
FAST: Fast Architecture Sensitive Tree 
Search on Modern CPUs and GPUs 

N. Satish, C. Kim, J. Chhugani, A. Nguyen, V. Lee, D. Kim, P. Dubey 

SIGMOD 2010 

 

Presented by: Andy Hwang 



Motivation 

• Index trees are not optimized for architecture 

• Only one node is accessed per tree level, 
ineffective cache line utilization 
• Prefetch cannot be used (depends on comparison of 

search key to parent) 

• Nodes in different pages, causing TLB misses  

• Previous work optimized for page, cache, SIMD 
separately, not together 

• Compression can be used to save memory 
bandwidth 
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Motivation: Index Tree Layout 
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Bad for traversal 



Motivation 

Hierarchical Blocking 

CPU/GPU Implementation 

Compression 

Throughput/Response Time 

Summary/Discussion 

4 



Hierarchical Blocking 
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Optimize for accesses (SIMD/cache/memory) 



Hierarchical Blocking 
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Tree Construction 

• Assuming 4-byte keys (32-bits) 

• Block size depends on SIMD instruction width, 
cache line size, and page size 

• Use one SIMD instruction to calculate multiple 
indices 

• Parallelize output amongst CPU cores / GPU 
shared multiprocessors 
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Tree Construction: CPU 

• 128-bit SIMD = max 4 nodes at once 

• SIMD block = 2 tree levels (3 nodes) 

• 64-byte cache line = max 16 nodes 

• Cache line block = 4 levels (15 nodes) 

• 2MB page size 

• Page block = 19 levels 

• 4KB page = 10 levels 
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Tree Construction: GPU 

• 32 data elements (thread warp) 

• Various SIMD block sizes possible (up to 32) 

• Set depth to 4 to make use of instruction 
granularity at half-warp 

• No cache exposed – cache line block size set 
equal to SIMD block size  
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Tree Traversal: CPU 
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Tree Traversal: GPU 
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Simultaneous Queries 

• Issue queries in parallel on the hardware 

• Software pipelining used to hide cache/TLB 
miss or GPU memory latency 

• CPU: 8 concurrent queries per thread, 64 total 

• GPU: 2 concurrent queries per thread warp, 
960 total 
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Optimization Speedup 
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CPU vs GPU Search Throughput 
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Tree Traversal: MICA 

• Intel Many-Core Architecture Platform 

• Intel GPGPU effort 

• 32KB L1, 256KB L2 (partitioned) 

• 4 threads/core 

• Traversal code similar to CPU 

• 16-wide SIMD 

• SIMD block depth = 4 (15 nodes at once) 
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Tree Traversal: MICA 

Throughput (million queries / sec) 

Small Tree (64K keys) Large Tree (16M keys) 

CPU 280 60 

GPU 150 100 

MICA 667 183 
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Benefits of both CPU and GPU! 
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Compression 

• Key sizes are different in practice 

• Impact cache line and page usage 

• Non-Contiguous Common Prefix 

• Hashing keys based on their difference (partial 
keys) 

• 4-bit blocks as unit of compression 

• SIMD instruction to find similarity and compress 
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Compression 

• First page partial key size is larger (128 bits) to 
reduce false positives 

• Subsequent pages have partial key size 32 

• Construction overhead increased 

• +75% for variable size keys, +30% integer keys 

• During traversal, the query key is compressed 
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Compression 
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Compression: Alphabet Size 
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Compression: Throughput 
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Query Batching/Buffering 
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Summary 

• Hierarchical blocking to optimize search tree for 
page, cache, SIMD instructions 
• Architectural-aware block depths 

• CPU/GPU/MICA implementations 
• Fast construction, search, and parallel queries for 

varying tree sizes 

• Hide memory latency wherever possible 
• NCCP compression for integer and variable length 

keys 
• Throughput/Response time for different query 

batching schemes  
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Discussion 

• Focus on throughput 

• Assumes large number of queries 

• Not much info on latency 

• Updates 

• Full reconstruction? Flushed from cache? 

• Synthetic workloads 

• Deployment 
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