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Abstract. Hash table is a fundamental data structure that provides
efficient data store and access. It is a key component in AI applications
which rely on building a model of the environment using observations
and performing lookups on the model for newer observations. In this
work, we develop FASTHash, a “truly” high throughput parallel hash
table implementation using FPGA on-chip SRAM. Contrary to state-
of-the-art hash table implementations on CPU, GPU, and FPGA, the
parallelism in our design is data independent, allowing us to support p
parallel queries (p > 1) per clock cycle via p processing engines (PEs) in
the worst case. Our novel data organization and query flow techniques
allow full utilization of abundant low latency on-chip SRAM and enable
conflict free concurrent insertions. Our hash table ensures relaxed even-
tual consistency - inserts from a PE are visible to all PEs with some
latency. We provide theoretical worst case bound on the number of erro-
neous queries (true negative search, duplicate inserts) due to relaxed
eventual consistency. We customize our design to implement both static
and dynamic hash tables on state-of-the-art FPGA devices. Our imple-
mentations are scalable to 16 PEs and support throughput as high as
5360 million operations per second with PEs running at 335 MHz for
static hashing and 4480 million operations per second with PEs run-
ning at 280 MHz for dynamic hashing. They outperform state-of-the-art
implementations by 5.7x and 8.7x respectively.

Keywords: Hash table - Parallel processing - FPGA

1 Introduction

Artificial Intelligence (AI) has played a central role in pushing the frontiers of
technology. There has been a significant progress in several domains due to Al,
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including computer vision [3], robotics [21], machine learning on graphs [32],
and games [8]. Conceptually, AT algorithms use observations to learn a model
for the task, which is then consulted (searched, looked-up) to reason about new
observations and update the model. To enable fast look-up during training as
well as inference, hash table has been widely adopted in the implementation of
many Al algorithms [10,13,27,28,32]. For example, Graph Convolution Neural
Network (GCN) uses hash tables in the graph sampling operation to determine
whether the currently sampled vertex or edge exists in the sampled set or not [32].
Similarly, in Approximate Nearest Neighbor (ANN), hashing is used to determine
the neighbor (point) closest to the current observation [28]. Hashing plays a
central role in text-mining for creating and maintaining bag-of-words models [4].
Therefore, a parallel high throughput hash table is imperative to accelerate a
wide range of Al applications.

Several works have developed high-throughput hash table implementations
by “parallelizing” the hash table. The “parallelization” in these works implies
exploiting certain features of the hash table, such as the availability of multiple
partitions [22], to increase the number of parallel queries that can be supported.
However, this does not imply true parallelism as the parallelism is highly data
dependent and the worst case performance - for example, when all queries belong
to the same partition - is similar to a serial implementation. In contrast, our focus
in this work is to develop a parallel implementation of hash table that supports
p parallel queries (p > 1) in each clock cycle even in the worst case.

Field Programmable Gate Arrays (FPGA) have proved successful in appli-
cations which require energy-efficient acceleration of complex workloads such
as Al due to their high energy-efficiency and the availability of fine grained
parallelism [18]. Their dense logic elements (up to 5.5 million), abundant user-
controllable on-chip SRAM resources (up to 500 MB, up to 38 TB/s bandwidth),
and interfaces with various external memory technologies such as High Band-
width Memory (HBM) make them a logical choice for accelerating computation-
ally intensive time critical AT applications in an energy-efficient manner [14,30].
Cloud platforms are increasingly being augmented with FPGAs to accelerate
computation with offering such as Amazon EC2 F1, Microsoft Catapult, Alibaba
Faas, etc. The versatility of FPGAs is evident from their widespread deploy-
ment in high performance cloud and data-centre platforms [30] as well as in
low-powered edge applications [12].

In this work, we develop FASTHash: FPGA-based High Throughput Parallel
Hash Table. FASTHash supports p queries (p > 1) in each clock cycle, where p
is the number of parallel Processing Engines (PEs). To enable such an imple-
mentation, we exploit the fact that Al applications are approximate in nature
and can tolerate small errors in observations or computations. Thus, we allow
the semantic of relaxed eventual consistency i.e. a query inserted by a PE is
visible to all the other PEs with a maximum delay of O(p) clock cycles and
provide worst case bounds on the erroneous queries (true negative search and
duplicate insertion). We implement our hash table entirely using FPGA on-chip
SRAM. On-chip SRAM has a very low access latency (1 cycle) compared to
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external memory (range of 10s of cycles). Extremely high bandwidth of up to 38
TB/s is supported by state-of-the-art FPGA devices [30]. Moreover, the abun-
dant on-chip SRAM allows implementation of hash table with entries ranging
from several hundred thousands to more than a million.

The key contributions of our paper are:

— To the best of our knowledge, we develop the first “truly” parallel implemen-
tation of a hash table on FPGA which supports p operations (p > 1) in each
clock cycle, thus achieving a throughput of p per clock cycle. The parallel
queries in each clock cycle can be any combination of search and insert.

— To fully utilize the abundant low latency on-chip SRAM, we develop novel
data organization and query flow techniques. Our techniques allow each of
the p PEs to perform hash table search and insert without memory conflicts.

— Our hash table uses relaxed eventual consistency model, i.e. an element
inserted from a PE is visible to all the other PEs with some latency. We pro-
vide theoretical worst case bounds on the number of queries that are incor-
rectly served (true negative search or duplicate inserts) due to the relaxed
eventual consistency semantics of our hash table.

— Our architecture is flexible and device agnostic. We implement both static
and dynamic hash tables on state-of-the-art Xilinx and Intel FPGAs.

— Our hash table designs are scalable to 16 PEs with the static hash table
reaching a throughput of 5360 million operations per second at 335 MHz, and
the dynamic hash table achieving a throughput of 4480 million operations
per second at 280 MHz. They outperform state-of-the-art implementations
by 5.7x and 8.7x respectively.

2 Related Work

2.1 Hash Table Implementation on CPU and GPU

Many parallel hashing approaches have been proposed on CPU and GPU plat-
forms. On CPU, significant effort has focused on designing concurrent and lock-
free hash table through shared memory and message passing [19,20,24]. With the
emergence of many-core architectures, several researches have investigated hash
table implementations on GPU [1,9,16]. Essentially, these works divide a hash
table into partitions, either coarse or fine grained, and extract parallelism by pro-
cessing queries to each partition concurrently. In the event that all the queries go
to the same partition, they are intrinsically serialized. Recent work by Shankar et
al. [25] investigated accelerating Cuckoo hash table using modern CPUs’ SIMD
instructions, such as Intel AVX2 and AVX-512 extensions. However, their study
is limited to lookups, and the complexity incurred by simultaneous lookups and
insertions is not considered.

2.2 Hash Table Implementation on FPGA

A number of FPGA-based high performance hash table implementations have
been proposed in the community. Among these works, Bando et al. [2] proposed
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a hash table based IP lookup technique. Their architecture achieves a lookup
throughput of 250 Mops/s. Istvn et al. [15] described a pipelined hash table
on FPGA for MemcacheD applications that sustain 10 Gbps throughput. To
reduce unnecessary hash table accesses, Cho et al. developed an efficient hash
table implementation with bloom filter [6]. Tong et al. [26] developed a data for-
warding unit to overcome the data hazards during dynamic hash table updates.
Their proposed architecture achieves up to 85 Gbps throughput. Cuckoo hashing
implementation of [29] is based on an efficient memory layout. They incorporate
a decoupled key-value storage that enables parallel computation of hash values
with low overhead. However, all the above works focus on improving performance
for a single processing pipeline, which is not sufficient to fully exploit the high
bandwidth on-chip SRAM in state-of-the-art FPGAs.

Pontarelli et al. presented an FPGA-based Cuckoo hash table with multiple
parallel pipelines [22]. To increase throughput, each pipeline has a different entry
point, each of which corresponds to a different hash function. Therefore, the
parallelism of their design is limited by the number of hashing functions in a
given Cuckoo hash table. Furthermore, due to access conflicts to the same hash
function, the achieved throughput with 4 parallel pipelines is only 1.6 queries
per clock cycle.

2.3 Novelty of Our Work

State-of-the-art works improve the throughput of hash table by one of the fol-
lowing three techniques: (i) pipelining the implementation to increase the clock
frequency, (ii) parallel atomic access to a shared hash table, and (iii) partitioning
of hash table to enable parallel access. Technique (i) while improving throughput
is clearly not a parallel implementation. Techniques (ii) and (iii) lead to high
parallelism if the parallel queries do not need atomic access to the same portion
of the hash table or if they map to different partition of the hash table. However,
this is highly data dependent and in the worst case all the parallel queries will be
serialized leading to reduced throughput similar to a sequential implementation.
In contrast, our implementation processes p parallel queries in each clock
cycle, with p being the degree of parallelism. Our implementation is data inde-
pendent and supports any combination of parallel searches and inserts.

3 Hash Table Overview

3.1 Definition of Hash Table

Hash table is a fast and compact data structure that stores a set S of keys from
a much larger universe U. Usually the size of S is much smaller than the size of
U. Hash function is used to perform hash table lookup operations. Assume the
size of hash table is M, which is usually in the same order as |S|, a hash function
hyh:U—{0,....,M — 1}, maps a key k in U to an index of M.
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The hash table operations supported by our design are:

— SEARCH (k): Return {k, v} € S or @. Retrieve the value associated with
the input key if the key exists in the hash table, or empty if not found.

— INSERT (k, v): S« SU{k,v}. Insert a new key-value pair to the hash table
if the key does not exist in the hash table at the time of insertion.

There are two forms of hash table, Static Hash table and Dynamic Hash
table. We briefly explain the concept below.

Static Hash Table. In a static hash table, S is a fixed priori, and is immutable
during runtime. Therefore, the only operation allowed is search. Perfect hashing
is one of the methods to construct static hash tables without collision [7]. One
method to construct such hash table using perfect hashing is by employing two
levels of hash functions. The first level hash table, in this method, is created
using a hash function from the universal hash function family H [5]. For each
bucket that has more than 1 item in the first level hash table, i.e. producing
some collisions, it creates a second level hash table with O(n?) entries, where n;
is the number of items in bucket ¢ (n; > 1). The second level hash function is
also randomly selected from H. A hashing constructed using this method does
not have collisions.

Parallel Hash Table

P

-
—
°
p e
°
-

—
—
[ ]

[ ]

[ ]
—

Fig. 1. A hash table that is capable of processing p operations in parallel.

Dynamic Hash Table. As its name suggests, dynamic hashing allows search oper-
ations while data is incrementally added to a hash table. As a result, dynamic
hash table is a mutable object. When a new key is inserted but its respective
entry is already occupied, collision is said to occur. On FPGA, collision is usually
handled through multiple level of hash functions or linear chaining [15,17,29].

3.2 Parallel Hash Table

In the context of parallel hash table, instead of searching or inserting one key
at a time, each query can contain p (p > 1) independent operations. The p
operations can be in any combination of search and insert. Figure 1 shows the
high level concept of parallel hash table. In this case, hash table can complete at
most p operations per clock cycle. Designing a parallel architecture on FPGA to
efficiently access hash table is a challenging research problem. The primary issue
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is resource contentions such as on-chip memory conflicts between concurrent
hash table operations. Our proposed architecture guarantees p operations per
clock cycle.

4 FASTHash: An FPGA-Based Parallel Hash Table

In this section, we first introduce the novel data organization and query flow
in our proposed architecture, to allow concurrent accesses with mixed operation
types, and efficiently scale to p parallel processing engines on FPGA. Then we
show the architecture details of our design. We also present the extensions to
support static hash tables.

4.1 Hash Table Data Organization

Our design goal is to support p hash table accesses per clock cycle with p pro-
cessing engines. To achieve the desired target, we require a data organization
that can perform p parallel operations without stalling.

==l Search / Insert

> Insert From PE3 From PE3 From PE3
PEO ¥ ¥ ¥
Hash Table Hash Table Hash Table, Hash Table
Block 0 (M) Block 1 Block 2 Block 3
PE1
Hash Table Hash Table Hash Table, Hash Table
Block 0 Block 1 (M) Block 2 Block 3
PE2
Hash Table Hash Table Hash Table, Hash Table
Block 0 Block 1 Block 2 (M) Block 3
PE3
Hash Table Hash Table Hash Table, Hash Table
Block 0 Block 1 Block 2 Block 3 (M)
» n n
v v v
To PEO To PEO To PEO

Fig. 2. Data organization and high level architecture of a 4 PEs design. “(M)” indicates
the Master Hash Table Block from which a PE initiates insert operation.

The proposed hash table architecture is implemented using on-chip SRAM
(BRAM, URAM, or M20K), which is an abundant resource in modern FPGAs
[14,30]. Since such memory block is dual-ported, and supports one read and one
write per clock cycle, implementing a hash table that guarantees p operations
per clock cycle is challenging.

In our proposed design, we assign a copy of the hash table content to each
PE. Inside each PE, the hash table is further split into multiple Hash Table
Blocks to enable concurrent hash table insert operations. Each Hash Table Block
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is mapped to one or more BRAM, URAM, or M20K blocks. To ensure data
consistency across PEs, we design an efficient and conflict-free Inter-PE Dataflow
that connects each Hash Table Block across PEs. With the Inter-PE Dataflow,
an insert that is made by one PE is visible to all the other PEs with up to O(p)
clock cycle delays.

Figure2 shows an example of our proposed hash table data organization
with 4 PEs. Each row represents a PE and the Inter-PE Dataflow connects
Hash Table Blocks that are in the same column. With this data organization,
hash table operations can be performed independently by each processing engine
without any memory conflict.

Query Flow. Our hash table architecture supports search and insert operations
defined in Sect. 3.2. Before we discuss the query flow of the supported operations,
we need to introduce an auxiliary structure called Master Hash Table Block.

fo—— —— —— ]

(b) PEO Insert (c) PE2 Insert

Fig. 3. Query flow in a 4 PEs design.

Master Hash Table Block (MHTB): As we mentioned earlier, we store our hash
table in FPGA on-chip SRAM. The split data organization increases the par-
allelism of our hash table, but it inevitably poses challenges when performing
insert to the hash table. This is because we need to keep all the Hash Table Block
synchronized in order to return consistent queries. Essentially, an all-to-all com-
munication between PEs would be required during an insert event. To reduce
the wiring overhead, we assign block i to PE ¢ — if PE i receives an insert request
for a key that does not already exist, it will be inserted by PE ¢ in Hash Table
Block ¢, and subsequently to the whole column ¢ to enable concurrent reads. We
refer this Hash Table Block as Master Hash Table Block (MHTB), as shown in
Fig.2. This design guarantees that at any given clock cycle there can only be
one insert for any Hash Table Block.

The query flow of our hash table, i.e. mapping of search and insert operations
to our parallel architecture, is described below:

Search: Searching for a specific key in our hash table is similar to traditional hash
table. Once a PE receives a search query, it goes through a Lookup Pipeline that
sequentially looks for the key in each Hash Table Block inside the PE. If input
key is found, search query flow returns the key-value pair back to application. If
no matching key is found, we return empty.
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Insert: To insert a key-value pair into our hash table, the operation needs to
enter Lookup Pipeline first. This ensures the uniqueness of keys in our hash
table. If the input key is not found, PE sends the request to Insert Pipeline in
its MHTB. Insert Pipeline connects the MHTB in one PE to non-Master Hash
Table Blocks in the other PEs. They receive the same to-be-inserted key-value
pair as data flows through the Insert Pipeline. Collision is handled by reserving
multiple slots for each hash table entry. Figure3 shows an example of search
and insert operations’ data flow in a 4 PEs design. As depicted in Fig. 3(b) and
Fig.3(c), upon a simultaneous insert from PEO and PE2, insert operations are
performed by writing to different Hash Table Blocks (columns), thus they never
introduce memory conflicts.

Remarks on Supporting Other Hash Table Operations. We focus on a high
throughput implementation of hash table suitable for AI applications. As search
and insert are the two key operations in such applications, our design is optimized
for the same. However, our hash table can be extended to support update (new
value for an already inserted key) and delete (remove a key-value pair) operations
with little modification by re-routing such operations to the PE which receives
the original insert for the corresponding input key. In this work, we make no
extra effort to support this feature.

4.2 Hash Table Architecture

Design Overview. As shown in Fig. 2, our proposed design consists of p pro-
cessing engines (PEs). Each PE can receive input queries independently and
with different operation types. Search operations can be completed within each
PE itself. For insert operations, each PE needs to propagate changes to the hash
table of the other PEs to ensure data consistency. This is achieved by the Inter-
PE Dataflow. Enforced by our architecture model, inserts initiated by one PE
never intervene with inserts by other PEs. Therefore, we can guarantee p parallel
accesses per clock cycle in our design.

Processing Engine Design. Figure 4 shows the architecture of our PE design.
It contains three key components: Hashing Unit, Data Processing Unit, and
Collision Handling Unit. When an input query arrives, it is sent to the Hashing
Unit to compute the entry index for each hash table block to lookup. Data
Processing Unit receives the output from Hashing Unit. It performs hash table
lookup by reading each hash table block sequentially, keeps track of metadata
information, and initiates hash table insert if necessary. Both Hashing Unit and
Data Processing Unit are pipelined in order to achieve high operating frequency
on FPGA.

Hashing Unit. Hash functions from the Class Hj [5] has been demonstrated to
be effective on distributing keys randomly among hash table entries. The hash
function is defined as follows [23]:
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Definition 1. Let i denote the number of bits for input key, and j denote
the number of bits for hash index. Furthermore, let @ denote a i x j Boolean
matrix. For a given ¢ € @, let ¢(m) be the bit string of the mth row of @,
and let z(m) denote the mth bit of input key. The hash function is: h(z) =
(z(1)- (1)) & (x(2) - ¢(2)) & ... & (2(2) - q(7)).

Insert Insert
From Prev. PE To Next PE

PE 2
Hashing Unit | | Data Processing Unit

Hash Table,

Input Hash Block 0
—

Hash Table, ‘ Hash Table,

Block 1 E Block 2 (M),

ML

Hash Table,
Block 3

Result Output
fon k>

v

Calculation [

Unit

| |

I

[0

Color Legend: Lookup Pipeline  MHTB Insert Pipeline  HTB Insert Pipeline

Fig. 4. Architecture of PE 2 in a 4 PEs design. Master Hash Table Block (MHTB) ID
is 2 in this case.

We map the hash calculation into a 2-stage pipeline. The first stage simulta-
neously calculates the AND results for each bit of the input key. The second stage
calculates the final hash value by XORing the results of the first stage. Therefore,
this hash function calculation logic can be achieved with O(1) latency.

Data Processing Unit. The Data Processing Unit (DPU) handles operations
in the order they arrive. As seen in Fig. 4, every operation goes through the
Lookup Pipeline first; depending on the operation type and lookup result, only
insert operations are required to go through Insert Pipeline. The entire Lookup
Pipeline is divided into p mega-stages, as illustrated in Fig.5(a). Each mega-
stage ¢ performs a read operation from hash table block i. Mega-stage can take

Lookup Pipeline Inter-PE Dataflow
Mega-Stage Mega-Stage Mega-Stage Insert Pipeline Insert Pipeline Insert Pipeline
— 0 = 1 000 p > Local PE Remote PE Remote PE
Meta- Meta- Meta-
| Data Data Data
" Pipeline Pipeline eee Pipeline
l Register ‘ Register ‘ Register
Meta-Data T MHTB HTB HTB
Pipeline = | |
Register
Hash Table
Block 1

(a) Lookup Pipeline (b) Inter-PE Dataflow

Fig. 5. Implementation details of Lookup Pipeline and Inter-PE Dataflow.
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multiple clock cycles and is pipelined as well. DPU has shift-registers for meta-
data information that is needed in a later stage or at the end of the Lookup
Pipeline. When a key in the hash table is found equal to the input key and
the entry is valid, a matching flag is captured and stored into the metadata
shift-register.

Result Resolution Unit collects the metadata information and result from
the last mega-stage of Lookup Pipeline, and routes operations to their next hop.
For search operation, it generates the response based on whether a key exists or
not. When insert is performed, this unit also inspects the matching flag. If hash
table insert condition is satisfied, i.e. matching flag indicates the input key is
unique, it issues the operation to the Insert Pipeline with metadata information
such as hash index, slot ID, etc. Otherwise, it generates a response to application
indicating failure.

Each Hash Table Block has an Insert Pipeline. It is triggered when it receives
an operation along with the corresponding metadata information from Result
Resolution Unit or from another PE. It writes the new key-value pair and valid
information directly to its Hash Table Block. The last stage of Insert Pipeline
sends the update data to the next PE according to the rules of Inter-PE Dataflow,
which we will describe below.

Collision Handling Unit. To handle collision, we design our hash table entry
to have multiple slots. Each slot can be allocated to store one key-value pair.
One valid field is associated with each slot to indicate if this slot has valid data
or available for insertion. An operation is performed only when both the key
matches and validity of the slot.

In each PE, only DPU MHTB mega-stage has extra collision handling logic.
Other Hash Table Block mega-stage doesn’t need collision handling because colli-
sion, if any, has already been resolved by the PE which initiates insert operations.
Collision is handled by finding the first available slot to insert. We implement a
parallel collision handling unit, as shown in Fig. 6. That is: we examine all the
slots from a hash table entry at the same clock cycle. This collision handling
logic is an extension on top of the hit/miss detection logic that already presents
in each Hash Table Block. It has s parallel comparators to detect a matching key.

Slot 0 Slot s

Key | Hash Index
v 'V Key Value I kl Key Value
LN ]
] l ] |
I 1

Collisign ‘ ’

Handling

Logic ‘

‘ ‘ Value

(Match Flag, Slot ID)

Fig. 6. Parallel collision handling with s slots per Entry. “Hit/Miss/Collision Handling
Logic” outputs the outcome of lookup, and slot ID for MHTB based on operation type.
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The slot ID from this stage needs to be recorded into the shift-register because
this information is needed by the Insert Pipeline later on. Given our low collision
rate with Hs hash functions, we expect 2 to 4 slots per entry to be sufficient.
Therefore, it can produce slot ID for insert with O(1) latency.

Inter-PE Dataflow. Figure5(b) shows the Inter-PE communication flow. It
plays a vital role in our design to ensure conflict free hash table updates, as
discussed in Sect. 4.1. Inter-PE Dataflow connects Insert Pipelines that are in
the neighbor PEs into a “relay network”. Therefore, there are totally p parallel
Inter-PE Dataflow in our architecture. For each Inter-PE Dataflow, there is only
one Insert Pipeline which is capable of initiating hash table insert operations,
all the other I'nsert Pipelines in the same “relay network” simply processes the
insert and passes the data to the next one, until it reaches the end.

Relaxed Eventual Consistency. As described above, a new key is not seen
by all the PEs for up to ptg + po + to clock cycles, where g is read/write latency
of one Hash Table Block. This includes pt( clock cycles to search and then p+t,
clock cycles to insert to all the PEs (instead of pty due to pipelining). When
the same key is referenced during this time window, our design doesn’t make
extra effort to forward the data. However, our design guarantees that eventually
all accesses to that key will return the inserted value. We refer this behavior as
relaxed eventual consistency.

4.3 Customization for Static Hash Table

In order to support perfect hashing with two levels of hash tables, another Hash-
ing Unit is added to each PE for the second level hash table. This Hashing Unit
is placed between the Hashing Unit for the first level hash table and the Data
Processing Unit. Inside this unit, we use a lookup table to store the hashing func-
tions for each entry in the first level hash table. Collision Handling Unit and
Inter-PE Dataflow are removed because they are designed for insert operations.

5 Hash Table Guarantees and Applications Supported

5.1 Implications of Relaxed Eventual Consistency

An error due to relaxed eventual consistency may occur when the following hold
simultaneously: (i) an insert request for a key w is received for the first time;
and (ii) another request of search or insert for the same key w is received within
pto + p + to cycles. Since, every clock cycle serves p requests, we can bound this
error by finding number of such issues within p?ty + p? + pto requests in the
sequence of all requests. Note that it is possible to create large number of such
errors by having a new key inserted and searched in every clock cycle. However,
such cases are unusual in practical setting. Instead, we will assume that there is
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a sequence of requests to be served, where the requests (search/insert) occur in
small chunks of b keys. The keys in two distinct chunks may be dependent, but
all keys within one chunk follow

P(one more occurrence of u|u has occurred) < P(occurrence of u) (1)

Note that this condition is satisfied, if all the keys within one chunk are
independent. For instance, when sampling a sub-graph through edge sam-
pling, we pick edges and hash their vertices. In that case, out of the edges in
{(u1,v1), (u2,v2), ... (up,vp)}, {u1,us,...,up} are mutually independent, and
{v1,v2,...,vp} are mutually independent. Further, if b vertices coming from b/2
edges were considered in the same chunk, they also satisfy the condition as occur-
rence of a vertex can only reduce the probability of it being selected again (in
absence of self loops). Similarly, picking vertices through b independent random
walks ensures that vertices within the same chunk are mutually independent.
For simplicity, we will pick b = p*ty + p® + pto.

Theorem 1. Number of requests ne, that are incorrectly served due to relaxed
eventual consistency is given by P(nepr > 0) < m,

Proof. As noted above, we can bound the number of errors, by counting for each
key u, the number of times a request for u is made in the same chunk after the
first request for u.

Let C; ; be the event that u is requested for the first time in chunk 7 and
the first occurrence is at position j in the chunk. Let n be the total number
of requests. Let X7 be the number of times a request for u is made within the
same chunk just after its first request. Let X, ; be the indicator function for
occurrence of u at position k in a chunk. Then, by linearity of expectation:
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Markov Inequality leads to

2 2
P(nepr > 0) < b8 = IM . 6

5.2 Applications Supported

Hash table is a widely used data structure in various Al algorithms. We list two
examples of the AT algorithms and the required hash table characteristics below:

— Graph Convolutional Neural Network (GCN): GCN is the general-
ization of the CNNs to high-dimensional irregular domains represented as
Graphs [32]. To tractably handle large graphs, graph sampling is performed
to obtain smaller (10,000-50,000 vertices) representative graphs for training.
Hashing is used in graph sampling to keep track of the sampled vertices at
any given time. With relaxed eventual consistency, it is possible the that same
node is sampled multiple times. This will result in an incorrect counting of
total nodes sampled. However, this discrepancy is bounded by Theorem 1
and have no effect on subgraph-based graph embedding [33]. In other graph
embedding methods that sample neighboring nodes for a given node, such
as GraphSAGE [11], this scenario cannot arise because each neighbor is pre-
sented only once. Hash Table Characteristics [32]: Type: Dynamic. Key
size: 32 bits. Value size: 32 bits. Hash Table size: 10,000-50,000.

— Approximate Nearest Neighbor (ANN) Search: Given a query point,
the objective is to find the point in the dataset closest to the query. Hashing
based ANN has been widely adopted in large scale image retrieval [28]. A
hash table is created using each sample in the dataset before performing any
lookups. Since each point is unique, it is seen only once, relaxed eventual con-
sistency has no effect on the correctness. Hash Table Characteristics [28]:
Type: Static. Key size: 32-128 bits. Value size: 64 bit (assuming value is mem-
ory location of the image). Hash Table Size: 10,000-100,000 entries (equal to
image dataset size).

Hash tables are also used for linear function approximation in Reinforcement
Learning [10], association rule mining [13], neural network classification [27], etc.

6 Experiments and Results

6.1 Experimental Methodology

We implemented both the static and the dynamic hash tables on Xilinx Alveo
U250 FPGA [30] and Intel Stratix 10 MX2100 FPGA [14] using Verilog HDL.
The Xilinx device has 1,728,000 LUTs, 3,456,000 Flip-flops, and 327 MB of
URAM memory, while the Intel device has 702,720 ALMs, 2,810,880 ALM reg-
isters, and 134 MB of M20K memory. Post place-and-route simulations were
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performed using Xilinx Vivado Design Suite 2018.3 and Intel Quartus Prime
19.3 respectively. The static hash table, with two levels of hash functions, was
created offline using synthetic data.

We conducted detailed analysis on the performance, power, and scalability
of the proposed architecture. We evaluated the performance and resource uti-
lization by increasing number of PEs from 2 to 16, and varying the total number
of hash table entries. The key sizes we used in our experiments were 16, 32,
and 64 bits; and value sizes were 32 and 64 bits. These numbers cover the most
configurations in Al applications (Sect.5.2), and they also cover a sufficiently
wide range to test the scalability of our architecture. We generated uniformly
distributed access patterns, which include both the operation types and the hash
keys, as our stimulus. The metric for throughput analysis is million operations
per second (MOPS). The utilization of FPGA resources is reported in terms
of percent usage of LUTs (ALMs), flip-flops (registers), and on-chip SRAM.
To reduce the extra-long duration of the post-route simulation, we used the
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Fig. 7. Evaluation of static and dynamic hash tables on Xilinx U250 FPGA. Parame-
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vectorless power estimation methodology provided by the EDA tools [31]. Power
estimation includes leakage and dynamic power.

6.2 Results

Evaluation on Xilinx U250 FPGA. Figure7 shows the throughput and
operation latency of our hash tables from a configuration with 65K entries hash
table size. The throughput matches our design goal, which is p operations per
clock cycle sustained. The results clearly verify the scalability of our design
with the number of PEs. The throughput difference between static and dynamic
hashing is due to the max clock frequency. For static hash table scheme, we
are able to achieve 335 MHz clock frequency across all PE configurations. On
the other hand, parallel collision handling unit and the long wires for inter-PE
connections are in the critical paths of our dynamic hashing design. When the
number of PEs for dynamic hash table grows, the pressure on place and route also
increases. Therefore max clock rate as well as achieved throughput drop when
compared with static hashing implementations. Figure 7(b) shows the operation
latency increases with the number of PEs. Due to the extra clock cycles that
is spent on writing new key-value pair to all PEs, insert latency is higher than
search latency. With 16 PEs, search operation can be completed within 209 ns for
static hashing and 243 ns for dynamic hashing; insert operation requires 311 ns.

Figure 8 illustrates the throughput as we vary the sizes of hash table keys
and values on the dynamic hashing implementation. We find that key and value
length have little impact on throughput until the length grows to 64-bit. The
clock rate for 4 PEs and 8 PEs configurations drops to 285 MHz and 280 MHz
respectively when the size of key and value are both 64-bit. This again demon-
strates the scalability of our architecture.

Resource utilization of a dynamic hash table implementation is reported
in Table1. The hash table has 65K entries, 4 slots per entry, and 32-bit key
and value length. We make heavy use of URAM for on-chip hash table store.
Table 1(a) shows that URAM utilization increases linearly as we increase the
number of PEs. This is because each PE stores an entire copy of the hash table.
On the other hand, the utilization of other resources, as presented in Table 1(b),
is low. Table 1 also shows the estimated power consumption. Our architecture is
power efficient, with the power of 16 PEs configuration as low as 9.06 W.

Table 1. Resource utilization of 65K entries dynamic hash table on U250 FPGA.

# of PEs | LUT (%) | Flip-Flop (%) | URAM(%) | Power (W)

2 0.08 0.08 10 3.40
4 0.18 0.31 20 4.13
8 0.66 1.21 40 5.34

16 2.45 4.82 80 9.06
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Table 2. Max hash table sizes supported on Xilinx U250 FPGA.

2 PEs |4 PEs|8 PEs| 16 PEs
2 slots per entry | 1,310K | 655K | 327K | 131K
4 slots per entry | 655K | 327K | 163K | 65K

In Table 2, we show the max hash table size—mumber of entries that can be
implemented on Xilinx U250 FPGA, with 32-bit key and value sizes. Note that as
the URAM utilization is pushed to its limit, pipeline depth for each mega-stage
in the Lookup Pipeline has to be increased to meet optimal timing performance.
Our modular design and flexible configurability give user a wide range of design
options to choose from based on application requirements and available FPGA
resources.

Evaluation on Intel Stratix 10 FPGA. Our architecture is designed as
a general solution to work with various FPGA devices. To illustrate, we also
implemented our hash table on Intel Stratix 10 FPGA. We used 32-bit as key
and value size and used 4 slots per entry for dynamic hash table. Figure 9 shows
the performance of our architecture for a hash table with 50K entries. The result

Table 3. Resource utilization of dynamic hash table on Stratix 10 FPGA.

# of PEs | # of entries | ALM (%) | Register (%)  M20K (%)
2 150,000 2 1 59
4 100,000 3 2 78
8 50,000 5 4 81

16 16,000 10 11 52
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Fig. 9. Evaluation of static and dynamic hash table on Intel Stratix 10 FPGA. Param-
eters: key/value length: 32-bit. 4 slots/entry (dynamic hash table).
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indicates that the benefits of our architecture is independent of FPGA devices.
This design can process up to 1792 MOPS for static hash able and 1628 MOPS for
the dynamic version, with 8 PEs. Since the number of PEs affects the max clock
rate of the design, the achieved throughput doesn’t scale linearly. From Table 3
we can see that the usage of ALM and register is slow, while the utilization of
M20K depends on the hash table capacity and number of PEs.

6.3 Comparison with State-of-the-Art (SOTA) Designs

We compare the performance of our 16 PEs hash table implementation on Xilinx
U250 FPGA with state-of-the-art GPU and FPGA designs. Performance metric
is in term of throughput - MOPS. In [1], the design is implemented on NVIDIA
Tesla K40c GPU. The GPU has 2880 CUDA cores. It operates at 745 MHz,
and can be boosted up to 876 MHz. The authors report the performance for
bulk build (static) and incremental inserts (dynamic) separately. We used 32-
bit key/value size and random traffic pattern in the comparison, which is the
same as reported by [1,22]. Proposes a parallel Cuckoo hashing on FPGA. Hash
table is stored completely on-chip. The target FPGA device is Xilinx Virtexb
XC5VLX155T. Their implementation operates at 156.25 MHz. Table 4 shows the
comparison results. Comparing with SOTA GPU work, we observe speedup of
5.7x (static) and 8.7x (dynamic) respectively while running at less than half of
the clock rate. Comparing with SOTA FPGA work, our design achieves up to
17x raw speedup, or up to 9.3x speedup after normalizing the clock frequency.
Unlike these intrinsically sequential or less optimal parallel implementations,
FastHASH fully exploits SOTA FPGA’s high bandwidth on-chip SRAM using
its unique parallel architecture.

Table 4. Throughput comparison with state-of-the-art (SOTA)

SOTA GPU [1] | SOTA FPGA [22] Our Design
Static hashing 937 (peak) n/a 5360 (sustained)
(search MOPS)
Dynamic hashing | 512 (peak) 480 (sustained, 4480 (sustained)
(MOPS) normalized Fmax)

7 Conclusion

This paper presented FASTHash, a high throughput parallel hash table using
FPGA on-chip SRAM that supports p parallel queries per cycle from p PEs
(p > 1). The architecture is designed to accelerate various AI applications such
as graph convolution networks and approximate nearest neighbors. FASTHash
uses novel data organization and query flow techniques within and between pro-
cessing engines to ensure data consistency and conflict-free memory accesses. In
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addition, FASTHash is customized to support both static and dynamic hashing
on Xilinx and Intel FPGA devices. Both architectures demonstrate high scal-
ability with respect to the number of PEs, key/value lengths, and hash table
sizes. The static hash table achieves up to 5360 MOPS throughput and the
dynamic variant achieves up to 4480 MOPS, thus outperforming state-of-the-art
implementations by 5.7x and 8.7x respectively.
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