
Extending Python for High-
Performance 

Data-Parallel Programming

Siu Kwan Lam
March 24, 2014



Python for Data Analytics

Why Python?
● High-level scripting language

○ Dynamic-typed, Garbage Collected
● Rapid development
● Rich libraries

○ Array: NumPy, Blaze
○ Science: SciPy, Scikit-Learn
○ Visualization: Matplotlib, Boken

● Great glue language



But...

● Hard to parallelize
○ Global Interpreter Lock

● Slow execution



Our Solution: Numba

● Open-source JIT compiler for CPython
● Numerical loop to fast native code
● Work seamlessly with NumPy arrays



Numba Compilation Pipeline
Python Bytecode

LLVM

Native Code

High-Level Analysis & 
Transformation

Local Type Inference



Python Bytecode

LLVM

Native Code

High-Level Analysis & 
Transformation

Local Type Inference

Numba Compilation Pipeline

Can generate code that 
does not use the 
Python Runtime.
Thus, eliminating the 
GIL



Numba Example: Sum 2D Array

Specialize 
parameter type for 
var `a`



NumbaPro

● Enables parallel programming in Python
● Support various entry points:

○ Low-level CUDA Python
■ Just released an open-source version to Numba

○ High-level array oriented interface
○ CUDA library bindings

● Also support multicore CPU
○ And more hardware architectures in the future.



NumbaPro “CUDA Python”

Square matrix 
multiplication



Determine 
thread Identity

NumbaPro “CUDA Python”



Map threads to 
matrix coordinate

NumbaPro “CUDA Python”



NumbaPro “CUDA Python”

Thread inside 
matrix?



NumbaPro “CUDA Python”

Compute one 
element.

Launch NxN 
threads for NxN 
matrix



High-Level APIs



High-Level APIs

@vectorize turns a scalar function 
to an elementwise array functions



High-Level APIs

Support multiple targets:
cpu, parallel, gpu



High-Level APIs

CUDA library support
This uses cuFFT

Also, 
supporting:
cuBlas,
cuRand,
cuSparse



We can do better!

● Still need CUDA specific knowledge
● Needs higher-level abstraction



DARPA GPU Project (STTR-D13B-004)

● Started about a month ago
● Develop high-level easy to use programming 

language for GPUs
● Partner with Dr. Alex Dimakis at UT Austin



Project Goals

● Provide new language features as an 
extension to NumbaPro

● Portable parallel algorithms
● Especially for sparse problems:

○ graphs, sparse matrices



What we did...

● Try to implement a Sparse PCA in 
NumbaPro

● Identify 
○ common patterns
○ shortcomings
○ missing features



Sparse PCA (CPU)



Sparse PCA (CPU)

Embarrassingly 
Parallel



Sparse PCA (GPU)

● Longer code
● Complicated
● Not scalable
● Uses

○ cuRAND
○ Batch matrix mult
○ K-selection
○ Scatter 
○ Slicing
○ Custom elementwise 

functions



Sparse PCA Benchmark (GTX 780Ti)



Realizations...

We need:
● Need more generic high-level array functions

○ map, reduce, zipwith
● Need builtin library functions

○ k-select, sort, scatter, random



Can Learn from...

● Nvidia Nova
● Halide
● Haskell Accelerate
● C++ Thrust



Can Learn from...

● Nvidia Nova
● Halide
● Haskell Accelerate
● C++ Thrust

They all have a 
functional/dataflow 

style



Potentially...

● Build dataflow graph at runtime
○ at runtime, the imperative control-flow is flattened
○ map(f, map(g, array))

● Optimize by fusion
○ Function fusion

■ map(f, map(g, array)) == map(f.g, array)
○ Storage fusion

■ remove & reuse temporaries



Parallel Primitives

● map
● zipwith
● reduce
● scan
● scatter
● sort
● k-select
● random
● (enough?)



Parallel Primitives

● map
● zipwith
● reduce
● scan
● scatter
● sort
● k-select
● random
● (enough?)

And, library calls 
as extensions?



Manual Tuning?

● Leave room for manual tuning
○ Require expressing optimization and scheduling.

● Can we do compiler optimization in a 
reasonable time?

● Is tuning by expert still better?
● f.g == fuse(f, g)



Q & A



Thank You

NumbaPro is Part of 
Anaconda Accelerate.

Visit continuum.io



Backup Slides



@vectorize

List of function type signatures



Code generation target:
“cpu”, “parallel”, “gpu”

@vectorize



A scalar function

Args: a, x, y are float32
Returns a float32

@vectorize



CUDA JIT Linking

● Use CUDA-C code inside NumbaPro
● Compile CUDA-C code into 

relocatable device code
● NumbaPro use CUDA JIT Linker to 

combine its generated code with a 
precompiled library



Use of JIT Linking

● Connect to missing features
○ NumbaPro is still young

● Connect to CUDA-C only features
● Reusing existing CUDA-C code



NumbaPro Python code



NumbaPro Python code

Declare external device function in Python



NumbaPro Python code

Precompiled object file



NumbaPro Python code

Add library dependencies to 
the CUDA kernel



NumbaPro Python code

Use external function



CUDA-C code



CUDA-C code

NumbaPro expects return value to 
be passed as the first argument



CUDA-C code

Actual arguments follows



CUDA-C code

Return value indicates status.

Return 0 for success.

Other return codes are possible to 
indicate builtin errors.


