
FAST: Fast Architecture Sensitive Tree
Search on Modern CPUs and GPUs

N. Satish, C. Kim, J. Chhugani, A. Nguyen, V. Lee, D. Kim, P. Dubey

SIGMOD 2010

Presented by: Andy Hwang

Motivation

• Index trees are not optimized for architecture

• Only one node is accessed per tree level,
ineffective cache line utilization
• Prefetch cannot be used (depends on comparison of

search key to parent)

• Nodes in different pages, causing TLB misses

• Previous work optimized for page, cache, SIMD
separately, not together

• Compression can be used to save memory
bandwidth

2

Motivation: Index Tree Layout
3

Bad for traversal

Motivation

Hierarchical Blocking

CPU/GPU Implementation

Compression

Throughput/Response Time

Summary/Discussion

4

Hierarchical Blocking
5

Optimize for accesses (SIMD/cache/memory)

Hierarchical Blocking
6

Motivation

Hierarchical Blocking

CPU/GPU Implementation

Compression

Throughput/Response Time

Summary/Discussion

7

Tree Construction

• Assuming 4-byte keys (32-bits)

• Block size depends on SIMD instruction width,
cache line size, and page size

• Use one SIMD instruction to calculate multiple
indices

• Parallelize output amongst CPU cores / GPU
shared multiprocessors

8

Tree Construction: CPU

• 128-bit SIMD = max 4 nodes at once

• SIMD block = 2 tree levels (3 nodes)

• 64-byte cache line = max 16 nodes

• Cache line block = 4 levels (15 nodes)

• 2MB page size

• Page block = 19 levels

• 4KB page = 10 levels

9

Tree Construction: GPU

• 32 data elements (thread warp)

• Various SIMD block sizes possible (up to 32)

• Set depth to 4 to make use of instruction
granularity at half-warp

• No cache exposed – cache line block size set
equal to SIMD block size

10

Tree Traversal: CPU
11

Tree Traversal: GPU
12

Simultaneous Queries

• Issue queries in parallel on the hardware

• Software pipelining used to hide cache/TLB
miss or GPU memory latency

• CPU: 8 concurrent queries per thread, 64 total

• GPU: 2 concurrent queries per thread warp,
960 total

13

Optimization Speedup
14

CPU vs GPU Search Throughput
15

Tree Traversal: MICA

• Intel Many-Core Architecture Platform

• Intel GPGPU effort

• 32KB L1, 256KB L2 (partitioned)

• 4 threads/core

• Traversal code similar to CPU

• 16-wide SIMD

• SIMD block depth = 4 (15 nodes at once)

16

Tree Traversal: MICA

Throughput (million queries / sec)

Small Tree (64K keys) Large Tree (16M keys)

CPU 280 60

GPU 150 100

MICA 667 183

17

Benefits of both CPU and GPU!

Motivation

Hierarchical Blocking

CPU/GPU Implementation

Compression

Throughput/Response Time

Summary/Discussion

18

Compression

• Key sizes are different in practice

• Impact cache line and page usage

• Non-Contiguous Common Prefix

• Hashing keys based on their difference (partial
keys)

• 4-bit blocks as unit of compression

• SIMD instruction to find similarity and compress

19

Compression

• First page partial key size is larger (128 bits) to
reduce false positives

• Subsequent pages have partial key size 32

• Construction overhead increased

• +75% for variable size keys, +30% integer keys

• During traversal, the query key is compressed

20

Compression
21

Compression: Alphabet Size
22

Compression: Throughput
23

Query Batching/Buffering
24

Summary

• Hierarchical blocking to optimize search tree for
page, cache, SIMD instructions
• Architectural-aware block depths

• CPU/GPU/MICA implementations
• Fast construction, search, and parallel queries for

varying tree sizes

• Hide memory latency wherever possible
• NCCP compression for integer and variable length

keys
• Throughput/Response time for different query

batching schemes

25

Discussion

• Focus on throughput

• Assumes large number of queries

• Not much info on latency

• Updates

• Full reconstruction? Flushed from cache?

• Synthetic workloads

• Deployment

26

