
Abstract

Current microprocessor instruction set
architectures are word oriented, with some subword
support. Many important applications, however, can
realize substantial performance benefits from bit-
oriented instructions. We propose the parallel extract
(pex) and parallel deposit (pdep) instructions to
accelerate compressing and expanding selections of
bits. We show that these instructions can be
implemented by the fast inverse butterfly and butterfly
network circuits. We evaluate latency and area costs
of alternative functional units for implementing
subsets of advanced bit manipulation instructions. We
show applications exhibiting significant speedup,
3.41× on average over a basic RISC architecture, and
2.48× on average over an instruction set architecture
(ISA) that supports extract and deposit instructions.

1. Introduction

Operations on microprocessors are typically word,

and more recently subword [1], oriented. However,
many important applications benefit from bit-oriented
operations. For example, arbitrary n-bit permutations
take O(n) operations using basic instructions such as
and, shift and or to move individual bits [2]. A
few fixed permutations, such as in ciphers like DES,
have been optimized by table lookup [2], still taking
tens to hundreds of cycles, due to cache misses.
Recent research showed that specialized bit-oriented
instructions can permute bits in O(lg n) [2-4] or even
O(1) operations [5,6]. For example for n=64, any one
of 64! bit permutations can be achieved in 1 or 2
cycles by butterfly (bfly) and inverse butterfly
(ibfly) permutation instructions [5,6]. Such speedup
can enable previously difficult bit manipulation
computations to be done much more efficiently.

This paper discusses another important class of
bit-oriented operations involving selecting and
compressing bits, and distributing bits according to
different bit patterns. We call these parallel extract
(pex) and parallel deposit (pdep) operations,
respectively. pdep and pex can also be viewed as
bit-level scatter and gather instructions. These
operations are important in application domains such
as bioinformatics, image processing, steganography,
cryptanalysis and coding.

Fast Bit Compression and Expansion with Parallel Extract and

Parallel Deposit Instructions

Yedidya Hilewitz and Ruby B. Lee
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA

{hilewitz, rblee}@princeton.edu

We present the architectural definition of these
two novel bit instructions. We show how pdep can be
implemented using the single-cycle butterfly network
datapath. We evaluate alternative new functional units
that implement useful subsets of these advanced bit
manipulation instructions, and recommend one that is
smaller than an ALU with shorter latency. Our
performance results indicate that a processor enhanced
with pex and pdep achieves a 5.2× maximum
speedup, 3.41× on average, over a basic RISC
architecture.

Section 2 describes the new pex and pdep
instructions. Section 3 presents the ISA definitions.
Section 4 discusses the implementation and different
options for a new functional unit implementing
advanced bit-oriented instructions. Section 5 describes
applications of these instructions and section 6 their
performance. Section 7 concludes the paper.

2. Parallel extract and parallel deposit

It is often necessary to select non-contiguous bits
from data. For example, in pattern matching, many
pairs of features may be compared. Then, a subset of
these comparison result bits are selected, compressed
and used as an index to look up a table. This selection
and compression of bits is what a pex instruction does
(Figure 1(b)). A pex instruction can also be viewed as
a parallel version of the extract (extr) instruction [7,
8]. The extr instruction extracts a single field of bits
from any position in the source register and right

This work was supported in part by the DoD and Intel.
Yedidya Hilewitz is a Hertz Foundation Fellow.

Yedidya Hilewitz and Ruby B. Lee, Fast Bit Compression and Expansion with Parallel Extract and Parallel Deposit Instructions, Proceedings of
the IEEE 17th International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 65-72, September 11-13,
2006

justifies it in the destination register. The pex
instruction extracts multiple bit fields from the source
register, compresses and right justifies them in the
destination register. The selected bits are specified by
a bit mask. Figure 1 compares extr and pex.

The inverse operations to extr and pex are dep
and pdep, respectively. The deposit (dep)
instruction takes a right justified field of bits from the
source register and deposits it at any single position in
the destination register. The parallel deposit
(pdep)instruction takes a right justified field of bits
from the source register and deposits the bits in
different non-contiguous positions indicated by a bit
mask. Figure 2 compares dep and pdep.

(a)

(b)

Figure 1. (a) extr r1 = r2, pos, len
(b) pex.v r1 = r2, r3

(a)

(b)

Figure 2. (a) dep r1 = r2, pos, len
(b) pdep.v r1 = r2, r3

Feasibility
 It is not intuitively clear that pex and pdep are
easy to implement, especially in a single cycle. We
define a single cycle as the latency through an ALU of
the same width, i.e., with operands the same size as
pex and pdep.
 The pex instruction can be considered half of a
bit permutation primitive, grp [9], conserving its most
useful properties. It performs a grp-like permutation
of the source bits, where the bits that are not selected

are zeroed out. In our past work on permutation
circuits [6], we see that the fastest datapath for
arbitrary permutations is the butterfly or inverse
butterfly network circuit (Figure 3). Our prior work on
accelerating the grp permutation instruction shows
that it can also be implemented by two inverse
butterfly networks operating in parallel, one
implementing grpl and one implementing grpr [9].
Since the pex operation is like the grpr operation, it
can be implemented by one inverse butterfly network.
 Since pdep is the inverse of pex, we claim that it
can be implemented by the butterfly circuit, which
reverses the stages of the inverse butterfly circuit. But
this has to be proved, which we do explicitly in this
paper in section 4.

 Butterfly Inverse Butterfly

Figure 3. 8-bit butterfly and inverse butterfly
networks

3. ISA Definitions

In Figures 1 and 2, we show static versions of

extr and dep but dynamic or variable versions of
pex.v and pdep.v. Static versions of pex and
pdep are also very important because mask patterns
desired are often known at compile time, and the static
versions are much simpler to implement (section 4).

Table I shows the new instructions needed for
implementing dynamic, static and loop-invariant
versions of pex and pdep.

Dynamic pex and pdep. In the pex.v
instruction, the data bits in GR r2 selected by the “1”
bits in the mask GR r3 are placed, in the same order, in
the destination register GR r1. In the pdep.v
instruction, the right justified bits in GR r2 are placed
in the same order in GR r1, in the positions selected by
“1”s in mask GR r3. For both instructions, the mask r3
is translated dynamically by a decoder into control bits
for the lg(n) stages of an inverse butterfly or butterfly
circuit.

Static pex and pdep. In the static versions of
pex and pdep, some registers associated with the
new functional unit are used to hold the control bits
for the datapath and these registers must first be
loaded by the mov instruction. The registers can be the

special function unit registers of PA-RISC [7], or the
application registers (ar) of IA-64 [8]. For the
purposes of this paper, we call them application
registers, ARs. The mov ar instruction in Table 1 is
used to move the contents of two general-purpose
registers to the application registers. The sub-opcode,
x, indicates which application registers are written.

In the static version of the pex instruction, GR r2
is and’ed with mask GR r3, then permuted using
inverse butterfly application registers ar.ib1, ar.ib2 and
ar.ib3, with the result placed in GR r1. For static pdep,
GR r2 is permuted using butterfly application registers
ar.b1, ar.b2 and ar.b3, then and’ed with mask GR r3,
with the result placed in GR r1.

Loop-invariant pex and pdep. Suppose the
particular pattern of bit scatter or gather is determined
at execution time, but this pattern remains the same
over many iterations of a loop. We call this a loop-
invariant pex or pdep operation. The setib and
setb instructions invoke a hardware decoder to
dynamically translate the bitmask GR r3 to control bits
which are written to the inverse butterfly or butterfly
application registers, respectively, for later use in
static pex and pdep instructions.

Table 1 also shows the bfly and ibfly
instructions which can perform arbitrary n-bit
permutations [5, 6]. In addition, the grp bit
permutation instruction [3] is also included.

4. IMPLEMENTATION

4.1. Parallel deposit on the butterfly network

The structure of the butterfly (and inverse

butterfly) networks are shown in Figure 3. The n-bit
networks consist of lg(n) stages, each stage composed
of n/2 2-input switches. Each switch is composed of
two 2:1 multiplexers for a total of n × lg(n)
multiplexers. These networks are faster and smaller
than an ALU of the same width which also has lg(n)
stages, but the stages are more complex.

Table 1. New advanced bit-oriented instructions
Instruction Description Cycles
pex.v r1 = r2, r3 Parallel extract, variable: Data bits in r2 selected by a dynamically-decoded mask

r3 are extracted, compressed and right-aligned in the result r1.
3

pdep.v r1 = r2, r3 Parallel deposit, variable: Right-aligned data bits in r2 are deposited, in order, in
result r1 in bit positions marked with a “1” in the dynamically-decoded mask r3.

3

mov ar.x = r2, r3 Move values from GRs to ARs, to set controls (calculated by software) for pex,
pdep, bfly or ibfly

1

pex r1 = r2, r3, ar.ib1, ar.ib2, ar.ib3 Parallel extract, static: Data bits in r2 selected by a pre-decoded mask r3 are
extracted, compressed and right-aligned in the result r1, using datapath controls in
associated ARs

1

pdep r1 = r2, r3, ar.b1, ar.b2, ar.b3 Parallel deposit, static: Right-aligned data bits in r2 are deposited, in order, in result
r1 in bit positions marked with a “1” in the statically-decoded mask r3, using
datapath controls in associated ARs.

1

setib ar.ib1, ar.ib2, ar.ib3 = r3 Set inverse butterfly circuit controls in associated ARs, using hardware decoder to
translate the mask r3 to inverse butterfly controls.

2

setb ar.b1, ar.b2, ar.b3 = r3 Set butterfly circuit controls in associated ARs, using hardware decoder to translate
the mask r3 to butterfly controls.

2

bfly r1 = r2, ar.b1, ar.b2, ar.b3 Perform Butterfly permutation of data bits using controls in associated ARs 1
ibfly r1 = r2, ar.ib1, ar.ib2, ar.ib3 Perform Inverse Butterfly permutation of data bits using controls in associated ARs 1
grp r1 = r2, r3 Perform Group permutation (variable): Data bits in r2 corresponding to “1”s in r3

are grouped to the right, while those corresponding to “0”s are grouped to the left.
3

In the ith stage, the paired input bits to a switch
are n/2i positions apart for the butterfly network and
2i–1 positions apart for the inverse butterfly network. A
switch either passes through or swaps its inputs based
on the value of a control bit. Thus, the operation
requires n/2 × lg(n) control bits.

Below, we show that any pdep operation can be
performed using a butterfly circuit:

Fact 1: Any single data bit can be moved to any
result position by just moving it to the correct half of
the intermediate result at every stage of the butterfly
network.

This can be proved by induction on the number of
stages. At stage 1, the data bit is moved within n/2
positions of its final position. At stage 2, it is moved
within n/4 positions of its final result, and so on. At
stage lg(n), it is moved within n/2lg(n) = 1 position of
its final result, which is its final result position.

Fact 2: If the mask has k “1”s in it, the k
rightmost data bits are selected and moved, i.e., the
selected data bits are contiguous. After moving, the
selected data bits remain contiguous mod m/2 in each
half, where m is the width of the butterfly circuit. They
never cross each other in the final result.

 This fact is based on the structure of the butterfly
network and by definition of the pdep instruction.

Fact 3: If a data bit in the right half (R) is
swapped with its paired bit in the left half (L), then all
selected data bits to the left of it will also be swapped
to L (if they are in R) or stay in L (if they are in L).

Since the selected data bits never cross each other
in the final result (Fact 2), once a bit swaps to L, the
selected bits to the left of it must also go to L. Hence,
if there is one “1” in the mask, the one selected data
bit, d0, can go to R or L. If there are two “1”s in the
mask, the two selected data bits, d1d0, can go to RR or
LR or LL. (Note that RL is not possible.) That is, if the
data bit on the right stays in R, then the next data bit
can go to R or L, but if the data bit on the right goes to
L, the next data bit must also go to L. If there are three
“1”s, the three selected data bits, d2d1d0, can go to
RRR, LRR, LLR or LLL. Hence, there are only k+1
possibilities for k “1”s in the mask.

Fact 4: The selected data bits that have been
swapped from R to L, or stayed in L, are all
contiguous mod m/2 in L and can be rotated so that
they are the rightmost bits of L, and in their original
order.

This follows from Facts 2 and 3. At the end of this
step, we have two half-sized butterfly networks, L and
R, with the selected data bits right-aligned and in order
in each of L and R. (The selected data bits that stayed
in R are already right aligned in R.)

The above can now be repeated recursively for
the half-sized butterfly networks, L and R, until each L
and R is a single bit. This is achieved after lg(n) stages
of the butterfly network.

As an example, consider the pdep operation in
Figure 2(b), broken down into steps in Figure 4(a).
There are 5 “1”s in the mask, so the rightmost 5 bits,
defgh, are the selected data bits that will be moved to
new positions in the result. There are 3 “1”s in the
right half (R) so bits f, g and h stay in R. Bit e swaps
to L, and bit d stays in L, as in Fact 3. Bits de are
contiguous in L mod 4, and can be rotated right by 3
bits to be right-aligned in L, as in Fact 4 (see the result
after stage 1 in Figure 4(a)). The process is repeated
for the two 4-bit butterfly networks L and R in stage 2.
This is further repeated for the four 2-bit butterfly
networks in stage 3, giving the desired pdep
operation for the 8-bit data input.

The rotations done between stages in Figure 4(a)
can be incorporated into the butterfly control bits of
each stage by appropriate rotation of the control bits as
shown in Figure 4(b). Rotations at stage 1 must be
incorporated into the rotations at stage 2, which must
be incorporated into the rotations at stage 3, etc.

(a) (b)
Figure 4. 8-bit pdep operation on the butterfly
network (a) with separate rotations between
stages, and (b) with rotations incorporated

into control bits at each stage

4.2. Bitmask Decoding

The hardest part of the implementation of the
pdep instruction is the translation of the n-bit mask
into the control bits for each stage of the butterfly
network. This can be done in software or by a
hardware decoder. Figure 5 shows a block diagram of
the functional blocks inside such a hardware decoder.
Given the complexity of the problem, it is fairly
amazing that the decoder can be designed to consist of
only two types of subcircuits: a parallel prefix
population counter, which counts the ones from
position 0 (on the right) to every bit position from 0 to
n–2, and a set of LROTC (Left ROTate and
Complement) circuits, which are rotators that
complement bits upon wraparound.

Figure 5. Hardware decoder to translate 64-bit

pdep mask to 64/2 × lg(64) bfly control bits.

It turns out that the decoder circuit of Figure 5 is
in fact identical to the decoder for pex (or grpr) in
[9] with the caveat that the output directed to butterfly

stage i for pdep is directed to inverse butterfly stage
lg(n)–i for pex. This is consistent with the fact that
pex and pdep are inverse operations. Below, we give
a brief conceptual description of the decoder circuit, to
illustrate its logic blocks.

For circuit optimization, we use a control bit value
of “1” to indicate “pass through” and “0” to indicate
“swap”, counter to the usual convention for switches.

To compute the control bits for the first butterfly
stage, count the number k of “1”s in the right half (R)
of the pdep bitmask, and produce a string with “1”s
in the k rightmost bits. The selected data bits that are
swapped in stage 1 to the left half (L) are positioned
such that they are rotated left by the number of data
bits passed through in R; however, they should be the
rightmost bits in L for recursion in the next stage (see
Fact 4 above). Rather than rotating the data bits
explicitly, we can compensate for the rotation by
modifying the routing through the subsequent stages.
This can be achieved by rotating the control bits by the
same number of positions, complementing upon
wraparound. The counting of the number of “1”s in the
right half of each subnet at each stage is done by the
Parallel Prefix Population Count circuit, while the
rotation is done by the LROTC circuits at each stage.

4.3. Functional Units

Suppose we add a new functional unit to support
these new bit-oriented instructions. We consider
implementing alternative subsets of the instructions
listed in Table 1 to show the tradeoffs in hardware cost
versus flexibility.

Figure 6 shows a functional unit that supports all
the instructions in Table 1, including the grp
instruction. The latency and size of this unit is
essentially determined by the grp instruction, which
requires two inverse butterfly circuits and two
decoders [9]. Note that the inclusion of the application
registers for static pex and pdep allows support for
bfly and ibfly permutation instructions at no extra
cost. Thus, also supporting the grp permutation is
somewhat unnecessary, since a bfly followed by an
ibfly instruction can perform any arbitrary (static)
permutation in 2 cycles rather than lg(n) cycles.
Furthermore, the grp instruction can be emulated
using the pex.v instruction.

Figure 7 removes support for grp, using bfly
and ibfly, or pex, for permutations. It supports both
variable and static pex and pdep; the variable
versions can share the same hardware decoder.
Eliminating grp yields considerable area savings,
since a hardware decoder, an inverse butterfly network
and many multiplexers are eliminated.

Figure 8 shows a further simplification by
dropping support for the variable versions pex.v and
pdep.v. This eliminates the decoder and the
multiplexers for the control bits, further reducing the
area. Since most applications require only static
versions of pex and pdep, the elimination of the
costly decoder may be justified.

Figure 6. Functional unit supporting grp,
pex.v, pdep.v, pex, pdep, ibfly and bfly.

Figure 7. Functional unit supporting pex.v,

pdep.v, pex, pdep, ibfly and bfly

Figure 8. Functional unit supporting pex,

pdep, ibfly and bfly

We evaluated these functional units for timing and
area. The circuits in Figs. 6 and 7 are implemented
with a 3-stage pipeline. The hardware decoder
occupies the first 2 pipeline stages due to its slow
parallel prefix population counter. The butterfly (or
inverse butterfly) network is in the third stage. There is
no overlap between the decoder and the routing of the
data through the butterfly network for the pdep
instruction since the control bits for the first stage of
the butterfly network depend on the widest population
count (Fig. 5), which takes the longest to generate.

The various functional units were coded in
Verilog and synthesized using Synopsys Design
Compiler mapping to a TSMC 90nm standard cell
library [10]. The designs were compiled to optimize
timing. The decoder circuit was initially compiled as
one stage and then Design Compiler automatically
pipelined the subcircuit. Timing and area figures are as
reported by Design Compiler. We also synthesized a
reference ALU using the same technology library.

Table 2 summarizes the timing and area for the
circuits. Table 3 shows the number of different circuit
types, to give a sense for why the functional units
supporting variable pex, pdep and grp are so much
larger. It clearly shows that supporting variable
operations comes at a high price. The added
complexity is due to the complex decoder
combinational logic and to the additional pipeline
registers and multiplexer logic. The variable circuits
are approximately 15-20% slower, in cycle time
latency, due to the decoder complexity and pipeline
overhead, and up to three times larger than the static
case. The static pex and pdep functional unit (Figure
8) is even smaller and faster than the reference ALU.

Table 2. Latency and area of proposed
functional units

Unit Cycle
time

Relative
cycle time

Area (NAND
gate equiv.)

Relative
Area

ALU 0.70 ns 1 10.0K 1
Figure 6: grp 0.81 ns 1.16 30.5K 3.05

Figure 7:
pex.v, pdep.v

0.77 ns

1.10

22.1K

2.21

Figure 8:
pex, pdep

0.67 ns

0.96

7.6K

0.76

Table 3. Number of registers and logical

blocks in functional units
Unit Pipeline

Registers
Butterfly and
Inverse Butterfly

Decoders MUXes

Fig 6 ~14.5 3 2 14
Fig 7 ~9.25 2 1 13
Fig 8 0 2 0 1

5. Applications

We now describe how the pex and pdep

instructions can be used in existing applications, to
give currently realizable speedup estimates. Use of
these novel instructions in new applications and
algorithms is likely to produce even more speedup.

5.1. Bit Compression and Decompression

The Itanium [8] and IA-32 [11] parallel compare
instructions produce subword masks – the subwords

for which the relationship is false contain all zeros and
for which the relationship is true contain all ones. This
representation is convenient for subsequent subword
masking or merging. The SPARC VIS [12] parallel
compare instruction produces a bit mask of the results
of the comparisons. This representation is convenient
if some decision must be made based on the outcome
of the multiple comparisons. Converting from the
subword representation to the bitmask representation
for k subwords requires k extract instructions to extract
a bit from each subword and k-1 deposit instructions to
concatenate the bits; a single static pex instruction
accomplishes the same thing (see figure 9).

The SSE instruction pmovmskb [11] serves a
similar purpose; it creates an 8- or 16-bit mask from
the most significant bit from each byte of a MMX or
SSE register and stores the result in a general purpose
register. However, pex offers greater flexibility than
the fixed pmovmskb, allowing the mask, for example,
to be derived from larger subwords, or from subwords
of different sizes packed in the same register. In fact,
any arbitrary selection of bits is allowed as described
in the general pattern matching scheme in section 2.

Similarly, binary image compression performed
by MATLAB’s bwpack function [13] benefits from
pex. Binary images in MATLAB are typically
represented and processed as byte arrays – a byte
represents a pixel and has permissible values 0x00 and
0x01. However, certain optimized algorithms are
implemented for a bitmap representation, in which a
single bit represents a pixel. To produce one 64-bit
output word requires 64 extr and 63 dep
instructions; only 8 static pex and 7 static dep
instructions perform the equivalent function (Figure
9). For decompression, as with the bwunpack
function, 64 extr and 56 dep instructions are
required to decompress one 64-bit input word; 7 extr
and 8 pdep instructions are equivalent.

(a)

(b)

Figure 9. (a) 1 bit requires 1 extr and 1 dep
(b) 1 byte requires 1 pex and 1 dep

5.2. Least Significant Bit Steganography

Steganography [14] refers to the process of hiding

a secret message, not by directly obscuring the
message content as with cryptography, but rather by
embedding the message in a larger, innocuous cover
message. A simple type of steganography is least
significant bit (LSB) steganography in which the least
significant bits of the color values of pixels in an
image, or the intensity values of samples in a sound
file, are replaced by secret message bits. LSB
steganography encoding can use a pdep instruction to
expand the secret message bits and place them at the
least significant bit positions of every subword.
Decoding uses a pex instruction to extract the least
significant bits from each subword and reconstruct the
secret message.

LSB steganography is an example of an
application that utilizes the loop-invariant versions of
the pex and pdep instructions. The sample size and
the number of bits replaced are not known at compile
time, but they are constant across a single message.
Figure 10 depicts an example LSB steganography
encoding operation in which the 4 least significant bits
from each 16-bit sample of PCM encoded audio is
replaced with secret message bits.

Figure 10. LSB steganography encoding (4
bits per 16-bit PCM encoded audio sample)

5.3. Transfer Coding

Transfer coding is the term applied when arbitrary
binary data is transformed to a text string for safe
transmission using a protocol that expects only text as
its payload. Uuencoding [15] is one such encoding
originally used for transferring binary data over email
or usenet. In uuencoding, each set of 6 bits is aligned
on a byte boundary and 32 is added to each value to
ensure the result is in the range of the ASCII printable
characters. Without pdep, each field is individually
extracted and has the value 32 added to it. With pdep,
8 fields are aligned at once and a parallel add
instruction adds 32 to each byte simultaneously
(Figure 11 shows 4 parallel fields). Similarly, for
decoding, a parallel subtract instruct deducts 32 from
each byte and then pex compresses eight 6-bit fields.

Figure 11. Uuencode of ‘bit’ using pdep

5.4 Bioinformatics

Pattern matching and bit scatter/gather operations
are also found in important bioinformatics
applications. For example, the Basic Local Alignment
Search Tool (BLAST) is used for determining the
similarity of sequences [16]. The BLASTX variant
translates a nucleotide sequence to a protein sequence
and then compares against a protein database. Each
field of 6 bits in the nucleotide sequence is translated
into a protein symbol. An efficient algorithm can use
pdep to distribute eight 6-bit fields on byte
boundaries, and then use the result as a set of table
indices for a parallel table lookup (ptlu) instruction
[17] to translate the bytes.

6. Performance Results

We coded kernels for the above applications and

simulated them using the SimpleScalar Alpha
simulator [18] enhanced to recognize our new
instructions. We compared against the baseline Alpha
ISA and an Alpha ISA with bit-level extr and dep
instructions. (Alpha’s extract_byte and
byte_insert instructions are not general enough
for our applications).

Figure 12 show our performance results,
normalized to the base ISA cycle counts. The
processor with pex and pdep instructions exhibits
speedups over the base ISA ranging from 1.85× to
5.21×, with an average of 3.41×. The speedup over an
ISA that has extr and dep instructions ranges from
1.60× to 4.30×, averaging 2.48× speedup.

The simple bit compression and decompression
functions exhibited the greatest speedup as these
operations combine 8 extracts and deposits of 1-bit
fields into one pex or pdep. The speedup is lower in
the steganography encoding case because there are
only 4 fields per word, and also in the uudecode and
BLASTX translation case because there are fewer
fields overall.

0
1
2
3
4
5
6

co
mpre

ss

ste
g_

de
co

de

uu
de

co
de

de
co

mpre
ss

ste
g_

en
co

de

uu
en

co
de

bla
stx

_tr
an

sla
te

pex pdep

Sp
ee

du
p Base

extr/dep

pex/pdep

Figure 12. Performance Results

7. Summary and Conclusions

We propose new parallel extract and parallel

deposit instructions to accelerate bit compression and
expansion operations. These instructions can improve
the performance in various applications, achieving a
3.41× average speedup over a basic ISA that has a
simple ALU/shifter, and a 2.48× average speedup over
an ISA with extr and dep instructions.

We show that pdep can be mapped onto the
butterfly permutation circuit. We also propose a new
functional unit that performs the bfly and ibfly
permutation instructions in addition to pex and pdep.
We examine alternative functional units that support
different subsets of the advanced bit manipulation
instructions in Table 1. Our results indicate that
support for variable pex.v and pdep.v instructions
in hardware comes at a steep price in area and latency,
due mainly to the circuit complexity of the hardware
decoder for translating a mask into controls for the
butterfly or inverse butterfly datapaths. Also, our
applications mostly needed static versions of pex and
pdep; only the LSB steganography application makes
use of loop-invariant pex and pdep.

Hence, we feel that the simplest unit that supports
ibfly and bfly and static pex and pdep (Figure
8) is the current best choice for both functionality
actually needed and cost-effectiveness. In cases where
the variable pex and pdep instructions are required, a
software routine can decode the mask and save the
resulting control bits for later use by static pex and
pdep instructions. If the operation is loop invariant,
this subroutine is invoked only once, with minimal
performance overhead.

Areas for future work include new or re-structured
algorithms and applications exploiting these fast
parallel instructions, and exploration of other
advanced bit manipulation instructions such as bit

matrix multiply. These advanced bit-oriented
instructions are an important ISA extension for word-
oriented processors that can provide tangible benefits
in many existing and emerging application domains.

8. References

[1] R. B. Lee, “Accelerating multimedia with enhanced
microprocessors,” IEEE Micro, vol. 15, no. 2, pp. 22-32,
April 1995.
[2] R. B. Lee, Z. Shi, and X. Yang, “Efficient Permutation
Instructions for Fast Software Cryptography,” IEEE Micro,
vol. 21, no. 6, pp. 56-69, December 2001.
[3] Z. Shi and R. B. Lee, “Bit Permutation Instructions for
Accelerating Software Cryptography,” Proceedings of the
IEEE International Conf. on Application-Specific Systems,
Architectures and Processors, pp.138-148, July 2000.
[4] Xiao Yang and Ruby B. Lee, Fast Subword
Permutation Instructions Using Omega and Flip Network
Stages, Proceedings of the International Conference on
Computer Design (ICCD 2000), pp. 15-22, September 2000.
[5] R. B. Lee, Z. Shi and X. Yang, “How a Processor can
Permute n bits in O(1) cycles,” Proceedings of Hot Chips 14
– A symposium on High Performance Chips, August 2002.
[6] Z. Shi, X. Yang and R. B. Lee, “Arbitrary Bit
Permutations in One or Two Cycles,” Proceedings of the
IEEE International Conference on Application-Specific
Systems, Architectures and Processors, June 2003.
[7] R. Lee, “Precision Architecture”, IEEE Computer, Vol.
22, No. 1pp.78-91, Jan 1989.
[8] Intel Corporation, Intel® Itanium® Architecture
Software Developer's Manual, Vol. 1-3., rev. 2.1, Oct. 2002.
[9] Y. Hilewitz, Z. J. Shi, and R. B. Lee, “Comparing Fast
Implementations of Bit Permutation Instructions,”
Proceedings of the 38th Annual Asilomar Conference on
Signals, Systems, and Computers, Nov. 2004.
[10] Taiwan Semiconductor Manufacturing Corporation,
TCBN90G: TSMC 90nm Core Library Databook, Oct. 2003.
[11] Intel Corporation, IA-32 Intel® Architecture Software
Developer’s Manual, Vol. 1-2, 2004.
[12] Sun Microsystems, The VIS™ Instruction Set, Version
1.0, June 2002.
[13] The Mathworks, Inc., Image Processing Toolbox
User’s Guide: http://www.mathworks.com/access/helpdesk/
help/toolbox/images/images.html.
[14] E. Franz, A. Jerichow, S. Möller, A. Pfitzmann, and I.
Stierand “Computer Based Steganography,” Information
Hiding, Springer Lecture Notes in Computer Science, vol.
1174, pp. 7–21, 1996.
[15] “Uuencode,” Wikipedia: The Free Encyclopedia,
http://en.wikipedia.org/wiki/Uuencode.
[16] National Center for Biotechnology Information,
BLAST, http://www.ncbi.nlm.nih.gov/BLAST/
[17] A. M. Fiskiran and R. B. Lee, “On-Chip Lookup Tables
for Fast Symmetric-Key Encryption,” Proceedings of the
IEEE International Conf. on Application-Specific Systems,
Architectures and Processors, pp. 356-363, July 2005.
[18] D. Burger and T. Austin, “The SimpleScalar Tool Set,
Version 2.0,” University of Wisconsin-Madison Computer
Sciences Department Technical Report #1342, 1997.

