

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Oct 24, 2016

FPGA Acceleration by Dynamically-Loaded Hardware Libraries

Lomuscio, Andrea ; Nannarelli, Alberto; Re, Marco

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation (APA):
Lomuscio, A., Nannarelli, A., & Re, M. (2016). FPGA Acceleration by Dynamically-Loaded Hardware Libraries.
Kgs. Lyngby: Technical University of Denmark (DTU). (DTU Compute-Technical Report-2016; No. 3).

http://orbit.dtu.dk/en/publications/fpga-acceleration-by-dynamicallyloaded-hardware-libraries(9b55d27b-8123-4852-96b0-808be8961b60).html

FPGA Acceleration by

Dynamically-Loaded Hardware Libraries

DTU Compute Technical Report-2016-03

Andrea Lomuscio, Alberto Nannarelli(1) and Marco Re(2)

(1) DTU Compute, Technical University, Kongens Lyngby, Denmark
(2) Dept. Electronics, University of Rome “Tor Vergata”, Rome, Italy

Abstract

Hardware acceleration is a viable solution to obtain energy efficiency in data intensive
computation.

In this work, we present a hardware framework to dynamically load hardware libraries,
HLL, on reconfigurable platforms (FPGAs). Provided a library of application-specific
processors, we load on-the-fly the specific processor in the FPGA, and we transfer the
execution from the CPU to the FPGA-based accelerator.

Results show that significant speed-up and energy efficiency can be obtained by HLL
acceleration on system-on-chips where reconfigurable fabric is placed next to the CPUs.

1 Introduction

Excessive power dissipation is probably the main concern in setting up and operating large
computer installations, such as data centers or server rooms.

In these computer clusters, power is dissipated not only in the computation, but also in keeping
the machines cool: fans for heat removal and room air conditioning. Clearly, a large energy
consumption has an impact on the electricity cost and on the environment.

Accelerators are special processors designed to perform computation for a specific set of appli-
cations efficiently in time (the name derives from this) and energy consumption.

Most computers are today equipped with accelerators to off-load the main processors, CPUs
or cores in the following, to get more data processed per hour (i.e., throughput) and to save
energy [1–3].

There are two main categories of accelerators:

General purpose accelerators, such as Graphic Processing Units (GPUs), which are able to
process in high parallelism standard arithmetic operations (addition, multiplication, etc.).

Application Specific Processors implemented on reconfigurable hardware platforms (e.g., FP-
GAs) which are tailored to efficiently execute a specific application.

The main advantages of FPGA-based reconfigurable accelerators are that they can implement
virtually any circuit, and that they can be reconfigured at run-time by making the system
adaptable to the specific workload.

The disadvantage is that these FPGA-based Application-Specific Processors (ASPs) have to
be designed, implemented, and tested. This results in much longer development time than the
software solution where the application is run on CPUs or GPUs [4].

To reduce the development time, the ASP implementation must be done in a systematic and
modular way, by using tools, such as FloPoCo [5] or Vivado HLS [6], and by developing new
ad-hoc tools.

Our target is to have these reconfigurable hardware accelerators next to the cores to execute the
computing workload fast and energy efficiently, with the objective of increasing power efficiency.

In the specific case of FPGA-based accelerators, the main problem is the configuration latency,
that is, the time it takes to load the configuration of the ASP in the FPGA. If this configuration
latency cannot be reduced to a minimum, the overall performance will be affected.

Our idea is to use a concept similar to the working-set (WS) used in virtual memory to identify
the data resident in main memory.

We identify a number of applications worthwhile acceleration (frequently used and with good
speed-up/energy returns). We call this set a pool (of applications). If outside the pool, the
application is run in the CPU. In contrast, if the application is in the pool, we develop a
corresponding ASP. The configurations (FPGA programming files) of these ASPs constitute
the ASP library and are stored in memory.

Depending on the computer workload, a run-time manager, implemented as a part of the
operating system, selects the applications to be in the WS and load the corresponding ASPs
in the FPGA.

To address these issues, we present an architecture for the reconfigurable part of a System-on-
Chip (SoC) comprising CPU cores and FPGA fabric. The acceleration is obtained by both
efficient ASPs and increased parallelism: several ASPs working in parallel. When possible, the
reconfiguration of the FPGA is done partially and on-the-fly: while one part of the FPGA is
configured, other parts are executing computations.

As examples to demonstrate the computing platform (architecture), we developed a set of
ASPs to accelerate in hardware specific applications. The domain of application is large servers
clusters, such as the ones in data centers. We leave the implementation of the run-time manager
for future work.

As implementation platform, we opted for the Xilinx Zynq SoC because it is well supported
by CAD tools [6] and relatively inexpensive. Although the Zynq SoC is intended for use in
embedded systems and not for high performance computing, the proposed architecture can be
also ported to different SoCs (e.g., [7]) provided a minimum set of features, such as partial
dynamic reconfiguration, are supported.

Results show that for the selected pool a speed-up in the range 10–100 times and an energy
efficiency up to 30 times can be achieved by using the proposed technology.

2

2 HLL Architecture

In this section, we present the architecture designed to implement the dynamically-loaded
hardware libraries (HLL), after a brief introduction of the used platform and a list of modes to
configure the FPGA.

2.1 Implementation Platform

The platform used for implementing the accelerators is the Z-7020 device of the Xilinx ZynqTM-
7000 SoC family. The architecture of the ZynqTM comprises two different parts: the Processing
System (PS), the CPUs, and the Programmable Logic (PL), the FPGA. These two sections are
independent (they also have distinct power domains) and can be used separately or in conjunc-
tion. The interconnection between the PS, PL and the software-configurable I/O peripherals
is provided by the AMBA AXI bus.

The Processing System (PS) of the device features a dual-core ARM Cortex-A9 with a 32-bit
RISC architecture [8]. Next to the processors are the two NEON Media Processing Engines for
SIMD operations, the 32KB L1 and 512KB L2 caches and the 256KB on-chip-memory RAM.
A multi-protocol DDR memory controller is provided to support external DRAM memories.

The other main portion of the Zynq-7000 SoC is the Programmable Logic (PL). This general
purpose 28nm FPGA fabric is based on the Xilinx Artix-7 technology. The key features,
other than the Configurable Logic Blocks (CLBs), are the dual-ported 36Kb Block RAMs
(dedicated memory resources) and the DSP48E slices (dedicated blocks for high-speed integer
multiplication and addition).

The communication between PC and PL can be implemented either by the AXI4-Lite or by
the AXI4-Stream protocols.

The AXI4-Lite is a simplified version of the AXI4 protocol and allows simple write and read
functions on memory-mapped registers implemented in the PL. Its main advantage is the ease
of use at expenses of a lower transfer rate.

The AXI4-Stream is the protocol used to transfer large data sets; e.g., via direct memory access
(DMA). It allows to send data burst lengths up to 256 beats1. Moreover, the bus width can be
increased up to 1024 bits, while the AXI4-Lite data width is fixed to 32 bits.

2.2 FPGA Programming Modes

The PL part can be programmed, or configured, statically by loading the bitstream in the
configuration memory before starting using the FPGA, or dynamically (partial reconfiguration)
by loading bitstreams only to subsets of the configuration memory corresponding to selected
areas of the FPGA.

2.2.1 Static Configuration

The static configuration allows the maximum flexibility in terms of architecture of the ASP
implemented. Moreover, the size of the ASP can stretch to the maximum usable area of the

1A “beat” is an individual data transfer within an AXI burst (e.g., one 4-byte word for 32-bit bus width).

3

PL.

The configuration of the FPGA is done by the Processor Configuration Access Port (PCAP).
The PCAP interface can send and receive 32-bit words at 100 MHz rate, resulting in a maximum
theoretical bitstream transfer speed of 400 MB/s for plain PL configuration. However, due to
different overheads, the maximum transfer rate measured in our experiments was about 128
MB/s.

The drawback of the static configuration is that the bitstream loading time, called configuration
latency in the following, can be quite long, depending on the size of the ASP and the compression
factor of the bitstream. We measured configuration latencies in the range 10–20 ms, for our
designs. Another drawback is that no parts of the PL can be used until the configuration is
completed.

Therefore, hiding the configuration latency can be very tricky. If we use only a CPU, we can
use one of the following strategies:

1. Start configuring the PL and poll the PCAP until the configuration is completed. In this
case, no configuration latency is hidden.

2. Start configuring the PL for application A, then return to executing some other program
B on the CPU, and execute the accelerated application A on the PL after a time that
guarantees the configuration is completed for the worst case scenario (maximum config-
uration latency). In this case, the configuration latency is hidden, but we must ensure
that the execution latency of program B is longer than the configuration latency, and,
this can be tricky if the execution latency of B is determined at run-time.

2.2.2 Dynamic Partial Configuration

The dynamic partial configuration, can be done on-the-fly on one portion of the PL, while
ASPs, configured on other parts of the PL, keep running. The configuration latency is reduced
because the bitstreams are smaller: less FPGA area to configure than the static case.

The dynamic configuration of the selected area is done by the Internal Configuration Access
Port (ICAP), a hardware block that can read and write the FPGA configuration memory.

The ICAP allows to configure the FPGA directly from the PL. For this reason, full bitstreams
(static configurations) cannot be loaded by the ICAP because the ICAP itself is part of the
PL. As the PCAP, also the ICAP can reach a transfer rate of 400 MB/s, but since the ICAP
controller provided by Xilinx (AXI HWICAP) has only an AXI4-Lite interface, the transfer
rate is reduced to just 19 MB/s.

However, as proposed in [9], we connect an AXI4-Stream interface to the ICAP and transfer
the bitstream via DMA. In this way, we obtain a transfer rate close to the theoretical limit of
400MB/s.

Since the ICAP is faster than the PCAP (400 MB/s vs. 128 MB/s) and the bitstreams are
smaller, the configuration latency is quite small (0.5–1 ms) compared to the static configuration.
Therefore, hiding the configuration latency for dynamic partial configuration is doable, because
the latency is short and other parts of the PL can execute other applications.

By using the concept of working-set (WS), we can configure a new ASP by partial configuration
while, running other applications.

4

It is crucial not to load ASPs that will be used for short time since this can result in “thrashing”:
a) the overhead of the configuration latency may offset the benefit of acceleration because of
the short utilization of the ASP; b) the loaded ASP will evict from the WS (FPGA) another
ASP more frequently used that will need to be reloaded soon. The result is performance loss.

However, a drawback of dynamic reconfiguration is that a smaller area is available to implement
the ASPs because part of the PL is used for the interface with the PS and for the ICAP.

Another drawback is that the flexibility is reduced, because fixed (static) interfaces are required
to accommodate different ASPs in the reserved area and ensure the correct communication to
the PS.

To address this latter problem, we design a general framework for the partial reconfiguration
of ASPs in the PL, and identify a number of FPGA layouts suitable to accommodate ASPs of
different sizes and timing requirements (operating clock frequencies).

2.3 Accelerator Architecture

The architecture of the acceleration fabric on the PL is designed taking into account several
aspects, including:

• dynamic reconfiguration of reserved areas;

• clock rate adaptable to the specific ASP timing constraint;

• amount of data transferred from/to memory.

The interface toward the PS side is through four high-performance ports (HP 0-3) which connect
the PL to the ARM CPUs and the DRAM controller, and through the AXI ACP port which
connects directly to the cache. In addition, the interface PS-PL provides four programmable
clocks.

Fig. 1 shows the architecture of the accelerator with four reconfigurable portions (RP 1–4). In
the figure we identify the “static part” and the “dynamic part”.

The static part is loaded statically by the PCAP and does not change on-the-fly. It consists of
five AXI4-Stream blocks, the ICAP, and a clock management unit.

Since port ACP is not connected to the DRAM controller, the ASP connected to this port,
cannot transfer large chunks of data. The maximum size is set by the cache size (512 Kbytes).

Each of the reconfigurable areas can be connected to the PS through the 32-bit AXI GP ports
using the AXI4-Lite bus.

Interrupts are used to signal change of status (end of configuration, data ready, etc.) in the RP
areas to the PS.

Each of the four RPs in the dynamic part is dynamically reconfigured by the ICAP. If the
ASP does not fit the RP, we can resize the configurable block eliminating one or more of the
RPs by static reconfiguration via PCAP. Although “Grid-style” block placement allows more
flexibility, we were forced to use “Island-style” block placement because it is the only style
currently supported by Vivado.

The shortcomings of “Island-style” are internal fragmentation, i.e., part of the reserved area in
the RP may not be used, and fixed interface to the static part of the PL.

5

HP 0

ACP

HP 1

HP 2

HP 3

ICAP

RP 1

PL - Static PartPS

AXI-Stream 64-Bits AXI-Lite 32-Bits

GP 0

IRQ

Interrupts

DMA Controller

PL - Dynamic Part

RP 4

DMA Controller

DMA Controller

DMA Controller

DMA Controller

RP 2

RP 3

Clock
Manager
CLK 1 - 5

Figure 1: HLL hardware architecture (not in scale).

AXI-Lite Bus AXI-Stream Master Bus

AXI-Stream Slave Bus Interrupt

CLK

RST IP A

STATIC PARTITION

RECONFIGURABLE PARTITION

WRAPPER

CLK

RST

Interrupt

S_00

S_01

M_00

AXI-Lite Bus

Interrupt

CLK

RST IP C

STATIC PARTITION

RECONFIGURABLE PARTITION

WRAPPER

CLK

RST

Interrupt

S_00

S_01

M_00

Figure 2: IP-Wrapper interface for two different blocks.

To overcome the latter limitation, we introduce an ASP wrapper, “IP-Wrapper”, to adapt the
specific ASP interface to a standard one built to accommodate the most demanding interface of
the ASPs in the pool. Fig. 2 shows how the IP-Wrapper is used to interface two IP-blocks with
different connection ports. The interface ports (red boxes) can be either connected to actual
IP-block’s ports, or to dummy buffers (green triangles) if the interface port is not used by the
IP-block (Fig. 2, at right).

By IP-Wrappers, we can easily connect pre-existing soft IP-blocks without modifying them,
and save ASP development time.

Moreover, each RP can be clocked at a specific frequency thanks to the “Clock Manager”
(Fig. 1), allowing maximum flexibility and IP-block reuse.

The supported architecture layouts in HLL are sketched in Fig. 3. Switching among layouts
requires a static reconfiguration.

6

C
P

U
s

in
te

rf
ac

e

F1 F2 F4F3

S
ta

tic
 P

ar
t

S
ta

tic
 P

ar
t

S
ta

tic
 P

ar
t F2−A

F2−B

F3−A

F3−B

F3−C

F4−A

F4−B

F4−C

F4−D

Figure 3: Layouts supported by HLL (area not in scale).

Table 1 reports the available FPGA resources to implement one ASP in one RP for the different
layouts, and the percentage available area over the total FPGA area. Because of the fabric
organization, resources do not scale linearly.

resources per RP area per RP
Layout DSPs FFs LUTs BRAMs (percent)

F1 160 54,600 3,5400 80 60
F2 60 24,800 1,2400 60 21
F3 40 18,400 9,200 60 16
F4 40 6,400 3,200 20 9

Legend. FF: flip-flop, LUT: look-up-table, BRAM: block RAM

Table 1: FPGA resources per RP for different layouts.

3 Applications

In this section, we present a set of applications (the pool) to be accelerated and the architecture
and features of the corresponding ASP. Part of the ASPs were derived by previous work.

Of the four applications, two require significant data transfer from/to the memory (TELCO and
SGEMM); two implement the ASP in the BCD decimal number system (TELCO and EURO);
two implement ASPs in strict sense, a sequence of fixed operations (TELCO and MCOP), while
EURO is accelerated by a single-operation decimal processor.

Three ASPs fit in layout F4, while SGEMM requires layout F1 for the selected parallelism.

3.1 Telephone Billing Application (TELCO)

The “TELCO” benchmark was developed by IBM to investigate the balance between I/O time
and calculation time in a telephone company billing application [10]. The benchmark, available
in C and Java, provides an example of decimal floating-point operations (multiplication and
addition).

7

Algorithm 1 Pseudo-code for the TELCO benchmark.
if (calltype = L) then

P = duration × Lrate

else
P = duration × Drate

end if
Pr = RoundtoNearestEven(P)

B = Pr × Btax

C = Pr + Trunc(B)

if (calltype = D) then
D = Pr × Dtax

C = C + Trunc(D)

end if

The benchmark reads an input file containing a list of telephone call duration (in seconds).
The calls are of two types (“Local” and “Distance”) and to each type of call a rate (price) is
applied. Once the call price has been computed, one or two taxes (depending on the type of
call) are also added. The pseudo-code of the TELCO algorithm is listed in Algorithm 1.

Because decimal operations require special software routines taking long time, the TELCO
application is an excellent case for acceleration in an ASP where arithmetic operations are
implemented by decimal hardware units.

The TELCO ASP is depicted in Fig. 4 [11]. It consists of three decimal (BCD) multipliers and
adders. The ASP reads a file, via the AXI4-Stream DMA, containing the calls’ durations in
BCD integer format, and returns the cost of the single call rounded to the cent (via DMA).

The ASP is pipelined in 4 stages and clocked at a frequency of 60 MHz for a latency of
4× 16.7 ns = 67 ns, and an ideal throughput of 60 million of calls processed per second when
the ASP is not slowed down by the I/O.

3.2 Monte Carlo Option Pricing (MCOP)

Monte Carlo simulations for option pricing algorithms [12] are typically run in batch mode to
statistically determine the strike price of options (a financial instrument), and use these strike
values as thresholds to sell or buy options in the so called high-frequency trading market [4].

Algorithm 2 Monte Carlo European option pricing.
Option parameters: VsqrtT, drift, expRT

sum = 0
for i = 1 to n do

St = S0 · e(drift + VsqrtT · Vrnd)
if (St−K > 0) then

sum = sum + (St −K) · expRT
end if

end for
S = sum/n

The simulation pseudo-code is listed in Algorithm 2. By simulation, we have to determine

8

0 1

BCD ADDER

BCD CSA

8 8

BCD CSA

8 8

Btax Dtax

b d

p
r

c

0

5

xxxxxx.xx

xxxxxx.xx

xxxxxx.xx

xxxxxx.xx

MULTIPLIER

8x5 BCD

(truncated)

MULTIPLIER

8x5 BCD

(truncated)

call type
8

5

1

2

3

4

pipeline
stage

8

0 1

Lrate Drate

6 5 5

call type

call duration

MULTIPLIER

6x5 BCD

(rounded)

Figure 4: ASP for TELCO accelerator.

the exercise price S of an option with initial security price S0, strike price K, under several
parameters VsqrtT, drift and expRT which are constant for the simulation. The algorithm
requires to generate n random numbers Vrnd with normal distribution in (−1.0, 1.0).

The algorithm is implemented in the ASP in single-precision (binary32) format as sketched in
Fig. 5. The ASP is derived from the one presented in [13].

Instead of performing the multiplication S0 · e(...) in each cycle of the loop, we divide K by S0

as a pre-computation (in the CPU) and compare e(...) directly to k1=K/S0. Similarly, we move
the multiplication by expRT out af the loop. The correct value of S is restored in the last stage
by performing the multiplication by k2= S0·expRT· 1n .

For the MCOP accelerator the CPU transfers via AXI4-Lite the parameters: n, VsqrtT, drift,
k1 and k2. At the end of the simulation, the ASPs returns the value S to the CPU. The DRAM
is not used.

The ASP is pipelined in 29 stages and clocked at a frequency of 90 MHz for a latency of
29× 11.1 ns = 322 ns, and an ideal throughput of 90 M elements processed per second.

9

F
P

−
ad

d

F
P

−
m

ul

F
P

−
ex

p

F
P

−
ac

c

F
P

−
R

N
D

ge
n

F
P

−
m

ul

F
P

−
ad

d

0
1

zero

sign

VsqrtT drift k1 k2

S
24

64

Vrnd

Figure 5: ASP for the MCOP accelerator.

3.3 Matrix Multiplication (SGEMM)

Basic Linear Algebra Subprograms, or BLAS, routines [14, 15] are low-level software routines
that represent a standard for basic vector, matrix and linear algebra operations. We selected
one of them, SGEMM, to include it in the pool.

SGEMM performs the multiplication between matrices:

C ←− α ·A ·B + βC

We just consider the basic A×B multiplication, with α = 1 and β = 0 and without transposing
the matrices.

The ASP is synthesized by using the Vivado HLS tool [6] by setting fixed matrices dimensions to
32×32. Consequently, each matrix has 1024 floating-point binary32 (single-precision) numbers.

The ASP is implemented to execute the following tasks:

• Retrieve the input matrices using an AXI DMA and a 32-bit AXI4-Stream interface.

• For every element of matrix C perform the products between rows of matrix A and
columns of matrix B.

• Output the resulting matrix using the same DMA but with a different AXI4-Stream
interface.

Because the burst length is 256 beats to transfer each matrix, 1024 binary32 numbers, requires
4 bursts minimum, increasing the communication overhead.

Since to implement a fully parallel architecture (parallelism = 32) the number of resources
required is a considerable percentage of the available resources of the Z-7020 ZynqTM device,
the final design occupies almost the entire FPGA (layout F1).

The resulting ASP is clocked at 100 MHz, with an ideal throughput of 3.2 GFLOPS.

3.4 Euro Conversion (EURO)

Currency conversion between the euro and legacy currencies of European countries and between
two legacy currencies is regulated by the European Central Bank and requires the use of decimal
arithmetic [16].

Among others, the regulations require: having six significant digits, including trailing zeros,
in the conversion rates; not rounding or truncating conversion rates; having an intermediate
result in euros when converting between two legacy currency units.

10

We extend these rules, to the generic case of conversion between euro and any other currency,
not only legacy currencies, according to a conversion table Rate that it is assumed constant2

Conversion operations are stored in format:
FROM TO amount.

The operations for euro conversion are shown in Table 2 [16], and in Algorithm 3.

FROM TO Operation
EUR currency amount×Rate[TO]

currency EUR amount/Rate[FROM]

Table 2: Operations for euro conversion.

Algorithm 3 Euro conversion.
Read conversion rates in Rate[currency]

for entries in file do
if (FROM = "EUR") then

// convert from EUR to “currency”
value = amount × Rate[TO]

else
// convert from “currency” to EUR
value = amount / Rate[FROM]

end if
end for

Algorithm 3 is accelerated in hardware by a DECimal PROcessor (DECPRO) implementing
addition/subtraction, multiplication and division in decimal floating-point (DFP) arithmetic.
DECPRO, derived from the processor in [17], is a decimal64 unit divided in several stages as
shown in Fig. 6. The decimal operations are executed sequentially in the unit and their latencies
are listed in Table 3.

s
e

t−
u

p
 /

 a
lig

n
m

e
n

t

a
ri
th

m
e

ti
c

e
n

g
in

e

n
o

rm
a

liz
a

ti
o

n

ro
u

n
d

in
g

64

8

64

64

OP

X

Y

Z

Figure 6: ASP implementing DECPRO.

The accelerated execution of Euro Conversion consists of the following steps:

1. A file containing the entries (FROM, TO, amount) is read from the memory in the PS
part.

2While for the legacy currencies conversion rates are fixed, for outside-euro currencies rates are negotiated
continuously.

11

Operation Latency
decimal64 (n. cycles)
addition/subtraction 6
multiplication 21
division 26

Table 3: Latencies for decimal64 operations in DECPRO.

2. Depending on the type of conversion (to EUR, from EUR), the PS sets the DECPRO
operation (multiplication or division), and sends, via AXI4-Lite, the two values (rate and
amount) to the ASP.

3. The ASP performs the conversion and returns the value to the PS, via AXI4-Lite.

The ASP implementing DECPRO is clocked at a frequency of 95 MHz. The average transfer
time (input and output via AXI4-Lite) is about 1600 ns corresponding to about 150 cycles.
Compared to the latencies in Table 3, the transfer overhead is very large. However, as shown
in Sec. 4.1, there is a small acceleration over the software only execution of the application.

4 Accelerator Performance

In this section, we demonstrate how the proposed architecture can accelerate the execution of
the selected applications (the pool).

First, we show the speed-up of the FPGA-accelerated execution of the application in the pool
over the software execution in the CPU (PS part) only. For this evaluation, we ignore the
configuration latency and assume the bitstream is already loaded: the ASP is configured.

Second, we execute some sample schedules of execution in which the bitstreams are dynamically
loaded at run-time to form a number of different working sets. For these schedules, we consider
both the static and dynamic configuration latencies, and we compare the execution in the HLL
architecture to that of the software execution in the CPUs. The schedules are manually prepared
for these first experiments, and we plan to include a run-time scheduler in the operating system
in future work.

Third, we explain how the acceleration provided by HLL can result in power efficient compu-
tation.

4.1 Stand-Alone Execution

For all the applications in the pool the software execution is implemented by coding in C the
pseudo-codes on the algorithms shown in Sec. 3.

We differentiate the software runs between application run in the CPU only (SW) and appli-
cation run in the CPU and accelerated in the NEON unit (NEON).

For the ASP accelerated execution, we consider the communication overheads, but not the
configuration latency.

The execution time, or latency, of the application is measured by the Xilinx’s C timer (xtime).

12

layout ASP f Latency Speed-up
Application [MHz] SW NEON ASP ASP/SW ASP/NEON
TELCO F4 60 2307 ms 1647 ms 8 ms 271 194
MCOP F4 90 45 ms 27 ms 1 ms 44.5 26.7
SGEMM F1 100 1.95 ms 310 µs 43 µs 45.7 7.3
EURO F4 95 279 ms 221 ms 170 ms 1.6 1.3

Table 4: Stand-alone execution of applications in the pool.

The results of these stand-alone executions of the applications are summarized in Table 4. The
application execution in the CPU accelerated in the ASP is listed under ASP in Table 4.

The details for the single applications are given next.

4.1.1 TELCO

The TELCO application is run for a sample file of 1000 entries (telephone’s calls duration in
seconds).

The TELCO ASP (Fig. 4) is a high optimized unit handling BCD operands in hardware.
Moreover, the DMA eliminates the overhead for reading the input file, one line per iteration,
in the execution in the PS. As a result, the speed-up is very large.

4.1.2 MCOP

The Monte Carlo simulation is run for 100,000 random samples for one option.

The MCOP ASP (Fig. 5) is also an application-crafted fully pipelined processor with low com-
munication from/to the PS. However, since it is based on the conventional binary arithmetic,
the speed-up with respect to the execution in the PS, especially when NEON accelerated, is
still significant, but not as large as for TELCO.

4.1.3 SGEMM

The SGEMM ASP is larger than the others (layout F1 in Fig. 3). We made this choice to
guarantee a reasonable acceleration. In previous work [18], we characterized the parallelism of
the ASP (number of binary32 multipliers) with respect to the NEON accelerated execution.
The results are reported in Table 5. The equal-latency point is for parallelism 22.

ASP parallelism Speed-up
4 ∼ 0.28×
16 ∼ 0.58×
22 ∼ 1.00×
32 ∼ 7.26×

Table 5: ASP parallelism vs. speed-up for SGEMM 32×32.

13

The latency reported in Table 4 is for one matrix product, i.e., 1024 binary32 multiply-add
operations.

4.1.4 EURO

The execution of EURO (refer to Algorithm 3) requires to read the triple (FROM, TO, amount)
from an ASCII file. Therefore, for each amount to be converted, four C statements are executed:

1. one line of the input file is parsed: sscanf();

2. the string containing amount is converted in decimal64: by the C function
decDoubleFromString() [10];

3. the operation (multiplication or division) is selected: if (...);

4. the operation is executed:

- by the C function decDoubleMultiply(), or decDoubleDivide() in SW and NEON;

- by transferring via AXI4-Lite OP, rate and amount to DECPRO (Fig. 6) in ASP.

Table 6 reports the latencies for the four steps listed above and the total latency per iteration.

Latency [µs]
C statement SW NEON ASP?

sscanf() 20 19 19

PS
decDoubleFromString() 17 4 4
if (...) 13 4 4

decimal64 operation
39 20

2 PL
TOTAL [µs] 89 47 29

? The PS execution for ASP is NEON accelerated

Table 6: Latencies for the execution of one iteration of EURO.

Although the speed-up of the decimal64 operation for the ASP over the NEON execution is
about 10, due to the overhead in the sscanf() execution in the PS, the overall speed-up is
reduced to about 1.6 (60%). The speed-up is further reduced for the conversion of 1000 values
reported in Table 4. This reduction is due to other overhead in the I/O.

4.2 HLL Execution

To demonstrate the HLL potential we emulate a multiprogramming environment in a demo
(written in C) in which different applications, including static and dynamic reconfiguration,
are simulated by C-function calls. The execution of the different applications is manually

14

F4-A

F4-B

F4-C

F4-D

0ms 20ms 40ms 60ms 80ms 100ms 120ms 140ms 160ms

LOAD MCOP via PCAP TELCO 60MHz
(1000 Calls) IDLE EURO CONVERTER 95MHz (100 Conversions)

MCOP 90MHz (9 Stock Options with n=1M)

TELCO 60MHz
(1000 Calls)

TELCO 60MHz
(1000 Calls)

IDLE

IDLE

IDLE

LOAD SGEMM
via PCAP

MCOP 90MHz (7 Stock Options with n=1M)

LOAD MCOP via PCAP

LOAD MCOP via PCAP

LOAD MCOP via PCAP

MCOP 90MHz (5 Stock Options with n=1M)

MCOP 90MHz LOAD TELCO via PCAP

LOAD TELCO via PCAP

LOAD TELCO via PCAP

LOAD TELCO via PCAP

TELCO 60MHz
(1000 Calls)

S
G
E
M
M

MCOP 90MHz

LOAD MCOP via PCAP

LOAD MCOP via PCAP

LOAD MCOP via PCAP

LOAD MCOP via PCAP

MCOP 90MHz

MCOP 90MHz

MCOP 90MHz

MCOP 90MHz

Figure 7: Example of schedule executed on the HLL platform.

HLL 166 ms = 0.166 s

SW NEON
trun [s] speed-up trun [s] speed-up

1 CPU 19.90 120 10.70 64
CPU0 10.98

66
5.38

32
CPU1 8.97 5.31

Table 7: Speed-up for execution of schedule in Fig. 7.

scheduled by using interrupts to switch between applications in one context only. We use this
demo to measure HLL performance and to show that the reconfiguration latency can be hidden.

As a consequence, the working set, ASPs to be loaded in the PL, is selected at programming
time (static schedule).

The execution of the demo schedule is illustrated in Fig. 7. In the figure, the bright colors
represent the actual execution of the application, while grey-scale colors represent configuration
latency (static and dynamic), and cyan represents clock configuration (changing the frequency
for the specific ASP).

The PL is initially configured as F4 running four MCOP (yellow) applications with different
run-lengths. Later, TELCO (purple) and EURO (blue) are loaded by partial configuration.
Since the dynamic partial reconfiguration latency (by ICAP) is quite short, it can be barely
seen in Fig. 7. The clock configuration requires several cycles before the PLL (phase-locked
loop) clamps the requested frequency. This is not optimal and we plan to fix the problem in
future work to shorten the clock configuration time.

To execute SGEMM (red), we need to reconfigure the PL to F1 (by PCAP) when the request
for SGEMM arrives (at about 100 ms in the schedule of Fig. 7). After that, we will reload the
initial configuration F4.

Fig. 7 shows that the ASPs in F4 are busy most of time, parallelizing the execution of the
workload. While the dynamic reconfiguration latencies are negligible, the layout changes F4-
F1-F4 are quite expensive because the static configuration latency is quite long and cannot be
hidden. Specifically, the execution of SGEMM requires about 20 ms, plus 20 ms to reconfigure
to F4 later. In this case, accelerating SGEMM in the ASP is not the right choice: unless the
amount of data to process is large, the configuration overhead makes the execution slower than

15

F4-A

F4-B

F4-C

F4-D

60ms 80ms 100ms 120ms

EURO CONVERTER 95MHz (100 Conversions)

MCOP 90MHz

TELCO 60MHz
(1000 Calls)MCOP 90MHz

MCOP 90MHz

MCOP 90MHz

MCOP 90MHz

PS SGEMM

Figure 8: Modified schedule to run SGEMM in the PS (NEON unit).

running SGEMM in the PS.

To evaluate the HLL speed-up, we run the same schedule in the PS. We run the applications
on one and two CPUs, with and without NEON acceleration (Table 7). The speed-up achieved
by HLL ranges from 30 to 120 times.

To avoid to statically reconfigure the PL to execute SGEMM, we can consider the following
alternatives:

1. We run SGEMM in the PS (NEON unit). In this case, illustrated in Fig. 8, the request to
execute SGEMM at 100 ms is handled by the PS. Consequently, two MCOP ASPs need
to be reloaded (dynamical reconfiguration) in F4-A and F4-C when the previous tasks
are done. The resulting run time is shortened to about 123 ms: the SGEMM execution
in the PS (about 22 ms) takes as long as the remaining MCOP execution in the PL.

With this new scheduling, we obtain a speed-up of about 35% over the schedule of Fig. 7.

2. Execute the schedule in F1 and load by ICAP 4 ASPs in a unique RP. To switch between
two F1 configurations, e.g. from 4 MCOP ASPs to 2 TELCO and 2 MCOP ASPs, it
takes about 1 ms by ICAP. In this case, the transition to SGEMM and back will take
about 3-4 ms. However, before switching configurations in F1 we have to wait that all
four ASPs are done (idle) to not lose any data. Moreover, this alternative requires to
have several configuration files containing different mixes of ASPs.

For these reasons, we did not implement this alternative.

4.3 Energy Efficiency

The energy necessary to run a workload is

Erun =
∫
trun

P (t) dt = Pave × trun [J] (1)

where trun is the execution time and Pave is the average power dissipation. Eq. (1) shows that,
unless Pave increases significantly, a reduction in the execution time results in lower energy
consumption. In [19], it is explained how at the price of increasing Pave, the latency of an ARM
processor can be greatly reduced for an overall increase in energy efficiency.

16

The ZedBoard hosting the Zynq SoC is equipped with current-sense pin-headers to measure the
power dissipation of the whole board. We measured an average power dissipation 3.7 W (only
one CPU plus NEON, no PL configured) and 4.1 W to run the demo schedule on CPU+ASPs.
Clearly, this measurement is too coarse to evaluate the efficiency of HLL on the Zynq platform.

Therefore, we modeled the power dissipation in the SoC as follows. We assume three contribu-
tions in the PL:

• Pstat the static power dissipation, that is the power dissipated by the SoC when powered.

• Pidle the dynamic power dissipation when the PL is not computing. This includes the
switching activity in the clock network in the PL.

• P PL
comp the computation power, that is the dynamic power dissipation in the PL when

ASPs are executing the applications.

By the above measurements, P PL
comp is about 400 mW for executing the demo schedule. More-

over, according to the floorplan information provided by Vivado, the PL takes about 80% of the
die area while the PS takes about 20%. By the conservative assumption that the gate density
and the switching activity is equally distributed on the die3, we estimate the PS to dissipate
about 100 mW (i.e., 20

80
· 400 mW) when clocked at the same frequency of the PL (100 MHz).

However, the ARM cores are clocked at 666 MHz, therefore, we estimate the computation power
in the PS to be P PS

comp = 666 mW .

In conclusion, the computation power of the software execution is PCPU = P PS
comp/2 = 0.33 W

per core, and the computation power of the accelerated execution is PHLL = PCPU + P PL
comp =

= 0.73 W (worst case scenario for HLL).

By combining these estimates with the latencies in Table 7, we obtain:

ECPU = 0.33× 10.70 = 3.56 J (one core)
ECPU = 0.66× 5.38 = 3.56 J (two cores)
EHLL = 0.73× 0.166 = 0.12 J

with a HLL energy efficiency factor of about 30 times.

5 Conclusions and Future Work

We have presented the hardware architecture to implement accelerators by dynamically-loaded
hardware libraries, or HLL. We described the physical implementation of HLL and explained
the general framework.

Moreover, we provided an example of a pool of applications representing a generic workload,
and we presented a manually-constructed schedule to demonstrate that we can reach speed-
up between 30 and 120 times, and a power efficiency of about 30 times better, over the pure
software execution.

In future work, we will address the integration of HLL in the operating system, which will enable
the full deployment of the technology. Moreover, we will devise a systematic way to profile

3In reality, the gate density is higher in the PS.

17

applications and develop ASPs, and to include extensive testing of configuration bitstreams to
test both the correct configuration of the ASP and the runtime performance.

References

[1] S. Patel and W.-M. W. Hwu, “Accelerator Architectures,” IEEE Micro magazine, vol. 28,
pp. 4–12, July/Aug. 2008.

[2] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S. McKinley, “What is
Happening to Power, Performance, and Software?” IEEE Micro, vol. 32, no. 3, pp. 110–
121, May-June 2012.

[3] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale datacenter services,”
in Proc. of ACM/IEEE 41st International Symposium on Computer Architecture (ISCA),
Jun. 2014, pp. 13–24.

[4] J. W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, and K. A. Vissers, “A
Low-Latency Library in FPGA Hardware for High-Frequency Trading (HFT),” in Hot
Interconnects’12, 2012, pp. 9–16.

[5] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with FloPoCo,”
IEEE Design & Test of Computers, vol. 28, no. 4, pp. 18–27, Jul. 2011.

[6] Xilinx. (2015) UG902 – Vivado Design Suite User Guide –
High-Level Synthesis. [Online]. Available: http://www.xilinx.com/ sup-
port/documentation/sw manuals/xilinx2012 2/ug902-vivado-high-level-synthesis.pdf

[7] J. Burt, “Intel Begins Shipping Xeon Chips With FPGA Accelerators,” eWeek, Apr.
2016. [Online]. Available: http://www.eweek.com/servers/ intel-begins-shipping-xeon-
chips-with-fpga-accelerators.html

[8] ARM. (2012) Cortex-A9 Technical Reference Manual. Version r4p1.

[9] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient Partial Reconfiguration Management on the
Xilinx Zynq,” IEEE Embedded Systems Letters, vol. 6, no. 3, pp. 41–44, Sept 2014.

[10] IBM Corporation. ”The ”telco” benchmark”. [Online]. Available:
http://speleotrove.com/decimal/telco.html

[11] J. K. Toft and A. Nannarelli, “Energy Efficient FPGA based Hardware Accelerators for
Financial Applications,” in Proc. of the 32th NORCHIP Conference, Nov. 2014.

[12] J. C. Hull, Options, Futures and other Derivatives, 8th ed. Prentice Hall, 2012.

[13] J. S. Hegner, J. Sindholt, and A. Nannarelli, “Design of Power Efficient FPGA based Hard-
ware Accelerators for Financial Applications,” in Proc. of the 30th NORCHIP Conference,
Nov. 2012.

18

[14] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic Linear Algebra
Subprograms for Fortran Usage,” ACM Trans. Math. Softw., vol. 5, no. 3, pp. 308–323,
1979.

[15] L. Zhuo and V. K. Prasanna, “Design tradeoffs for BLAS operations on reconfigurable
hardware,” in International Conference on Parallel Processing, ICPP 2005, June 2005,
pp. 78–86.

[16] L. K. Wang, C. Tsen, M. J. Schulte, and D. Jhalani, “Benchmarks and performance anal-
ysis of decimal floating-point applications,” in 25th International Conference on Computer
Design, ICCD 2007, Oct 2007, pp. 164–170.

[17] A. Nannarelli, “Decimal engine for energy-efficient multicore processors,” in 2014 22nd
International Conference on Very Large Scale Integration (VLSI-SoC), Oct. 2014, pp. 1–6.

[18] G. C. Cardarilli, L. D. Carlo, A. Nannarelli, F. M. Pandolfi, and M. Re, “A framework for
dynamically-loaded hardware library (HLL) in FPGA acceleration,” in IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT), Dec. 2015, pp.
291–296.

[19] D. Lutz, “ARM FPUs: Low Latency is Low Energy,” in Special Session at the
22nd IEEE Symposium in Computer Arithmetic, June 2015. [Online]. Available:
http://arith22.gforge.inria.fr/slides/s1-lutz.pdf

19

