xi, when decoding the sub-symbol ti. Note that if the source
distribution is unknown at the receiver, the SBSD algorithm
may be initially operated without the conditional sub-symbol
probabilities P (t|x), at the cost of a reduced error correction
performance. Once a sufficient number of frames have been
decoded, these probabilities may be heuristically estimated
and exploited to restore the error correction performance.
In the case of the ExpGEC code, the SBSD algorithm also
requires the decoded sub-symbols of x̂ in order to determine
the number of LLRs of ũa that should be used to recover
each of the sub-symbols of t̂. More specifically, the number
of LLRs corresponding to the sub-symbol ti is given by
lFLC(ti) = xi − 1 + kExpG, as previously described in
Section II-C. For the RiceEC code, by contrast, this length is
fixed at lFLC(ti) = log2(MRice). Note that the complexity
of the SBSD algorithm increases exponentially with the
length lFLC(ti) of the codeword it is tasked to decode,
since it considers each of the codeword’s 2lFLC(ti) possible
values. Since lFLC(ti) grows with xi in the case of the
ExpGEC code, we may limit the FLC decoding complexity
by only invoking the SBSD algorithm for calculating the
extrinsic LLRs of ũe for the specific symbols satisfying
x̂ ≥ xmax = blog2(dmax + 2kExpG)c + 1 − kExpG, where
we recommend a parameter value of dmax = 18 for striking
an attractive trade-off between the decoding complexity
imposed and the error correction capability attained. This
approach also has the benefit of limiting the number of
conditional sub-symbol probabilities P (ti|xi) that are ex-
ploited by the SBSD algorithm and that must therefore
be known and stored by the receiver. For this reason, the
SBSD algorithm is only applied in the case of the RiceEC
code for the particular symbols satisfying x̂i ≥ xmax =
ddmax + 1)/MRicee, where we also recommend dmax = 18.
The exception to this is found in the cases where we have
MRice = 32 or MRice = 64, when we recommend the
choice of dmax = MRice, for the sake of offering an
attractive error correction capability. The SBSD algorithm is
not applied for all other symbols where x̂i > xmax. Instead,
zero-values are used for the corresponding extrinsic LLRs of

10

ũe, while the corresponding decoded sub-symbols of t̂ are
obtained by applying hard decisions to the corresponding
LLRs of ũa.

During each decoding iteration, the URC, CC, and FLC
decoders are each activated in turn, according to the sched-
ule {URC, CC, FLC, URC, CC, FLC, ... }. For symbols
satisfying x̂i ≤ xmax, this schedule represents a three-
stage iterative decoding process, but for symbols where
x̂i > xmax, this is effectively a two-stage iterative decoding
process between the CC and URC decoders.

The transformation of w̃a into w̃e may be characterized
by the FLC-CC decoder’s inverted EXIT function, as shown
in Figure 5. Note that the area beneath the inverted FLC-
CC EXIT function may be closely approximated by (33)
and (34)1 [22].

IV. FIXED LENGTH INTERLEAVERS

As described in Section II-D, the EGEC scheme of [22]
employs five interleavers having specific lengths and there-
fore particular designs that change from frame-to-frame,
hence limiting the practicality of the EGEC scheme. This
may be attributed to the EGEC scheme’s partitioning of
the sub-symbol streams x and t into fixed length vectors,
which are encoded using variable length codewords to
produce bit vectors having lengths that change from frame-
to-frame, Motivated by this, this section describes a novel
approach that allows our proposed ExpGEC and RiceEC
schemes of Figure 2 to use single fixed length designs
for the interleavers π1 to π5 for each frame, significantly
improving its practicality and error correction capability,
as discussed in Section I. More specifically, the proposed
approach encodes the sub-symbol streams x and t into bit-
streams, which are partitioned into bit-vectors y = [yj]

b
j=1

and u = [uj]
c
j=1 having fixed lengths of b and c for the UEC

and FLC-CC sub-codes, respectively. Our proposed solution
is designed for accommodating unary and FLC codewords
that span across frames, as well as for maintaining syn-
chronization between the UEC and FLC-CC sub-codes of
the decoder. We commence in Section IV-A by detailing
how the UEC sub-code partitions the corresponding bit
stream into the fixed length bit vector y, in order to ensure
that π1 and π2 of Figure 2 have fixed lengths. Likewise,
Section IV-B describes how the FLC-CC sub-code partitions
the corresponding bit stream into the fixed length bit vector
u, in order to ensure that π3, π4 and π5 of Figure 2 have
fixed lengths. Section IV-C proves how synchronization is
maintained between the UEC and FLC-CC sub-codes, while
Section IV-D discusses the specific design of the interleavers
π1 to π5.

A. Fixed length interleavers for the UEC sub-code

As described in Section II-B, the unary encoder of Fig-
ure 2 converts each sub-symbol xi in the stream x into
the corresponding unary codeword yi. These codewords are
concatenated to form a bit stream, which is partitioned into
fixed length vectors y = [yj]

b
j=1, which may cause some

unary codewords to be split between consecutive frames.
In order to address this, the scheme of Figure 2 employs
a buffer to store the last bits in the codeword that do not

1Note that (33) and (34) correct an error in the corresponding formulation
of [22, Eq.(22)], which has a redundant summation in its second line.

fit into the current frame, so that they can be concatenated
onto the start of the next frame. For example, when unary
encoding the sub-symbol vector x = [1, 2, 1, 1, 4, 1, 3, 1, 2]
to form bit vectors comprising b = 8 bits, we obtain
y = [1, 0, 1, 1, 1, 0, 0, 0] and y = [1, 1, 0, 0, 1, 1, 0, 1] for
two consecutive frames. Note that the unary codeword
corresponding to the fifth sub-symbol of x is split between
the two bit-vectors of y. Owing to this, the first and last
bits of the bit vector y are not guaranteed to be the first
and last bits of a unary codeword,which is in contrast to the
usual UEC operation. The UEC trellis encoder is capable of
accommodating this change in two ways.

In a first method for accommodating codewords split
between two consecutive frames, the UEC trellis encoder
may carry over its state between successive frames. The
transmitter then uses a small amount of additional side infor-
mation for reliably conveying this state to the receiver. The
UEC trellis decoder may use this side information to ini-
tialize the end state of one frame, as well as the initial state
of the next. For example, when employing this approach
for the two successive bit vectors y = [1, 0, 1, 1, 1, 0, 0, 0]
and y = [1, 1, 0, 0, 1, 1, 0, 1] from our previous example,
the paths transversed through the UEC trellis are given by
m = [1, 2, 4, 1, 2, 1, 3, 3, 3] and m = [3, 2, 1, 3, 3, 2, 1, 3, 2],
where the state m = 3 is sent as side information between
the transmitter and reciever. This method maintains all of
the UEC code’s near-capacity capability, although this is
achieved at the cost of requiring additional side information
to be transmitted.

In a second method conceived for accommodating code-
words split between two consecutive frames, the trellis en-
coder may be forced to restart the trellis path m from state 1,
when encoding each bit vector y. This does not compromise
the near-capacity capability of the UEC code since syn-
chronization is still maintained between the trellis path and
the unary codewords despite the trellis encoder potentially
starting from the middle of a codeword. More specifically,
owing to the particular design of the UEC trellis, the trellis
path returns to one of the two central states, whenever the
final bit in a unary codeword is encountered, as described in
Section II-B. For example, when employing this approach
for the successive bit-vectors of y = [1, 0, 1, 1, 1, 0, 0, 0]
and y = [1, 1, 0, 0, 1, 1, 0, 1] from the previous example,
the paths traversed through the UEC trellis are given by
m = [1, 2, 4, 1, 2, 1, 3, 3, 3] and m = [1, 2, 1, 3, 3, 2, 1, 3, 2],
respectively. Observe that these paths are identical to those
that result from the first method, with the only exception of
the states corresponding to the end of the split codeword,
demonstrating that synchronization has been maintained.
Note that this approach causes the end state to be unknown
to the receiver, since it may correspond to the middle of
a unary codeword. This may be accommodated during the
Log-BCJR algorithm, by not terminating the UEC trellis
at its right-most end, like usual. Furthermore since the first
state of each frame is forced to 1, the transition probabilities
P (mj |mj−1) employed by the Log-BCJR algorithm for
the first codeword may be slightly inaccurate. These two
factors impose some error correction performance loss upon
the UEC trellis decoder, although this effect is negligible
in practice. Owing to this, the results of Section V will
adopt this second method, since it does not require any side
information to be sent between the transmitter and receiver.

11

ExpGEC: Ao
2 =

1

n2l2

min(L,2(xmax+kExpG)−2kExpG)∑
d=1

H
[
P
(
t(d)|x(d)

)]
P
(
x(d)

)
+

1

n2

1−
min(L,2(xmax+kExpG)−2kExpG)∑

d=1

(x− 1 + kExpG)P
(
t(d) ∩ x(d)

)
l2

 (33)

RiceEC: Ao
2 =

1

n2l2

min(L,Mxmax)∑
d=1

H
[
P
(
t(d)|x(d)

)]
P
(
x(d)

)
+

1

n2

1−
min(L,Mxmax)∑

d=1

log2(MRice)P
(
t(d) ∩ x(d)

)
l2

 (34)

In the receiver of Figure 2, the UEC trellis decoder and
URC decoder perform iterative decoding, in order to obtain
the a posteriori LLR vector ỹ, which pertains to the bit
vector y of the transmitter, as described in Section III-B.
Mirroring the buffer employed in the transmitter, the receiver
employs a buffer to temporarily store LLRs from the end of
the vector ỹ which correspond to a unary codeword that was
split between consecutive frames. More specifically, when
the UEC trellis decoder generates the LLR-vector ỹ for the
next frame, it is concatenated on to the end of any LLRs
stored in the buffer, forming part of the first codeword in
ỹ. The concatenated LLR-vector is then provided to the
unary decoder, which generates the vector x̂ comprising
a sub-symbols, as described in Section III-B. Following
this, any trailing LLRs of ỹ that did not contribute to a
complete unary codeword are placed into the buffer, ready
to be concatenated to the beginning of the next LLR-
vector ỹ. Note that since the number of sub-symbols a
in the vector x̂ varies from frame to frame, it must be
conveyed to the receiver using a small amount of side
information, as previously discussed in Section III-B. More
specifically, this side information conveys the number of
logical one-valued bits in y, as exploited by the unary
decoder. While the proposed scheme of Figure 2 is capable
of functioning without this side information, its inclusion
guarantees synchronization between the UEC and FLC-CC
parts, as it will be described in Section IV-C. Using the
example given above, if the unary decoder is successful in
decoding the LLR vector ỹ of the first frame, it will output
the sub-symbol vector x̂ = [1, 2, 1, 1], and will place the last
three LLRs of ỹ into the buffer. Following this, the unary
decoder will output the sub-symbol vector x̂ = [4, 1, 3, 1, 2]
if it is successful in decoding the LLR-vector ỹ of the
second frame, with no LLRs needed to be placed into the
buffer. The decoded sub-symbols of x̂ are buffered until the
corresponding sub-symbols of t̂ have also been decoded by
the FLC decoder, as will be discussed in Section IV-C.

B. Fixed length interleavers for the FLC-CC sub-code

In a similar fashion to the UEC encoder, the FLC encoder
of Figure 2 converts each sub-symbol ti in the stream t
into the corresponding FLC codeword ui, as described in
Section II-C. These codewords are concatenated to form a
stream of bits, which is then partitioned into fixed length bit-
vectors u = [uj]

c
j=1, which may result in some codewords

becoming split between consecutive frames. In order to

address this, the scheme of Figure 2 employs a buffer for
storing the last bits in the codeword that do not fit into
the current frame, so that they can be concatenated onto
the start of the next frame. For example, in the case of
a RiceEC code associated with MRice = 2, when FLC
encoding the sub-symbol vector t = [1, 3, 2, 0, 2] to form bit
vectors comprising c = 5 bits, we obtain u = [0, 1, 1, 1, 1]
and u = [0, 0, 0, 1, 0] for two consecutive frames. Note that
the FLC codeword corresponding to the third sub-symbol
of t is split across the two bit-vectors of u. In the receiver
of Figure 2, the CC decoder iteratively exchanges the LLR-
vectors w̃a and w̃e with the URC decoder, as well as the
LLR-vectors ṽa and ṽe with the FLC decoder, as described
in Section III-C. More specifically, ṽe is de-interleaved in
the block π−13 to obtain ũa, while ũe is interleaved to obtain
ṽa. However, the FLC decoder can only generate a sub-
symbol of t̂ and a codeword of extrinsic LLRs for ṽe when
the a priori LLR vector ṽa contains all of the a priori LLRs
for that codeword. Owing to this, a buffer is required for
storing a priori LLRs for incomplete codewords that have
been split between frames, as shown in Figure 2. When the
CC decoder forwards an a priori LLR vector ũa to the FLC
decoder, it is concatenated onto the end of any LLRs stored
in the buffer from the previous frame. In the case of the
ExpGEC scheme, the decoded sub-symbols of x̂ are used
for determining the length of each of the codewords in ũa,
hence allowing the FLC decoder to determine how many
excess trailing LLRs of ũa must be stored in the buffer
for each frame. In the case of the RiceEC scheme, since
the length of the FLC codewords is fixed at log2(MRice),
the FLC decoder does not need any additional information
for determining how many excess trailing LLRs to place in
the buffer for each frame. The FLC decoder processes the a
priori LLRs of ũa comprising complete codewords, in order
to generate corresponding extrinsic LLRs for the vector ũe,
which is provided to the CC decoder. The extrinsic LLRs
corresponding to the a priori LLRs that were concatenated
from the buffer must be removed before ũe is provided to
the CC decoder, since they are not relevant to the current
frame. Likewise, zero-valued LLRs must be inserted at the
end of ũe to pad the vector, in correspondence to the a priori
LLRs of ũa that were placed into the buffer, rather than
being decoded by the FLC decoder. As a result of this, the
FLC decoder and CC decoder may not iteratively exchange
LLRs pertaining to every bit in the vector u. This may
therefore result in a slight degradation of the FLC decoder’s

12

near-capacity capability, in a similar manner to the effect of
limiting the FLC decoding complexity using the parameter
xmax. However, since only a small number of LLRs in the
vector ũe are impacted in this way, this effect is negligible
in practice.

C. Matching sub-symbols

As described in Section II, the ExpGEC and RiceEC
codes decompose the symbol stream d into two sub-symbol
streams x and t. It is important to ensure that the two sub-
symbol streams remain synchronized at the receiver, even
in the presence of transmission errors. More specifically, if
errors cause deleted or inserted sub-symbols to appear in
x̂ or t̂, then the incorrect pairings of sub-symbols will be
recombined for generating the reconstructed symbol stream
d̂, hence resulting in a high SER for the remainder of
the stream. This motivates the approach described in this
section for avoiding the two sub-symbol streams becoming
de-synchronized. We commence by describing how the
transmitter multiplexes the UEC part and FLC-CC part
onto the channel, then discuss how the receiver maintains
synchronization.

As explained in Section III-C, the FLC decoder requires
knowledge of the sub-symbol x̂i in order to generate the cor-
responding sub-symbol t̂i. Motivated by this, the transmitter
ensures that each sub-symbol xi is encoded and transmitted
in advance of its corresponding sub-symbol ti, so that the
reconstructed sub-symbol x̂i is available for use by the FLC
decoder at the appropriate time. Since the number of sub-
symbols of x and t that are represented by each bit vector
of z and w may vary from frame to frame, the transmitter
has to ensure that a sufficiently high number of sub-symbols
of x have been transmitted before transmitting a bit vector
representing a selection of sub-symbols of t. Since the
transmitter is capable of maintaining a count of how many
sub-symbols of x it has transmitted at any given time, it
can infer how many sub-symbols of x̂ are buffered in the
receiver, ready to be used by the FLC decoder. Likewise,
the transmitter employs a buffer for storing the sub-symbols
of t until they are ready for transmission, as shown in
Figure 2. When the transmitter identifies that the number
of sub-symbols of x̂ buffered in the receiver exceeds the
number of sub-symbols of t required to generate the next
bit vector w, it is transmitted to the receiver.

The proposed ExpGEC and RiceEC schemes are de-
signed to ensure that synchronization is maintained between
the UEC and FLC-CC decoders. As described above, de-
synchronization can occur if the unary decoder or FLC
decoder output too many or too few sub-symbols for x̂ and
t̂, when decoding the LLR vectors ỹ and ũa, respectively.
However, owing to the side information used to indicate to
the UEC decoder how many one-valued bits there are in
each bit vector y, the unary decoder is guaranteed to output
the correct number of sub-symbols for x̂, since each unary
codeword contains only a single logical one-valued bit, as
described in Section IV-A. For the RiceEC code, the correct
number of sub-symbols for t̂ is also guaranteed, since each
FLC codeword comprises the same number of log2(MRice)
bits. In the case of the ExpGEC code, the properties of the
UEC code may be exploited for ensuring synchronization.
More specifically, the number of FLC encoded bits of u

associated with each decoded vector x̂ = [x̂i]
a
i=1 is given

by
∑a
i=1(xi + kExpG − 1), where a is the length of a

specific decoded vector of x̂, which can be correctly inferred
from the side information, which conveys the number of
logical one-valued bits in each vector y. Since the length of
each unary encoded codeword is given by lUnary(xi) = xi,
the previous sum may be expressed as

∑a
i=1(lUnary(xi) +

kExpG − 1) = a(kExpG − 1) +
∑a
i=1 lUnary(xi), where∑a

i=1 lUnary(xi) is the number of LLRs in ỹ constituting the
sub-symbol vector x̂. Since the values of a and the number
of LLRs in ỹ are known to the receiver, the number of LLRs
of ũa associated with a decoded sub-symbol vector of x̂
does not depend on the received value of those sub-symbols.
Owing to this, any errors in x̂ cannot cause the sub-symbols
x̂ and t̂ to become permanently de-synchronized.

D. Interleavers

In contrast to the JSCC schemes of our previous work
[22], the proposed ExpGEC and RiceEC schemes employ
interleavers π1 to π5 of Figure 2 having fixed lengths, which
do not change from frame to frame. Owing to this, these
lengths and the corresponding interleaver designs may be
hard-coded into the transmitter and receiver. This has the
added benefit of avoiding the large memory requirement for
storing a large number of interleaver designs, as well as
the additional design effort required for ensuring that all
the interleavers have desirable distance properties. It also
avoids the requirement for using side information to signal
which interleaver lengths are used for each frame.

The interleavers π2 and π5 of Figure 2 are required for
evenly distributing the punctured or doped bits throughout
the corresponding bit vector, as opposed to the interleavers
π1, π3 and π4 of Figure 2, which are required for maintain-
ing desirable distance properties. As a result, we recommend
the LTE sub-block interleaver [34] for the interleavers π2
and π5, in order to evenly distribute the doped or interleaved
bits. Meanwhile, we recommend S-Random interleavers [35]
for the interleavers π1, π3 and π4.

V. PERFORMANCE COMPARISON WITH BENCHMARKERS

In this section, we compare the performance of our
proposed RiceEC and ExpGEC schemes with that of several
appropriate benchmarkers, which are introduced in Sec-
tion V-A. In Section V-B, we analyze the near-capacity
potential of both the proposed codes and of the bench-
markers. Following this, Section V-C discusses our EXIT
chart analysis invoked for selecting the doping or puncturing
rates Ri

1 and Ri
2, which control the unequal error correction

of the proposed schemes. Finally, Section V compares the
performance of the proposed schemes and the benchmarkers.

A. Scenarios and benchmarkers

Table III lists the considered parameterizations of the
proposed schemes and of the benchmarkers, namely of the
Rice-CC, ExpG-CC and VLEC schemes [26]. In analogy
with the EG-CC scheme of [22], the Rice-CC and ExpG-CC
benchmarkers are both SSCCs, which replace the EG source
code of [22] by the Rice and ExpG codes, respectively. Note
that the EG-CC scheme of [22] may be viewed as the special
case of the ExpG-CC benchmarker, where kExpG = 0. In
these benchmarkers, separate channel coding is provided

13

by a serial concatenation of an r = 4-state non-systematic
recursive CC of [3, Table II] with an r = 2-state URC and
Grey-coded QPSK modulation. Note that this combination
was shown to minimize (but not eliminate) the capacity
loss of SSCC schemes like the Rice-CC and ExpG-CC
benchmarkers [3], [22]. A further benchmarker is provided
by the JSCC VLEC scheme of [25], [26] in which a VLEC
code is serially concatenated with a r = 2 state URC and
Gray-coded QPSK modulator. This scheme offers a near
capacity operation, but has a rapidly increasing complexity
as L increases, as described in Section I.

As shown in Table III, our comparisons consider several
scenarios, including the case where the source symbols
represent the 26 letters of the English alphabet and the space
character, which have a particular probability distribution,
as shown in Figure 1b. Here, we map the letters and the
space character to the symbol values of 1 to 27 according
to descending probability of occurrence. Figure 1b compares
this probability distribution to the finite zeta-like distribution
of (1) having a parameter value of L = 27 and various val-
ues of p1. The entropy of the letters probability distribution
is HD = 4.1 bits per symbol, which is equal to that of
the finite zeta-like distribution having p1 = 0.45. We also
consider the scenario where the source symbols obey the
same probability distribution as the transform coefficients
and motion vectors produced by a H.265 encoder, as shown
in Figure 1b. Note that while the H.265 encoder produces
some symbols having values higher than 1000, these have
a combined probability of less than 2× 10−5. Motivated by
this, Figure 1a also shows the finite zeta-like distribution
having L = 1000 and various values of p1. The entropy
of the H.265 probability distribution is HD = 2.4 bits
per symbol, which is equal to that of the finite zeta-like
distribution having p1 = 0.6.

As shown in Table III, we also consider scenarios, where
the source symbols obey the finite zeta-like probability dis-
tribution of (1). Here, we consider the alphabet cardinality
of L = 27 in order to match that of the English letter
source set, as well as the cardinality L = 1000, since
this is approximately equal to the highest symbol value
produced by H.264 [3, Fig. 7] and H.265. This approach
allows the performance of the various schemes considered
to be compared for both small and large symbol alphabet
cardinalities L. Furthermore, we parametrize the finite zeta-
like probability distributions using p1 ∈ {0.2, 0.4, 0.6},
which spans the range of p1 values that best approximate
the English alphabet and the H.265 probability distributions,
as discussed above. Note that our previous work of [22]
focused only on the complementary parameter value range
of p1 ≥ 0.6.

As shown in Table III, the puncturing and doping of the
proposed schemes and benchmarkers are specifically param-
eterized in each scenario for achieving the same effective
throughput η, for the sake of facilitating fair comparisons.
More specifically, the effective throughput of η = 0.95
was selected for the English letters distribution, while the
effective throughput of η = 0.85 was selected for the
H.265 distribution. Meanwhile, the target throughputs of
η ∈ {0.90, 0.83, 0.85} were selected for the scenarios using
the finite zeta-like distribution having p1 ∈ {0.2, 0.4, 0.6},
respectively. These target effective throughputs were se-
lected since they are close to the native effective throughputs

of all schemes considered, ensuring that none of them were
excessively impacted by puncturing or doping.

As described in Section II, the proposed RiceEC and
ExpGEC schemes are parameterized by MRice and kExpG,
respectively. Table III shows the specific values of MRice

and kExpG that were selected in each scenario considered.
In each case, we selected the particular parameter values that
give the best SER performance, as will be characterized in
Section V-D. We also selected MRice = 1 and kExpG = 0,
which reduce the RiceEC and ExpGEC schemes to the
special cases of the UEC and EGEC schemes of our previous
work [3], [22]. The latter arrangements served as additional
benchmarkers. The only exception to this however is the
omission of the UEC benchmarker in scenarios where exces-
sive puncturing would be required for achieving the effective
target throughput η. For example, the UEC benchmarker
has very small outer coding rates of Ro

1 = 0.0004 for
the case of a finite zeta-like distribution having p1 = 0.2
and L = 1000, as well as Ro

1 = 0.007 for p1 = 0.4
and L = 1000. This may be expected, since the UEC
benchmarker has an average codeword length lUnary which
approaches infinity, as the source alphabet cardinality L
tends to infinity, for the case of p1 < 0.608. Despite this,
the UEC benchmarker has only a moderately small outer
coding rate of Ro

1 = 0.246 for the case of the finite zeta-like
distribution having p1 = 0.6 and L = 1000, as well as of
Ro

1 = 0.348 for the case of the H.265 distribution, as shown
in Table III. Since the Rice-CC and ExpG-CC benchmarkers
employ the Rice and ExpG source codes respectively, they
are also parameterized by MRice and kExpG. Table III shows
the values of MRice and kExpG that were selected for
the Rice-CC and ExpG-CC benchmarkers in each of the
scenarios considered. In each case, this selection was made
by finding the parameterization of MRice or kExpG that
gives the best SER performance, as will be characterized
in Section V-D.

Note that the VLEC benchmarker is only considered for
scenarios having source symbol alphabets associated with
the cardinality of L = 27, since it suffers from an excessive
trellis complexity for larger values of L. The VLEC code-
words were designed using the approach of [36], which was
parameterized using a block distance db = 2, divergence
distance dd = 2 and convergence distance dc = 1. Here, the
block distance db specifies the minimum Hamming distance
required between all pairs of equal length VLEC codewords.
Meanwhile, the divergence distance dd and convergence dis-
tance dc specify the minimum Hamming distances required
between all pairs of un-equal length codewords, when they
are left- and right-aligned, respectively [37], [25]. After a
VLEC codebook was designed in this way, each codeword
was then doubled in length by concatenating it with its
inverse. For example, the codebook {101, 1001, 10001}
becomes {101010, 10010110, 1000101110} using this ap-
proach. This enables a fair comparison by reducing the
VLEC coding rate Ro to become comparable to those of
the other schemes, while also ensuring that the VLEC-
encoded bits have equiprobable values, which is a necessary
condition for avoiding capacity loss [3].

The final column of Table III quantifies the complexity of
each scheme, which was quantified in terms of the number
of Add-Compare-Select (ACS) operations performed per bit
entered into the QPSK modulator, per decoding iteration.

14

TABLE III: Table of the selected parameters for the proposed schemes and the benchmarkers. All schemes use r1 = 4 and
r2 = 4 states. Likewise all schemes use dmax = 18, except for the RiceEC schemes having MRice = 32 and MRice = 64,
where we employ dmax = MRice.

L p1 or η Scheme, parameter n1 n2 Ro
1 Ro

2 Ao
1 Ao

2 Ri
1 Ri

2 Capacity Area Tunnel Comp-
distribution kExpG/ bound bound bound lexity

MRice Eb/N0 Eb/N0 Eb/N0

27

Letters 0.95

ExpGEC 0 2 2 0.374 0.466 0.434 0.490 1.186 1.116

1.60

2.29 3.50 304
3 2 2 0.354 0.473 0.354 0.474 1.277 1.021 1.68 2.63 311

RiceEC 4 2 2 0.484 0.489 0.494 0.492 0.972 0.987 1.69 2.67 252
8 2 2 0.432 0.480 0.442 0.479 1.067 1.004 1.65 2.58 281

ExpG-CC 1 2 0.443 0.491 1.072 2.07 3.42 270
Rice-CC 4 2 0.485 0.500 0.979 1.73 2.70 245
VLEC-URC 2 0.377 0.375 1.289 1.67 3.01 9641

0.2 0.90

ExpGEC 0 2 2 0.386 0.476 0.444 0.497 1.093 1.028

1.39

1.94 3.08 278
2 2 2 0.427 0.481 0.477 0.481 0.981 0.979 1.55 2.64 264

RiceEC 1 2 0.260 0.266 1.732 1.49 3.71 435
8 2 2 0.460 0.463 0.475 0.463 0.965 0.980 1.46 2.62 265

ExpG-CC 0 2 0.422 0.475 1.066 1.89 3.52 267
Rice-CC 4 2 0.472 0.500 0.954 1.63 2.70 240
VLEC-URC 2 0.360 0.366 1.249 1.44 2.74 9717

0.4 0.83

ExpGEC 0 2 2 0.471 0.474 0.493 0.488 0.872 0.892

1.10

1.26 2.20 228
2 2 2 0.413 0.437 0.432 0.436 0.980 0.965 1.17 2.33 259

RiceEC 1 2 0.350 0.358 1.184 1.17 3.01 251
4 2 2 0.455 0.430 0.462 0.432 0.917 0.960 1.17 2.23 243

ExpG-CC 0 3 0.315 0.329 1.318 1.26 3.10 409
Rice-CC 4 2 0.442 0.469 0.940 1.31 2.67 237
VLEC-URC 2 0.325 0.335 1.276 1.20 2.43 10693

0.6 0.85

ExpGEC 0 2 2 0.479 0.461 0.485 0.469 0.886 0.916

1.19

1.22 2.18 229
1 2 2 0.407 0.410 0.411 0.409 1.046 1.038 1.23 2.53 268

RiceEC 1 2 0.426 0.438 0.997 1.27 2.65 297
2 2 2 0.424 0.397 0.429 0.397 1.006 1.068 1.24 2.42 260

ExpG-CC 0 3 0.316 0.332 1.344 1.36 3.45 417
Rice-CC 2 2 0.413 0.465 1.028 1.63 3.27 260
VLEC-URC 2 0.272 0.280 1.565 1.29 3.23 14007

1000

H.265 0.85

ExpGEC 0 2 2 0.464 0.386 0.465 0.375 0.926 1.071

1.19

1.25 2.35 248
1 2 2 0.408 0.481 0.409 0.472 1.008 0.909 1.21 2.26 246

RiceEC 1 2 2 0.348 0.427 1.222 2.03 4.66 307
2 2 2 0.351 0.499 0.397 0.500 1.121 0.956 1.65 3.05 269

ExpG-CC 1 2 0.445 0.489 0.956 1.56 2.78 241
Rice-CC 4 2 0.351 0.446 1.210 2.20 4.70 305

0.2 0.90

ExpGEC 0 2 2 0.368 0.495 0.388 0.498 1.161 0.959

1.39

1.63 2.85 273
3 2 2 0.456 0.470 0.478 0.471 0.968 0.968 1.48 2.42 256

RiceEC 64 2 2 0.390 0.405 0.395 0.405 1.148 1.114 1.42 2.65 494
ExpG-CC 1 2 0.447 0.471 1.007 1.60 2.81 254
Rice-CC 64 2 0.401 0.475 1.122 2.14 4.07 283

0.4 0.83

ExpGEC 0 2 3 0.473 0.325 0.477 0.327 0.914 1.200

1.10

1.27 2.45 285
3 2 2 0.425 0.405 0.429 0.405 0.969 1.029 1.12 2.31 277

RiceEC 32 2 2 0.274 0.327 0.285 0.327 1.441 1.281 1.15 2.78 478
ExpG-CC 0 3 0.319 0.323 1.300 1.15 2.95 403
Rice-CC 16 2 0.334 0.466 1.244 2.63 5.67 313

0.6 0.85

ExpGEC 0 2 2 0.491 0.470 0.491 0.473 0.872 0.892

1.19

1.21 2.09 224
1 2 2 0.430 0.414 0.430 0.414 0.993 1.024 1.20 2.40 259

RiceEC 1 2 0.246 0.291 1.712 1.83 5.70 430
8 2 2 0.224 0.300 0.240 0.300 1.771 1.453 1.26 3.50 425

ExpG-CC 0 3 0.282 0.333 1.316 1.29 2.21 408
Rice-CC 4 2 0.315 0.454 1.347 2.98 6.69 339

This method of comparing complexity is motivated since
logarithmic implementations of the algorithms used within
each of the iterative decoding blocks can be decomposed
into only the basic ACS operations. In particular, each max*
operation employed by the Log-BCJR algorithm is assumed
to be computed using several lookup table operations, re-
quiring a total of 5 ACS operations [38].

B. Near capacity analysis

There are two requirements for an iterative decoding
scheme to facilitate near-capacity operation, where reliable
communication is achieved using an effective throughput
η that approaches the Discrete-Input Continuous-Output

Memoryless Channel (DCMC) capacity C [39]. Firstly, the
inner coding rate should obey Ai = C/[Ri log2(Mmod)],
where C is the DCMC capacity. As discussed in [31],
this condition is satisfied by the URC, regardless of the
puncturing or doping rate Ri used for meeting the required
effective throughput η. Secondly, the areas beneath the
inverted EXIT outer functions Ao should approach the
corresponding outer coding rates Ro [40]. Motivated by
this, this section compares the areas Ao

1 and Ao
2 beneath

the inverted EXIT functions of the UEC and FLC-CC sub-
codes of the proposed RiceEC and ExpGEC schemes with
the corresponding coding rates Ro

1 and Ro
2, in order to

characterize their near-capacity operation.

15

Ao
2n2

Ro
2n2

Ao
1n1

Ro
1n1 kExpG

p1

A
o
n
or

R
o
n

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(a) ExpGEC, L = 27

Ao
2n2

Ro
2n2

Ao
1n1

Ro
1n1 kExpG

p1

A
o
n
or

R
o
n

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(b) ExpGEC, L = 1000

Ao
2n2

Ro
2n2

Ao
1n1

Ro
1n1

MRice

p1

A
o
n
or

R
o
n

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(c) RiceEC, L = 27

Ao
2n2

Ro
2n2

Ao
1n1

Ro
1n1

MRice

p1

A
o
n
or

R
o
n

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(d) RiceEC, L = 1000

Fig. 6: Product of the coding rate Ro and inverted EXIT chart area Ao with the codeword length n for the UEC and
FLC-CC sub-codes of the proposed ExpGEC and RiceEC schemes, for the case of the finite zeta-like source distribution
with various p1 values and L ∈ {27, 1000}. A parameter value of r1 = 4 is used to obtain the inverted UEC EXIT
chart area Ao

1, while dmax = 18 is used to obtain the inverted FLC-CC EXIT chart area Ao
2. (a) and (b) characterize

the proposed ExpGEC scheme for different values of the parameter kExpG ∈ {0, 1, 2}, while (c) and (d) characterize the
proposed RiceEC scheme for different values of the parameter MRice ∈ {1, 4, 16}. Note that there are no plots of Ao

2 and
Ro

2 for the RiceEG scheme having MRice = 1, since there is no FLC-CC sub-code in this case.

Figure 6 shows the product of the coding rates Ro and
inverted EXIT chart areas Ao with the corresponding code-
word lengths n for the proposed schemes as functions of
the finite zeta-like distribution parameter p1. Here we have
plotted the products Aon and Ron to eliminate the effect of
different codeword lengths n on the analysis. Furthermore,
the values of Ro and Ao for each of the considered schemes
are listed in Table III for each scenario considered. For both
the RiceEC and ExpGEC schemes, the coding rate Ro

1 was
obtained using (21), while the FLC-CC coding rate Ro

2 was
obtained using (30). Likewise, (32) is used to obtain the area
beneath the inverted UEC EXIT function Ao

1, for the case

of employing r1 = 4 states. Meanwhile, (33) and (34) are
used for obtaining the area beneath the inverted FLC-CC
EXIT function Ao

2, where we use dmax = 18. These values
of r1 and dmax were found to strike an attractive trade-
off between the complexity and near-capacity operation, as
discussed in Sections III-B and III-C, respectively.

The discrepancy between Aon and Ron represents ca-
pacity loss, as discussed in [3]. Figure 6 shows that the
capacity loss Aon−Ron depends on the particular scheme,
scenario and parameterization considered. The capacity loss
Ao

1n1−Ro
1n1 of the UEC sub-code of the proposed RiceEG

and ExpGEC schemes depends on the number of states r1

16

ExpGEC
RiceEC

p1

r1/2

A
o 1
n
1
−

R
o 1
n
1

654321

100

10−1

10−2

10−3

10−4

10−5

(a) The UEC capacity loss, depending on the number of states r1
employed by trellis decoder.

ExpGEC
RiceEC

p1

xmax

A
o 2
n
2
−

R
o 2
n
2

654321

100

10−1

10−2

10−3

10−4

10−5

10−6

(b) The FLC-CC capacity loss, depending on the value of xmax

employed by the FLC decoder.

Fig. 7: The capacity loss Aon−Ron for the UEC and FLC-
CC sub-codes with L = 1000 and p1 ∈ {0.2, 0.4, 0.6, 0.8},
where kExpG = 1 in the case of the ExpGEC code and
MRice = 8 in the case of the RiceEC code.

employed by the UEC trellis decoder, as shown in Figure 7a.
If more than r1 = 4 states are employed, then the capacity
loss shown in Figure 6 will be reduced accordingly, as it
may also be seen in (21) and (32), which show that Ao

1

approaches Ro
1 as r1 approaches 2L. Figure 7a also shows

that this capacity loss reduces as p1 is increased, since this
results in the less frequent occurrence of higher sub-symbol
values in the stream x, which would benefit from using
more than r1 = 4 states in the UEC trellis decoder to exploit
knowledge of the corresponding occurrence probabilities. As
characterized in Figure 7b, the capacity loss Ao

2n2−Ro
2n2 of

the FLC-CC sub-code is caused by symbols in the stream d
having values that exceed the limit dmax, which occur more
frequently as p1 is reduced. This explains why employing
a value higher than dmax = 18 reduces the capacity loss
shown in Figure 7b. This can also be seen in (33) and (34),
which show that Ao

2 approaches Ro
2 as dmax approaches L.

Table III also quantifies the Eb/N0 values, where the per-
formance of each scheme considered is limited by the capac-
ity bound, area bound and tunnel bound. More specifically,
the capacity bound is the Eb/N0 value where the DCMC
capacity C becomes equal to the effective throughput η of
the scheme, representing theoretical minimum Eb/N0 at
which reliable communication is possible [31]. The area

VLEC-unlimited
Rice-CC(4)

ExpG-CC(1)
RiceEC(8)
RiceEC(4)

ExpGEC(3)

C
a
p
a
ci
ty

b
o
u
n
d

Letters, N=27

Eb/N0 (dB)

S
E
R

7654321

100

10−1

10−2

10−3

10−4

10−5

Rice-CC(4)
ExpG-CC(1)

RiceEC(2)
RiceEC(0)

ExpGEC(1)
ExpGEC(0)

C
a
p
a
ci
ty

b
o
u
n
d

H.265 distribution

Eb/N0 (dB)

S
E
R

7654321

100

10−1

10−2

10−3

10−4

10−5

Fig. 9: SER performance of the proposed schemes and
benchmarkers listed in Table III when the source symbols
obey the probability distribution of letters in the English
alphabet, as well as when the symbols obey the probability
distribution of a H.265 encoder. Each scheme encodes an
average a = 20000 symbols per frame and uses QPSK mod-
ulation for communication over an uncorrelated narrowband
Rayleigh fading channel. For each scheme, the parameter
kExpG or MRice is listed in the legend within brackets. A
complexity limit of 5000 ACS operations per bit input into
the QPSK modulator is imposed on each scheme, except
in the case of the VLEC benchmarker where the ultimate
unlimited complexity performance is shown.

bound is the Eb/N0 value at which Ai = Ao, implying that
it is theoretically possible to create an open EXIT tunnel,
providing that there is a good match between the shapes of
the EXIT curves of the schemes’ inner and outer decoders
[22]. The discrepancy between the capacity bound and the
area bound represents the capacity loss of the particular
scheme. Table III shows that our best performing ExpGEC
and RiceEC schemes have an area bound that is within
0.1 dB of the capacity bound, demonstrating their capability
of near-capacity operation. By contrast, the discrepancies
between the area and capacity bounds are significantly
higher for the SSCC ExpG-CC and Rice-CC benchmakers,
owing to the corresponding capacity loss. Finally the tunnel
bound is the Eb/N0 value at which an open tunnel is

17

VLEC-unlimited
Rice-CC(4)

ExpG-CC(0)
RiceEC(8)
RiceEC(0)

ExpGEC(2)
ExpGEC(0)

C
a
p
a
ci
ty

b
o
u
n
d

p1=0.2, L=27

Eb/N0 (dB)

S
E
R

7654321

100

10−1

10−2

10−3

10−4

10−5

Rice-CC(64)
ExpG-CC(1)
RiceEC(32)
ExpGEC(3)
ExpGEC(0)

C
a
p
a
ci
ty

b
o
u
n
d

p1=0.2, L=1000

Eb/N0 (dB)

S
E
R

7654321

100

10−1

10−2

10−3

10−4

10−5

VLEC-unlimited
Rice-CC(4)

ExpG-CC(0)
RiceEC(4)
RiceEC(0)

ExpGEC(2)
ExpGEC(0)

C
a
p
a
ci
ty

b
o
u
n
d

p1=0.4, L=27

Eb/N0 (dB)

S
E
R

7654321

100

10−1

10−2

10−3

10−4

10−5

Rice-CC(16)
ExpG-CC(0)
RiceEC(32)
ExpGEC(3)
ExpGEC(0)

C
a
p
a
ci
ty

b
o
u
n
d

p1=0.4, L=1000

Eb/N0 (dB)

S
E
R

7654321

100

10−1

10−2

10−3

10−4

10−5

VLEC-unlimited
Rice-CC(2)

ExpG-CC(0)
RiceEC(2)
RiceEC(1)

ExpGEC(1)
ExpGEC(0)

C
a
p
a
ci
ty

b
o
u
n
d

p1=0.6, L=27

Eb/N0 (dB)

S
E
R

7654321

100

10−1

10−2

10−3

10−4

10−5

Rice-CC(4)
ExpG-CC(0)

RiceEC(8)
RiceEC(0)

ExpGEC(1)
ExpGEC(0)

C
a
p
a
ci
ty

b
o
u
n
d

p1=0.6, L=1000

Eb/N0 (dB)

S
E
R

7654321

100

10−1

10−2

10−3

10−4

10−5

Fig. 8: SER performance of the proposed schemes and benchmarkers listed in Table III. Each scheme encodes an average
of a = 20000 symbols per frame, which are generated using finite zeta-like probability distributions having different
combinations of the parameters L ∈ {27, 1000} and p1 ∈ {0.2, 0.4, 0.6}. Each scheme uses QPSK modulation for
communication over an uncorrelated narrowband Rayleigh fading channel. For each scheme, the adopted value of the
parameter kExpG or MRice is listed in the legend within brackets. A complexity limit of 5000 ACS operations per bit input
into the QPSK modulator is imposed on each scheme, except in the case of the VLEC benchmarker where the ultimate
unlimited complexity performance is shown.

18

actually created between the EXIT curves of the scheme’s
inner and outer decoders [41]. Note that for all proposed
schemes and for all benchmarkers, the 2-state URC was
found to produce lower tunnel bounds than any 4-state or
8-state URCs. Furthermore, the 2-state URC exhibits the
additional benefit of having the lowest complexity of these
design options.

C. EXIT chart matching
This section discusses the employment of EXIT charts for

designing the parameterization of the proposed ExpGEC and
RiceEC schemes, as well as for characterizing their iterative
decoding convergence and that of the benchmarkers. This
facilitates the rapid characterization of these schemes, con-
sidering a wide range of values for the scheme parameters
such as kExpG, MRice, Ri

1, Ri
2, n1 and n2, as well as

for various combinations of the scenario parameters p1
and L, without requiring time-consuming SER simulations.
Separate EXIT charts may be used for characterizing the
pair of iterative decoding processes corresponding to the
UEC and FLC-CC sub-codes of our proposed RiceEC and
ExpGEC schemes. As discussed in [31], codeword lengths
of n1 ≥ 2 and n2 ≥ 2 are required in the proposed schemes
in order to facilitate iterative decoding convergence to the
(1,1) point in the EXIT chart, associated with a vanishingly
low SER [31]. If both sub-codes correspond to equal inner
coding rates of Ri

1 and Ri
2 and therefore equal amounts of

puncturing or doping, then they may be said to adopt equal
error protection. However, in this case, the EXIT charts
corresponding to the UEC and FLC sub-codes may not
form marginally open tunnels at the same channel Eb/N0

value. This results in a range of Eb/N0 values where the
EXIT chart of one sub-code has an open tunnel allowing
iterative decoding convergence to the (1,1) point and a low
SER for the corresponding sub-symbols, while the other
sub-code has a closed tunnel leading to a high SER for
the corresponding sub-symbols and resulting in a high SER
overall. To combat this, unequal error protection [22] may
be employed to increase the Eb/N0 value where the first
EXIT chart tunnel becomes open, allowing the Eb/N0 value
where the second EXIT chart tunnel opens to be reduced
to the same value. This enables a low overall SER to be
achieved at this lower Eb/N0 value. For example, Figure 5
provides the EXIT charts for the unequal error protection
of a particular parameterization of the RiceEC scheme. In
this case where Eb/N0 = 2.8 dB, both the UEC and FLC-
CC sub-codes are associated with marginally open EXIT
chart tunnels, facilitating iterative decoding convergence to
the (1,1) point and a low overall SER.

To be specific, unequal error protection is achieved by
carefully selecting the inner puncturing or doping rates Ri

1

and Ri
2 that are associated with the UEC or FLC-CC sub-

codes. Note that when Ri
1 or Ri

2 is reduced in order to
increase the error protection for the corresponding sub-code,
the other one of Ri

1 or Ri
2 must be increased, in order to

maintain the same overall throughput η, according to (31).
As an alternative to excessive doping, the error protection
of the FLC-CC sub-code may be increased by increasing
the codeword length of the r2 = 4-state CC from n2 = 2
to n2 = 3 bits, according to the design of [3, Table II].

Most of the schemes characterized in Table III have punc-
turing or doping rates Ri that are close to 1, avoiding the

performance degradation that is associated with excessive
puncturing or doping. However, schemes such as the UEC
benchmarker that results for the MRice = 1 special case
of the RiceEC scheme, have puncturing rates that are as
high as Ri = 1.7, which partly contributes to a high Eb/N0

tunnel bound. More specifically, excessive puncturing results
in EXIT charts with narrower open tunnels, resulting in
a gradual SER improvement with Eb/N0, rather than a
steep turbo cliff. Secondly, excessive puncturing negatively
impacts the threshold Eb/N0 value where a marginally open
EXIT chart tunnel is created, leading to more capacity loss.
Furthermore, a punctured code will also have a decoding
complexity disadvantage, since the punctured bits must be
decoded alongside the transmitted bits.

D. SER performance

In this section, we compare the SER performance of
the proposed RiceEC and ExpGEC schemes to that of the
benchmarkers for each of the scenarios listed in Table III.
The SER performance of these schemes is characterized
in Figures 8 and 9, where a complexity limit of 5000
ACS operations per QPSK input bit is imposed, as it
was characterized per decoding iteration in Table III. This
complexity limit was chosen in all scenarios considered,
since we found that it only marginally impacts the SER
performance of whichever scheme converges to its ultimate
unlimited performance with the lowest complexity in each
scenario. The employment of this criterion for selecting the
complexity limit ensures that excessively high-complexity
schemes are not favored over those which have a marginally
worse SER performance but lower complexity. Due to the
considerable complexity of the trellis employed in the VLEC
benchmarker, it performs poorly when this complexity limit
is imposed, even for the case of L = 27. Owing to
this, Figures 8 and 9 characterize the SER of the VLEC
benchmarker when the complexity limit is removed, in order
to characterize its ultimate performance, although this is
only achieved at the cost of potentially excessive complexity.

Figures 8 and 9 show that our family of schemes offer the
best SER performance in all of the considered scenarios. In
the finite zeta-like distribution scenarios having p1 = 0.6,
the best of the proposed schemes offers around 1 dB of
gain compared to the best SSCC benchmarker for both
considered values of L. Likewise, our schemes offer around
0.5 dB of gain for p1 = 0.4, as well as around 0.75 dB
of gain for the H.265 distribution. For p1 = 0.2 and for
the English letters distribution however, our schemes offer
only a marginal SER performance gain over the Rice-CC
benchmarker. Note however that this benchmarker suffers
from poor performance in other scenarios, which prevents
its general applicability. Note that the gains offered by the
proposed schemes are achieved ‘for free,’ since they are
achieved without increasing the required decoding com-
plexity, or transmission-energy, -bandwidth, or -duration.
The unlimited complexity VLEC benchmarker offers an
SER performance very close to our proposed schemes for
p1 ∈ {0.2, 0.4} and L = 27, however it should be noted
that its complexity is more than an order of magnitude
greater than that of our proposed schemes. Furthermore, the
complexity of the VLEC benchmarker becomes impractical
for values of L significantly greater than 27.

19

At higher values of p1, lower values of the parameters
of kExpG and MRice give higher coding rates Ro

1 and Ro
2,

enabling higher effective throughputs η without requiring
excessive puncturing. This facilitates better SER perfor-
mance than may be achieved using higher values of kExpG

and MRice at these p1 values. For example, in the scenario
where we have L = 27 and p1 = 0.2, the kExpG = 2
parameterization of the ExpGEC scheme outperforms the
kExpG = 0 parameterization by 0.5 dB. By contrast, when
p1 = 0.6, the kExpG = 0 parameterization offers a marginal
improvement over the kExpG = 1 parameterization. This
is also the case in the RiceEC, where the MRice = 8
parameterization offers the best performance at p1 = 0.2 and
L = 27, while the MRice = 1 parameterization offers the
best performance at p1 = 0.6. In the case where L = 1000,
the coding rates Ro

1 and Ro
2 of the RiceEC scheme are

lower than those of the ExpGEC, requiring more puncturing
to meet the effective target throughput η. Owing to this,
the ExpGEC schemes are superior to the RiceEC scheme
in these cases. By contrast, in the case where we have
L = 27, the coding rates Ro

1 and Ro
2 of the RiceEC scheme

are similar to those of the ExpGEC, with neither schemes
requiring any significant puncturing or doping. This allows
the RiceEC to provide similar performance to the ExpGEC
when L = 1000.

VI. CONCLUSIONS

In this paper we have extended and generalized the
EGEC code of [22] to give the proposed ExpGEC code.
Similarly, we extended the UEC code of [3] to design the
proposed RiceEC code. Both these novel codes facilitate
operation over a significantly wider range of source symbol
distributions. This paper has focused on the scenario where
the cardinality L of the source symbol set is finite, allowing
comparison to a VLEC benchmarker. We have shown that
the proposed schemes achieve the same SER performance
as the VLEC benchmarker, but at an order of magnitude
lower complexity when we have L = 27. Furthermore,
our proposed schemes maintain a moderate complexity for
significantly higher L values, while that of the VLEC
benchmarker may become excessive. Furthermore, we have
proposed a technique for increasing the practicality of the
proposed schemes, which allow fixed-length designs to be
employed for all interleavers. We have shown across a wide
range of application scenarios that our family of proposed
schemes outperforms several SSCC benchmarkers by as
much as 1 dB with no cost in terms of decoding complexity,
transmission-energy, -bandwidth or -duration.

REFERENCES

[1] ITU-T, “Series H: audiovisual and multimedia systems, infrastructure
of audiovisual services coding of moving video, high efficiency
video coding,” 2015. [Online]. Available: www.itu.int/rec/T-REC-H.
265-201504-I

[2] N. Johnson, A. Kemp, and S. Kotz, Univariate discrete distributions.
John Wiley & Sons, 2005.

[3] R. G. Maunder, W. Zhang, T. Wang, and L. Hanzo, “A unary
error correction code for the near-capacity joint source and channel
coding of symbol values from an infinite set,” IEEE Transactions on
Communications, vol. 61, pp. 1977–1987, 2013.

[4] C. E. Shannon, “A mathematical theory of communications,” The Bell
System Technical Journal, vol. 27, pp. 379–423,623–656, 1948.

[5] M. Brejza, L. Li, R. Maunder, B. Al-Hashimi, C. Berrou, and
L. Hanzo, “20 years of turbo coding and energy-aware design
guidelines for energy-constrained wireless applications,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp. 8–28, 2016.
[Online]. Available: http://eprints.soton.ac.uk/378161/

[6] R. Gallager, “Low-density parity-check codes,” IEEE Transactions on
Information Theory, vol. 8, no. 1, pp. 21–28, jan 1962.

[7] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM Journal of
Research and Development, vol. 23, no. 2, pp. 149–162, mar 1979.

[8] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Transactions on Information Theory,
vol. 24, no. 5, pp. 530–536, sep 1978.

[9] D. MacKay, Information theory, inference and learning algorithms.
Cambridge University Press, 2003.

[10] D. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, pp. 1098–1101, 1952.

[11] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” SIAM Journal of Applied Math, vol. 8, pp. 300–304, 1960.

[12] A. J. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEE Transactions on Infor-
mation Theory, vol. IT-13, pp. 493–497, 1967.

[13] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Transactions on Information Theory, vol. 21, no. 2, pp. 194–
203, mar 1975.

[14] J. Massey, “Joint source and channel coding,” Communication Sys-
tems and Random Process Theory, 1977.

[15] Q. Stout, “Improved prefix encodings of the natural numbers,” IEEE
Trans. Inform. Theory, 1980.

[16] M. Bernard and B. Sharma, “Some combinatorial results on variable
length error correcting codes,” Ars Combinatoria, pp. 181–194, 1988.

[17] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error correcting coding and decoding: turbo codes,” in Proceedings
of the IEEE International Conference on Communications, vol. 2,
Geneva, Switzerland, 1993, pp. 1064–1070.

[18] A. Fraenkel and S. Kleinb, “Robust universal complete codes
for transmission and compression,” Discrete Applied Mathematics,
vol. 64, no. 1, pp. 31–55, 1996.

[19] R. Bauer and J. Hagenauer, “Symbol-by-symbol MAP decoding of
variable length codes,” in Proc. 3. ITG Conf. on Source and Channel
Coding, 2000, pp. 111–116.

[20] N. Gortz, “Iterative source-channel decoding using soft-in/soft-out
decoders,” in 2000 IEEE Int. Symp. on Information Theory, Sorrento,
2000, p. 173.

[21] ——, “On the iterative approximation of optimal joint source-channel
decoding,” IEEE Journal on Selected Areas in Communications,
vol. 19, no. 9, pp. 1662–1670, 2001.

[22] T. Wang, W. Zhang, R. Maunder, and L. Hanzo, “Near-capacity joint
source and channel coding of symbol values from an infinite source
set using elias gamma error correction codes,” IEEE Transactions
on Communications, vol. 62, no. 1, pp. 280–292, jan 2014. [Online].
Available: http://eprints.soton.ac.uk/346658/

[23] D. Salomon, Data compression: the complete reference. Springer
Science & Business Media, 2004.

[24] M. Fresia, F. Perez-Cruz, H. Poor, and S. Verdu, “Joint source and
channel coding,” IEEE Signal Processing Magazine, vol. 27, no. 6,
pp. 104–113, nov 2010.

[25] V. Buttigieg and P. Farrell, “Variable-length error-correcting codes,”
IEE Proceedings - Communications, vol. 147, no. 4, p. 211, aug 2000.

[26] M. Bernard and B. Sharma, “A lower bound on average codeword
length of variable length error-correcting codes,” IEEE Transactions
on Information Theory, vol. 36, no. 6, pp. 1474–1475, 1990.

[27] R. Maunder and L. Hanzo, “Near-capacity irregular variable length
coding and irregular unity rate coding,” IEEE Transactions on
Wireless Communications, vol. 8, no. 11, pp. 5500–5507, 2009.
[Online]. Available: http://eprints.soton.ac.uk/264471/

[28] L. Hanzo, R. G. Maunder, J. Wang, and L.-L. Yang, Near-capacity
variable-length coding. Chichester, UK: John Wiley & Sons, Ltd,
oct 2010.

[29] D. Rowitch and L. Milstein, “On the performance of hybrid
FEC/ARQ systems using rate compatible punctured turbo (RCPT)
codes,” IEEE Transactions on Communications, vol. 48, no. 6, pp.
948–959, jun 2000.

[30] J. Kliewer, A. Huebner, and D. Costello, “On the achievable extrinsic
information of inner decoders in serial concatenation,” in 2006 IEEE
Int. Symp. on Information Theory, Seattle, jul 2006, pp. 2680–2684.

[31] J. Hagenauer, “The EXIT Chart – introduction to extrinsic information
transfer in iterative processing,” in Proc. 12th European Signal
Processing Conf., Vienna, 2004, pp. 1541–1548.

[32] R. Maunder and L. Hanzo, “Genetic Algorithm Aided Design of
Component Codes for Irregular Variable Length Coding,” IEEE
Transactions on Communications, vol. 57, no. 5, pp. 1290–1297,
may 2009. [Online]. Available: http://eprints.soton.ac.uk/264470

20

[33] M. Adrat, R. Vary, and J. Spittka, “Iterative source-channel decoder
using extrinsic information from softbit-source decoding,” in 2001
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing. Proc.,
2001, pp. 2653–2656 vol.4.

[34] G. Group, “Multiplexing and channel coding (Release 8). 3GPP TS36.
212 V8. 4.0 Technical specification group radio access network,”
2008.

[35] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes
using random and nonrandom permutations,” JPL Progress report
42-122, pp. 56–65, 1995.

[36] J. Wang, L.-L. Yang, and L. Hanzo, “Iterative construction of
reversible variable-length codes and variable-length error-correcting
codes,” IEEE Communications Letters, vol. 8, no. 11, pp. 671–673,
nov 2004.

[37] R. G. Maunder and L. Hanzo, “Genetic algorithm aided design
of component codes for irregular variable length coding,” IEEE
Transactions on Communications, vol. 57, no. 5, pp. 1290–1297,
may 2009. [Online]. Available: http://eprints.soton.ac.uk/264470/

[38] L. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “A low-
complexity turbo decoder architecture for energy-efficient wireless
sensor networks,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. PP, no. 99, pp. 1–9, 2011.

[39] J. Proakis, Digital communications. McGraw-Hill, 1983.
[40] A. Ashikhmin, “Extrinsic information transfer functions: model and

erasure channel properties,” Information Theory, IEEE Transactions
on, vol. 50, no. 11, pp. 2657–2673, 2004.

[41] J. Lee and R. Blahut, “Generalized EXIT chart and BER analysis of
finite-length turbo codes,” Global Telecommunications Conf. 2003,
pp. 2067–2072 vol.4, 2003.

Matthew F. Brejza recieved a first class honors
BEng in Electronic Engeering from the University
of Southampton, UK, in July 2012, where he is
currently working toward the Ph.D. degree with
the Communications Research Group, School of
Electronics and Computer Science. His research
interests include flexible hardware implementa-
tion, source and channel coding and their appli-
cations in low power data communications.

Tao Wang received the B.S. degree in infor-
mation engineering from the University of Sci-
ence and Technology of Beijing (USTB), Beijing,
China, in 2006. He received M.Sc. degree in
communication from University of Southampton,
Southampton, U.K in 2008. He is currently work-
ing toward the Ph.D. degree with the Communica-
tions Research Group, Electronics and Computer
Science, University of Southampton, Southamp-
ton, UK. His current research interests include
joint source/channel coding and distributed video

coding.

Wenbo Zhang received the M.E. degree in In-
formation and Communication Engineering from
the University of Beijing University of Posts
and Telecommunications (BUPT), Beijing, China,
in 2011. He is currently working toward the
Ph.D. degree with the Communications Re-
search Group, Electronics and Computer Sci-
ence, University of Southampton, Southampton,
UK. His current research interests include joint
source/channel coding and variable length coding.

David Al-Khalili graduated from the University
of Southampton in 2014 with a first class honours
MEng in Electronic Engineering. He is currently
training to become a UK and European patent
attorney, with particular areas of work including
telecommunications, image and signal processing
and medical devices.

Robert G. Maunder has studied with Electronics
and Computer Science, University of Southamp-
ton, UK, since October 2000. He was awarded a
first class honors BEng in Electronic Engineering
in July 2003, as well as a PhD in Wireless
Communications in December 2007. He became
a lecturer in 2007 and an Associated Professor
in 2013. Rob’s research interests include joint
source/channel coding, iterative decoding, irreg-
ular coding and modulation techniques. For fur-
ther information on this research, please refer to

http://users.ecs.soton.ac.uk/rm.

Bashir M. Al-Hashimi is an ARM Professor of
Computer Engineering and Dean of the Faculty
of Physical Sciences and Engineering, University
of Southampton. In 2009, he was elected fellow
of the IEEE for significant contributions to the
design and test of low-power circuits and systems.
He holds a Royal Society Wolfson Research Merit
Award (2014-2019). He has published over 300
technical papers, authored or co-authored 5 books
and has graduated 31 PhD students.

Lajos Hanzo (http://www-
mobile.ecs.soton.ac.uk) FREng, FIEEE, FIET,
Fellow of EURASIP, DSc received his degree in
electronics in 1976 and his doctorate in 1983. In
2009 he was awarded an honorary doctorate by
the Technical University of Budapest and in 2015
by the University of Edinburgh. In 2016 he was
admitted to the Hungarian Academy of Science.
During his 40-year career in telecommunications
he has held various research and academic posts
in Hungary, Germany and the UK. Since 1986 he

has been with the School of Electronics and Computer Science, University
of Southampton, UK, where he holds the chair in telecommunications. He
has successfully supervised about 100 PhD students, co-authored 20 John
Wiley/IEEE Press books on mobile radio communications totalling in
excess of 10 000 pages, published 1500+ research entries at IEEE Xplore,
acted both as TPC and General Chair of IEEE conferences, presented
keynote lectures and has been awarded a number of distinctions. Currently
he is directing a 60-strong academic research team, working on a range
of research projects in the field of wireless multimedia communications
sponsored by industry, the Engineering and Physical Sciences Research
Council (EPSRC) UK, the European Research Council’s Advanced Fellow
Grant and the Royal Society’s Wolfson Research Merit Award. He is an
enthusiastic supporter of industrial and academic liaison and he offers
a range of industrial courses. He is also a Governor of the IEEE VTS.
During 2008 - 2012 he was the Editor-in-Chief of the IEEE Press and
a Chaired Professor also at Tsinghua University, Beijing. His research
is funded by the European Research Council’s Senior Research Fellow
Grant. For further information on research in progress and associated
publications please refer to http://www-mobile.ecs.soton.ac.uk Lajos has
24 000 citations.

