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Abstract
The Median of Medians (also known as BFPRT) algorithm,
although a landmark theoretical achievement, is seldom used
in practice because it and its variants are slower than sim-
ple approaches based on sampling. The main contribution
of this paper is a fast linear-time deterministic selection al-
gorithm QUICKSELECTADAPTIVE based on a refined def-
inition of MEDIANOFMEDIANS. The algorithm’s perfor-
mance brings deterministic selection—along with its desir-
able properties of reproducible runs, predictable run times,
and immunity to pathological inputs—in the range of prac-
ticality. We demonstrate results on independent and identi-
cally distributed random inputs and on normally-distributed
inputs. Measurements show that QUICKSELECTADAPTIVE
is faster than state-of-the-art baselines.

Categories and Subject Descriptors I.1.2 [Symbolic and
Algebraic Manipulation]: Algorithms

1. Introduction
The selection problem is widely researched and has many
applications. In its simplest formulation, selection is find-
ing the kth smallest element (also known as the kth order
statistic) of an array: given an unstructured array A, a non-
strict order ≤ over elements of A, and an index k, the task
is to find the element that would be at position A[k] if the
array were fully sorted. A variant that is the focus of this
paper is partition-based selection: in addition to finding the
kth smallest element, the algorithm must also permute el-
ements of A such that A[i] ≤ A[k] ∀i, 0 ≤ i < k, and
A[k] ≤ A[i] ∀i, k ≤ i < n. Sorting A solves the problem in
O(n log n), so the challenge is to achieve selection in O(n)
time.

Selection often occurs as a step in more complex algo-
rithms such as shortest path, nearest neighbor, and ranking.
QUICKSELECT, invented by Hoare in 1961 [15], is the se-

[Copyright notice will appear here once ’preprint’ option is removed.]

lection algorithm most used in practice [8, 27, 31]. It can
be thought of as a partial QUICKSORT [16]: Like QUICK-
SORT, QUICKSELECT relies on a separate routine to divide
the input array into elements less than or equal to and greater
than or equal to a chosen element called the pivot. Unlike
QUICKSORT which recurses on both subarrays left and right
of the pivot, QUICKSELECT only recurses on the side known
to contain the kth smallest element. (The side to choose is
known because the partitioning computes the rank of the
pivot.)

The pivot choosing strategy strongly influences QUICK-
SELECT’s performance. If each partitioning step reduces the
array portion containing the kth order statistic by at least a
fixed fraction, QUICKSELECT runs in O(n) time; otherwise,
QUICKSELECT is liable to run in quadratic time. Therefore,
strategies for pivot picking are a central theme in QUICKSE-
LECT. Some of the most popular and well-studied heuristics
choose the median out of a small (1–9) number of elements
(either from predetermined positions or sampled uniformly
at random) and use that as a pivot [3, 8, 14, 32]. However,
such heuristics cannot provide strong worst-case guarantees.

Selection in guaranteed linear time remained an open
problem until 1973, when Blum, Floyd, Pratt, Rivest, and
Tarjan introduced the seminal “Median of Medians” algo-
rithm [4] (also known as BFPRT after the initials of its au-
thors), an ingenious pivot selection method that works in
conjunction with QUICKSELECT. § 3 discusses both QUICK-
SELECT and MEDIANOFMEDIANS in detail.

Although widely described and studied, MEDIANOFME-
DIANS is seldom used in practice. This is because its pivot
finding procedure has run time proportional to the input size
and is relatively intensive in both element comparisons and
swaps. In contrast, sampling-based pivot picking only does a
small constant amount of work. In practice, the better quality
of the pivot found by MEDIANOFMEDIANS does not jus-
tify its higher cost. Therefore, the state of the art in selec-
tion with partitioning has been QUICKSELECT in conjunc-
tion with simple pivot choosing heuristics.

It would seem that heuristics-based selection has won
the server room, leaving deterministic selection to the class-
room. However, fast deterministic selection remains desir-
able for several practical reasons:
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• Immunity to pathological inputs: Deterministic sampling
heuristics (such as “median of first, middle, and last el-
ement”) are all susceptible to pathological inputs that
make QUICKSELECT’s run time quadratic. These inputs
are easy to generate and contain patterns that are plau-
sible in real data [26, 27, 34]. In order to provide linear-
ity guarantees, many current implementations of QUICK-
SELECT include code that detects and avoids such situa-
tions, at the cost of sometimes falling back to a slower
(albeit not quadratic) algorithm, such as MEDIANOF-
MEDIANS itself. The archetypal example is INTROSE-
LECT [27]. A linear deterministic algorithm that is also
fast would avoid these inefficiencies and complications
by design.

• Deterministic behavior: Randomized pivot selection
leaves the input array in a different configuration after
each call (even for identical inputs), which makes it dif-
ficult to reproduce runs (e.g. for debugging purposes).
In contrast, deterministic selection always permutes el-
ements of a given array the same way.

• Predictability of running time: In real-time systems
(e.g. that compute the median of streaming packets) a
randomized pivot choice may cause problems. The first
1–3 pivot choices have a high impact on the overall run
time of quickselect with randomized pivots. This makes
for a large variance in individual run times [9, 18], even
against the same input. Deterministic algorithms have a
more predictable run time.

We seek to improve the state of the art in fast determin-
istic selection, specifically aiming practical large-scale ap-
plicability. First, we propose a refined definition of MEDI-
ANOFMEDIANS. The array permutations necessary for find-
ing the pivot also contribute to the partitioning process, thus
reducing both overall comparisons and data swaps. We apply
this idea to Chen and Dumitrescu’s recent REPEATEDSTEP
algorithm [6], a MEDIANOFMEDIANS variant particularly
amenable to our improvements, and we obtain a competitive
baseline.

Second, we add adaptation to MEDIANOFMEDIANS.
The basic observation is that MEDIANOFMEDIANS is spe-
cialized in finding the median, not some arbitrary order
statistic. That makes the performance of MEDIANOFME-
DIANS degrade considerably when selecting order statistics
away from the median (e.g. 25th percentile). We devise sim-
ple and efficient specialized algorithms for searching for in-
dexes away from the middle of the searched array. The best
algorithm to use is chosen dynamically.

The resulting composite algorithm QUICKSELECTADAP-
TIVE was measured to be faster than relevant state-of-the-art
baselines, which makes it a candidate for solving the se-
lection problem in practical libraries and applications. We
propose a generic open-source implementation of QUICK-
SELECTADAPTIVE for inclusion in the D language’s stan-

dard library, where it can serve as a reference and basis for
porting to other languages and systems.

In the following sections we use the customary pseu-
docode and algebraic notations to define algorithms. Divi-
sions of integrals are integral with truncation as in many pro-
gramming languages, e.g. n/k is bnk c. When real division
is needed, we write real(n)/real(k) to emphasize conver-
sion of operands to real numbers prior to the division. Arrays
are zero-based so as to avoid minute differences between the
pseudocode algorithms and their implementations available
online. The length of array A is written as |A|. We denote
with A[a : b] (if a < b) a “slice” of A starting with A[a] and
ending with (and including) A[b − 1]. The slice A[a : b] is
empty if a = b. Elements of the array are not copied—the
slice is a bounded view into the existing array.

The next section discusses related work. § 3 reviews the
algorithm definitions we start from. § 4 introduces the im-
provements we propose to MEDIANOFMEDIANS and RE-
PEATEDSTEP, which are key to better performance. § 5 dis-
cusses adaptation for MEDIANOFMEDIANS and derivatives.
§ 6 includes a few engineering considerations. § 7 presents
experiments and results with the proposed algorithms. A
summary concludes the paper.

2. Related Work
The selection problem has a long history, starting with Lewis
Carrol’s 1883 essay on the fairness of tennis tournaments (as
recounted by Knuth [20, Vol. 3]).

Hoare [15] created the QUICKSELECT algorithm in 1961,
which still is the preferred choice of practical implemen-
tations, in conjunction with various pivot choosing strate-
gies. Sophisticated running time analyses exist for quickse-
lect [13, 18, 19, 23, 28]. Martı́nez, Panario, and Viola [24]
analyze the behavior of QUICKSELECT with small data sets
and propose stopping QUICKSELECT’s recursion early and
using sorting as an alternative policy below a cutoff, es-
sentially a simple multi-strategy QUICKSELECT. Same au-
thors [25] propose several adaptive sampling strategies for
QUICKSELECT that take into account the index searched.

Blum, Floyd, Pratt, Rivest, and Tarjan created the MEDI-
ANOFMEDIANS algorithm [4]. Subsequent work provided
variants and improved on its theoretical bounds [5, 11, 12,
21, 36, 37]. Chen and Dumitrescu [6] propose variants of
MEDIANOFMEDIANS that group 3 or 4 elements at a time
(the original uses groups of 5 or more elements). Most vari-
ants offer better bounds and performance than the original,
but to date neither has been shown to be competitive against
heuristics-based algorithms.

Battiato et al. [2] describe Sicilian Median Selection,
a fast algorithm for computing an approximate median. It
could be considered the transitive closure of Chen and Du-
mitrescu’s REPEATEDSTEP algorithm. In spite of good av-
erage performance, the algorithm’s worst-case pivot quality
is insufficient for guaranteeing exact selection in linear time.
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3. Background
3.1 QUICKSELECT and MEDIANOFMEDIANS

We provide a quick overview of the QUICKSELECT and
MEDIANOFMEDIANS algorithms [8, 20] with an emphasis
on practical implementations.

Algorithm 1 illustrates QUICKSELECT. It takes as param-
eters not only the data (array A and index k), but also a parti-
tioning primitive called PARTITION, in a higher-order func-
tion fashion. PARTITION(A, k) returns an index p (called
pivot) with 0 ≤ p < |A| and also partitions A such that
A[j] ≤ A[p] ∀j, 0 ≤ j < p, and A[p] ≤ A[j] ∀j, p < j <
|A|. QUICKSELECT, in a divide and conquer manner, uses
the pivot to either reduce the portion of the array searched
from the left when p < k, reduce it from the right when
k < p, or finish the search when p = k. Overall, QUICKSE-
LECT uses an approximate partitioning primitive repeatedly
to obtain a precise partition around the specific index k.

Algorithm 1: QUICKSELECT

Data: PARTITION, A, k with |A| > 0, 0 ≤ k < |A|
Result: Puts kth smallest element of A in A[k] and

partitions A around it.
1 while true do
2 p← PARTITION(A, k);
3 if p = k then
4 return;
5 end
6 if p > k then
7 A← A[0 : p];
8 else
9 k ← k − p− 1;

10 A← A[p+ 1 : |A|];
11 end
12 end

The running time is linear if PARTITION(A, k) is linear
and able to return a pivot p within some fixed fraction f <
1 from either end of A, i.e. p > f |A| and p < (1 −
f)|A|, which allows QUICKSELECT to eliminate at least
f |A| elements at each pass. In that case, the time complexity
T (n) (depending on n = |A|) of QUICKSELECT satisfies:

T (n) ≤ T ((1− f)n) +O(n) (1)

which results in T (n) = O(n) by the Master Theorem [30].
There is no required relationship between k and p, and

in fact many partitioning routines do not use k. It may be
considered a hint. Ideally, the partitioning primitive would
return a pivot equal to k, or close to k (greater than it if
k < |A|

2 , smaller otherwise). That allows QUICKSELECT to
either end the search or eliminate many elements at each
pass. Contemporary approaches prevalently ignore k and
attempt to partition close to the median, strategy shown
recently to be suboptimal [25].

Most pivot selection schemes are based on heuristics:
they choose an array element likely to be not too close to
the minimum or maximum, and then use HOAREPARTI-
TION [16] (Algorithm 2), which partitions the array around
that element in linear time. Some popular and well re-
searched heuristics include:

• Random pivot [8]: the pivot is chosen uniformly at ran-
dom from A;

• Median of 3 [32]: the pivot is the median of A [0],
A [|A|/2], and A [|A| − 1];

• Median of 3 randomized [17, 32]: the pivot is the median
of three elements chosen uniformly at random from A;

• Tukey’s ninther [3, 33]: Choose A [0], A [|A|/8],
A [2|A|/8], A [3|A|/8], A [4|A|/8], A [5|A|/8],
A [6|A|/8], A [7|A|/8], and A [|A| − 1], then com-
pute the median of first three, middle three, and last
three, and finally the pivot is the median of the three
medians;

• Tukey’s ninther randomized [34]: Similar to the ninther,
but the nine samples are chosen uniformly at random
from A.

Algorithm 2: HOAREPARTITION

Data: A, p with |A| > 0, 0 ≤ p < |A|
Result: p′, the new position of A[p]; A partitioned at

A[p′]
1 SWAP(A[p], A[0]);
2 a = 1; b = |A| − 1;
3 loop: while true do
4 while true do
5 if a > b then break loop;
6 if A[a] ≥ A[0] then break;
7 a← a+ 1;
8 end
9 while A[0] < A[b] do b← b− 1;

10 if a ≥ b then break;
11 SWAP(A[a], A[b]);
12 a← a+ 1;
13 b← b− 1;
14 end
15 SWAP(A[0], A[a− 1]);
16 return a− 1;

No heuristics-based approach can provide a good worst-
case run time guarantee. However, the constant-time speed
of computing the pivot compensates on average for its poor
quality.

In contrast, MEDIANOFMEDIANS spends more time to
systematically guarantee good pivot choices. Algorithm 3 il-
lustrates the prevalent implementation of MEDIANOFME-
DIANS [7, 10, 29, 35].
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Algorithm 3: BFPRTBASELINE

Data: A, k (k not used)
Result: Pivot 0 ≤ p < |A|; A partitioned at A[p]

1 if |A| < 5 then
2 return HOAREPARTITION(A, |A|/2);
3 end
4 i← 0; j ← 0;
5 while i+ 4 < |A| do
6 MEDIAN5(A, i, i+ 1, i+ 2, i+ 3, i+ 4);
7 SWAP(A[i+ 2], A[j]); // median to 1st quintile
8 i← i+ 5;
9 j ← j + 1;

10 end
11 QUICKSELECT(BFPRTBASELINE, A[0 : j], j/2);
12 return HOAREPARTITION(A, j/2);

The algorithm first computes medians of groups of 5 el-
ements at a time, for a total of |A|

5 groups. The primitive
MEDIAN5 takes an array and five distinct indexes, computes
their median with a small specialized algorithm, and places
it in the third index received. (The last |A| mod 5 elements
of the array are ignored for simplicity.) Computing (recur-
sively) the median of these medians yields a pivot with a
desirable property. There are |A|

10 elements less than or equal
to the pivot, but each of those is the median of some 5 dis-
tinct elements, so for each of those |A|

10 elements there are 2
others also less than or equal to the pivot. That guarantees at
least 3|A|

10 elements less than or equal to the pivot. By sym-
metry, at least 3|A|

10 elements in the array are greater than or
equal to the pivot.

Selection is initiated by invoking QUICKSE-
LECT(BFPRTBASELINE, A, k). Line 11 passes the
name of the algorithm (BFPRTBASELINE) as an argument
to QUICKSELECT. This makes the two algorithms mutually
recursive: BFPRTBASELINE is the partitioning primitive
used by QUICKSELECT, and in turn uses QUICKSELECT
itself.

MEDIAN5 is used intensively by the algorithm and there-
fore deserves a careful implementation. A good balance
needs to be found between comparisons, swaps, and func-
tion size. We chose a function with 6 comparisons and 0–7
swaps (only 3.13 on average against distinct random num-
bers), shown in Algorithm 4. (To simplify notation we use
A[a] < A[b] as a shortcut for ¬(A[b] ≤ A[a]).) The function
is also idempotent: if the five slots are already partitioned, it
performs no swaps.

To prove linearity for MEDIANOFMEDIANS, let us look
at the number of comparisons C(n) that BFPRTBASELINE
executes as a function of n = |A|. In the worst case, we
have:

Algorithm 4: MEDIAN5
Data: A, a, b, c, d, e
Result: Puts median of A[a], A[b], A[c], A[d], A[e] in

A[c] and leaves the smaller items in A[a], A[b]
and the larger ones in A[d], A[e].

1 if A[c] < A[a] then SWAP(A[a], A[c]);
2 if A[d] < A[b] then SWAP(A[b], A[d]);
3 if A[d] < A[c] then
4 SWAP(A[c], A[d]);
5 SWAP(A[a], A[b]);
6 end
7 if A[e] < A[b] then SWAP(A[b], A[e]);
8 if A[e] < A[c] then
9 SWAP(A[c], A[e]);

10 if A[c] < A[a] then SWAP(A[a], A[c]);
11 else
12 if A[c] < A[b] then SWAP(A[b], A[c]);
13 end

C(n) ≤ C
(n
5

)
+ C

(
7n

10

)
+

6n

5
+ n (2)

where the first term accounts for the recursive call to com-
pute the median of medians, the second is the recursive call
in QUICKSELECT (in the worst case 3n

10 elements are elimi-
nated in one partitioning step so 7n

10 are left), the third is the
cost of computing the medians of five, and the last is the cost
of HOAREPARTITION. Consequently C(n) ≤ 22n.

The number of swaps S(n) is also of interest. That satis-
fies the recurrence:

S(n) ≤ S
(n
5

)
+ S

(
7n

10

)
+

7n

5
+

n− n
10

2
(3)

The terms correspond to those for C(n). Our median of
five routine uses at most 7 swaps. Also in the last term we
eliminate the first n

10 elements of the array. Those are known
to be no greater than the median so they will not be swapped.
Consequently S(n) ≤ 37n

2 .
Although Algorithm 3 uses groups of 5, any greater con-

stant works as well (for the implementation and the linearity
proof above); in fact, Blum et al. discuss group sizes of 15
and 21 elements. Group size 5 is prevalently used today be-
cause it is the most effective in practice.

3.2 The REPEATEDSTEP Algorithm
Recently Chen and Dumitrescu [6] proposed MEDIANOF-
MEDIANS variants that use groups of 3 or 4 elements
yet have linear worst-case running time, disproving long-
standing conjectures to the contrary. Algorithm 5 shows the
pseudocode of their REPEATEDSTEP algorithm with a group
size of 3.
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Algorithm 5: REPEATEDSTEP

Data: A, k (k not used)
Result: Pivot 0 ≤ p < |A|; A partitioned at A[p]

1 if |A| < 9 then
2 return HOAREPARTITION(A, |A|/2);
3 end
4 i← 0; j ← 0;
5 while i+ 2 < |A| do
6 MEDIAN3(A, i, i+ 1, i+ 2);
7 SWAP(A[i+ 1], A[j]); // median to 1st tertile
8 i← i+ 3;
9 j ← j + 1;

10 end
11 i← 0; m← 0;
12 while i+ 2 < j do
13 MEDIAN3(A, i, i+ 1, i+ 2);
14 SWAP(A[i+ 1], A[m]); // median to 1st 9th-ile
15 i← i+ 3;
16 m← m+ 1;
17 end
18 QUICKSELECT(REPEATEDSTEP, A[0 : m],m/2);
19 return HOAREPARTITION(A,m/2);

The algorithm is similar to BFPRTBASELINE with group
size changed to 3, with one important addition: the median
of medians step is repeated, essentially choosing the pivot
as the median of medians of medians of three (sic), instead
of median of medians of three. This degrades the quality of
the pivot because of the double approximation: the pivot is
guaranteed to be within 2n

9 elements from either edge of the
array (weaker than n

3 without the repeated step, or 3n
10 if us-

ing groups of 5). However, this loss in quality comes with an
improvement in speed: the median of medians computation
only needs to recurse on n

9 elements instead of n
3 .

Intuitively, trading off some pivot quality for faster pro-
cessing in MEDIANOFMEDIANS is a good idea, since pivot
heuristics that provide relatively poor pivot estimates very
fast perform so well in practice. There are advantages spe-
cific to using groups of 3—computing the median of 3 is
simpler and takes 2–3 comparisons whereas the median of 5
requires 6 comparisons. So it is expected that REPEATED-
STEP improves performance over BFPRTBASELINE. To as-
sess that, let us estimate the number of comparisons C(n)
performed by REPEATEDSTEP from the recurrence:

C(n) ≤ C
(n
9

)
+ C

(
7n

9

)
+

3n

3
+

3n

9
+ n (4)

where the first term is the cost of recursion for computing the
median of medians of medians, the second is the worst-case
time spent processing the remaining elements, and the last
three terms account respectively for computing the medians

of three (up to three comparisons per group of three), com-
puting the medians of medians of three, and the partitioning.
Consequently C(n) ≤ 21n.

We now calculate a bound for S(n). Each median of three
uses up to two swaps, to which we add one for placing the
median at the front of the array. The partitioning costs at
most n

2 swaps in general, but in this case we already have
the first n

18 elements of the array known to be no greater
than the pivot, so they will not be swapped. We obtain:

S(n) ≤ S
(n
9

)
+ S

(
7n

9

)
+ n+

n

3
+

n− n
18

2
(5)

which solves to S(n) ≤ 65n
4 . Both bounds are better than

those of BFPRTBASELINE.

4. Improving Layout
We now start improving these algorithms, first by laying out
data in a more efficient manner. Note that BFPRTBASELINE
(Algorithm 3) already embeds an important optimization—
it reuses the first quintile of A for storing the medians.
This approach avoids the additional overhead of creating and
using a separate temporary array to store the medians of 5
and is in keeping with today’s most frequently encountered
implementations [7, 10, 29, 35].

One key insight motivates a different layout choice: we
aim to make the comparisons and swaps performed during
the medians of 5 computation also count toward the parti-
tioning. MEDIANOFMEDIANS organizes the array in groups
of 5 and computes the median of each. In addition, in each
group of 5, the 2 smaller elements are to the left, and the 2
larger ones are to the right of the median. That imparts quite
a non-trivial implicit structure onto the array in addition to
computing the pivot. However, that structure is of no use to
HOAREPARTITION. Ideally, that structure should be embed-
ded in the array in a form favorable to the subsequent par-
titioning step; conversely, the partitioning step should make
maximal use of the implicit information established in the
array by the medians of 5 stage. Indeed, the original MEDI-
ANOFMEDIANS paper [4] provides an optimized algorithm
called PICK1 that makes use of the implicit structuring of
the input, but is still not efficient in practice.

Our approach (BFPRTIMPROVED shown in Algo-
rithm 6) is to make the groups of 5 non-contiguous and lay
them out in a manner that is advantageous for the partition-
ing step. We place the subarray of medians in the third quin-
tile, the smaller values to its left, and the larger values to
its right. This is efficient because the third quintile is in the
middle of the entire array. After that quintile is partitioned
around its own median (by the recursive call to QUICKSE-
LECT), it already is globally partitioned properly around the
pivot; there is no more need to visit it. That way, the medians
of 5 computation step contributes one fifth of the final result
at no additional cost. The subsequent partitioning step only
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needs to partition quintiles 1, 2, 4, and 5. Better yet, quin-
tiles 1 and 2 contain the statistically smaller elements and
quintiles 4 and 5 contain the statistically larger elements so
the medians of 5 computation also saves on swapping during
partitioning.

In order to distribute the groups of 5 appropriately, we
take advantage of the fact that the MEDIAN5 primitive (Al-
gorithm 4) accepts any five distinct indexes, not only con-
secutive ones. So we can choose any convenient grouping
and iteration schedule. Let f = |A|

5 such that quintiles start
at A[0], A[f ], A[2f ], A[3f ], and A[4f ]. Then we choose the
first group as MEDIAN5(A, 0, 1, 2f, 3f, 3f + 1). These are
respectively the leftmost two elements to the left of the third
quintile, the first element of the third quintile, and the left-
most two elements to the right of the third quintile. Itera-
tion proceeds with median calls following the schedule ME-
DIAN5(A, i, i+1, 2f+j, 3f+ i, 3f+ i+1), with i iterating
with step 2 and j iterating with step 1. The entire array is
covered when j = f .

Computing medians of five using the iteration strategy
above and then computing the median of the third quintile
leaves the array with the following layout:

• The elements likely less than or equal to the pivot (at least
3n
10 ) are already to the left of A’s middle.

• The elements likely larger than or equal to the pivot
(again at least 3n

10 ) are already to the right of A’s middle.
• The medians of five are in the third quintile of the array

and are already partitioned around the pivot, so there
is no more need for the partitioning step to compare n

5
elements.

This leaves the array well suited for partitioning with only
light swapping. The subarrays A[0 : 2f ] and A[3f : |A|]
need to be visited and partitioned properly. This work is
carried by EXPANDPARTITION (not shown as it is trivial
yet replete with detail), a slightly modified HOAREPARTI-
TION that takes into account the already-partitioned subarray
around the pivot. The call EXPANDPARTITION(A, a, p, b)
proceeds by the following scheme, starting with i = 0 and
j = |A| − 1 and moving them toward a and b, respectively:

≤ A[p]

0

?

i→
≤ A[p]

a

A[p]

p

≥ A[p]

b

?

← j

≥ A[p]

The procedure swaps as many elements as possible be-
tween A[i : a] and A[b+ 1 : j + 1], because that is the most
efficient use of swapping—one swap puts two elements in
their final slots. Often there will be some asymmetry (one of
i and j reaches its limit before the other) so the pivot posi-
tion will need to shift to the left or to the right. EXPAND-
PARTITION returns the final position of the pivot, which
BFPRTIMPROVED forwards to the caller. EXPANDPARTI-
TION(A, a, b) performs max(a, |A| − b) comparisons and at
most max(a, |A| − b) swaps.

Algorithm 6: BFPRTIMPROVED

Data: A, k (k not used)
Result: Pivot p, 0 ≤ p < |A|

1 if |A| < 5 then
2 return HOAREPARTITION(A, |A|/2);
3 end
4 f ← |A|/5; i← 0;
5 for j ← 2f through 3f − 1 do
6 MEDIAN5(A, i, i+ 1, j, 3f + i, 3f + i+ 1);
7 i← i+ 2;
8 end
9 QUICKSELECT(BFPRTIMPROVED, A[2f : 3f ], f/2);

return
EXPANDPARTITION(A, 2f, 2f + f/2, 3f − 1);

We now derive worst-case bounds for BFPRTIMPROVED
depending on n = |A|. The only difference in computing
C(n) is one fifth of the elements do not need to be compared
any more, which changes the last term:

C(n) ≤ C
(n
5

)
+ C

(
7n

10

)
+

6n

5
+

4n

5
(6)

which leads to C(n) ≤ 20n. For swaps:

S(n) ≤ S
(n
5

)
+ S

(
7n

10

)
+

7n

5
+

2n

10
(7)

The last term changed because there are at most 2n
10 el-

ements on either side to swap across the pivot, and the al-
gorithm puts two elements in the right place with one swap
whenever possible. The equation results in S(n) ≤ 16n. By
these estimates, BFPRTIMPROVED reduces comparisons by
about 9% and swaps by about 14% over BFPRTBASELINE.

4.1 Improving Layout for REPEATEDSTEP

Let us now apply the same layout idea to the REPEATED-
STEP algorithm. The result is shown in Algorithm 7. The
loop starting at line 5 computes medians of 3 noncontiguous
elements using MEDIAN3 (trivial, not shown): first from the
first tertile, second from the middle tertile, and third from the
last tertile. The three indexes move in lockstep, so only one
iteration variable is needed. Similarly, the next loop uses the
same iteration schedule to compute medians of three for the
middle tertile. This leaves the medians of medians of medi-
ans of 3 in the fifth 9thile (middle “novile”) of the array.

The call to QUICKSELECT partitions the mid 9thile
around its (exact) median. Right after line 11 the following
conditions are satisfied:

• Pivot value is in A[p];
• A[4f : p] contains only elements less than or equal to the

pivot;
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Algorithm 7: REPEATEDSTEPIMPROVED

Data: A, k (k not used)
Result: Pivot p, 0 ≤ p < |A|; A partitioned at p

1 if |A| < 9 then
2 return HOAREPARTITION(A, |A|/2);
3 end
4 f ← |A|/9;
5 for i← 3f through 6f − 1 do
6 MEDIAN3(A, i− 3f, i, i+ 3f);
7 end
8 for i← 4f through 5f − 1 do
9 MEDIAN3(A, i− f, i, i+ f);

10 end
11 QUICKSELECT(REPEATEDSTEPIMPROVED, A[4f :

5f ], f/2);
12 return EXPANDPARTITION(A, 4f, 4f + f/2, 5f − 1);

• A[p+1 : 5f ] contains only elements greater than or equal
to the pivot;

• At least 2n
9 elements in A[0 : 4f ] are less than or equal

to the pivot;
• At least 2n

9 elements in A[5f : |A|] are greater than or
equal to the pivot.

Let us derive bounds for C(n) and S(n) for this algo-
rithm. The number of comparisons in REPEATEDSTEPIM-
PROVED satisfies the recurrence:

C(n) ≤ C
(n
9

)
+ C

(
7n

9

)
+ n+

n

3
+

8n

9
(8)

The only difference from the basic algorithm is the last
term, which is slightly smaller in this case because we don’t
revisit the middle 9thile during partitioning. This solves to
C(n) ≤ 20n (5% better than REPEATEDSTEP).

Each MEDIAN3 call performs at most two swaps. Due to
the layout choice the partitioning step already leaves at least
2n
9 elements less than or equal to the pivot to the pivot’s left,

and at least as many elements greater than or equal to the
pivot to its right, so in the worst case the algorithm needs
to swap 5n

18 elements from the left side and 5n
18 elements

from the right. However, the swaps don’t sum from the two
sides because one swap operation takes care of two elements
wherever possible. So the total number of swaps performed
by EXPANDPARTITION is at most 5n

18 .

S(n) ≤ S
(n
9

)
+ S

(
7n

9

)
+

2n

3
+

2n

9
+

5n

18
(9)

Consequently S(n) ≤ 21n
2 , over 35% fewer than RE-

PEATEDSTEP algorithm.

These bounds are adequate for proving linearity and use-
ful as proxies, but not necessarily tight (producing worst-
case inputs for MEDIANOFMEDIANS remains an open prob-
lem); the measured speed improvements are larger. Although
algorithms with better upper bounds (both comparisons and
swaps) for selection have been devised [5, 21], they are more
complex and entail large hidden costs; to date neither of
those has been shown to be efficient in practice.

This layout change has been crucial for obtaining effi-
ciency from MEDIANOFMEDIANS. The improved layout
not only drastically improves performance, but also allows
further optimizations to build upon it. REPEATEDSTEPIM-
PROVED is our core algorithm for fast deterministic selec-
tion.

5. Adaptation
The performance of REPEATEDSTEPIMPROVED compares
favorably with state-of-the-art baselines when searching the
median. However, performance degrades quickly as the in-
dex sought migrates from the middle of the array toward ei-
ther of its ends. This is because REPEATEDSTEPIMPROVED
(like all MEDIANOFMEDIANS variations discussed so far)
is specialized in finding a good approximate median, not a
good approximate kth order statistic for any k. We acknowl-
edged that by mentioning “k not used” in each algorithm’s
parameters section.

However, k may be very informative especially when far
from the middle. For an extreme example, consider search-
ing a position k only a few slots from one edge of the array.
Then any heuristic will produce a good-quality pivot very
quickly simply because the range of good pivots is large. In
contrast, a MEDIANOFMEDIANS algorithm would do con-
siderable work to eliminate about half the array. This con-
tinues through the end of the search—heuristics eliminate
swaths of the array at constant cost, whereas MEDIANOF-
MEDIANS pedantically reduces the array by about half at
every pass at linear cost. The average time complexity is lin-
ear for either approach, but heuristics-based algorithms will
complete faster.

Our approach to introducing adaptation is two-pronged.
First, we use simple interpolation to improve the speed of
REPEATEDSTEPIMPROVED with off-median indexes. Sec-
ond, we define specialized algorithms for indexes close to
one edge of the array. In the following we focus on small in-
dexes (i.e. less than |A|

2 ). This is without loss of generality;
large indexes work symmetrically.

5.1 Making REPEATEDSTEPIMPROVED Adaptive
Line 11 of REPEATEDSTEPIMPROVED computes the
median of the fourth 9thile with the call QUICKSE-
LECT(REPEATEDSTEPIMPROVED, A[4f : 5f ], f/2). The
last argument divides the subarray in half, computing an ap-
proximate median of the entire array. However, if k 6= |A|

2 ,
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we are more interested in a pivot close to k than an approxi-
mate median.

To make REPEATEDSTEPIMPROVED adaptive, we adopt
a simple interpolation approach: replace f/2 with kf/|A| in
the call above, idea first proposed and analyzed by Martı́nez
et al. [25] with the name “proportional-of-s”. That way, k is
proportionally represented in the fraction by which the sub-
array is partitioned. There is no change if k = |A|/2; as k
gets smaller the pivot computed will move left, and as k gets
larger the pivot will move right. Algorithm 8 shows the pseu-
docode of the resulting algorithm REPEATEDSTEPADAP-
TIVE, which is the first discussed here to use k.

Algorithm 8: REPEATEDSTEPADAPTIVE

Data: A, k
Result: Pivot p, 0 ≤ p < |A|; A partitioned at A[p]

1 if |A| < 9 then
2 return HOAREPARTITION(A, |A|/2);
3 end
4 f ← |A|/9;
5 for i← 3f through 6f − 1 do
6 MEDIAN3(A, i− 3f, i, i+ 3f);
7 end
8 for i← 4f through 5f − 1 do
9 MEDIAN3(A, i− f, i, i+ f);

10 end
11 QUICKSELECT(REPEATEDSTEPADAPTIVE,

A[4f : 5f ], kf/|A|);
12 return

EXPANDPARTITION(A, 4f, 4f + kf/|A|, 5f − 1);

5.2 Searching for Indexes Left of Median
Performance of REPEATEDSTEPADAPTIVE is better than
REPEATEDSTEPIMPROVED when k is off of |A|

2 . However,
as k gets further away from the middle, the number of swaps
performed by REPEATEDSTEPADAPTIVE increases. This is
because the 9thile used for recursion is still in the middle of
the array, so it is suboptimally placed; EXPANDPARTITION
needs to shift elements from that middle 9thile toward the
pivot, which is off the middle.

When k is far away from the median, a better way to im-
prove performance is to partition the array asymmetrically.
If the index sought is to the left of the median, placing the
subarray of medians on the left and ensuring a larger margin
on the right is better. That way the search has less swapping
to do and is more likely to eliminate a large subarray. To get
asymmetric margins, we modify the group size and place-
ment as follows.

Let us start by noting that REPEATEDSTEPADAPTIVE
does not necessarily need to use groups of 3. It may use
different group sizes for the first and the repeated step, as
long as linearity can be proven. An even group size is of

particular interest to us because it partitions the array asym-
metrically. Consider taking the lower median of 4 in the first
step, then the median of 3 in the second step and use that
as the pivot. We do so with the help of the trivial routine
LOWERMEDIAN4(A, a, b, c, d) (not shown), which places
the lower median of A[a], A[b], A[c], A[d] in A[b] and the
minimum in A[a]. In that case, after the two partition steps
(with group sizes 4 then 3) are finished, there are at least |A|

6

elements less than or equal to the pivot on the left, and |A|
4

elements greater than or equal to the pivot on the right. (If
the upper median of 4 were used, the numbers would be re-
versed.) The partitioned subarray is asymmetrically placed
at A [|A|/3 : 5|A|/12], which reduces swaps if the pivot is
also on the left.

Algorithm 9 defines REPEATEDSTEPLEFT. The call to
QUICKSELECT uses the same interpolation approach as RE-
PEATEDSTEPADAPTIVE.

Algorithm 9: REPEATEDSTEPLEFT

Data: A, k
Result: Pivot p, 0 ≤ p < |A|; A partitioned at A[p]

1 if |A| < 12 then
2 return HOAREPARTITION(A, |A|/2);
3 end
4 f ← |A|/4;
5 for i← 0 through f − 1 do
6 LOWERMEDIAN4(A, i, i+ f, i+ 2f, i+ 3f);
7 end
8 f ′ ← f/3;
9 for i← f through f + f ′ − 1 do

10 MEDIAN3(A, i, i+ f ′, i+ 2f ′);
11 end
12 QUICKSELECT(REPEATEDSTEPLEFT,

A[f : f + f ′], kf ′/|A|);
13 return

EXPANDPARTITION(A, f, f + kf ′/|A|, f + f ′ − 1);

The number of comparisons in the worst case obeys:

C(n) ≤ C
( n

12

)
+ C

(
5n

6

)
+

4n

4
+

3n

12
+ n (10)

with the same term positions as in Eq. 4 and the note that
lower/upper median of 4 requires at most 4 comparisons. For
this asymmetric algorithm, C(n) is also linear and bounded
by 21n, even if inefficiently used for all values of k.

REPEATEDSTEPLEFT is best used with indexes k below
A’s middle (by a threshold we established experimentally).
A similarly-defined routine REPEATEDSTEPRIGHT is to be
used with indexes above the middle of A. For sought indexes
close to the median, REPEATEDSTEPADAPTIVE offers best
results.
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5.3 Searching for Indexes Far Left of Median
Consider now searching for very small indexes. In that case
the motivation is high to not find a pivot to the left of
the index, because that would only eliminate very little of
the input. Martı́nez et al. discuss this risk for their related
proportional-of-3 search strategy [25]. So we design an al-
gorithm to find p such that p ≥ k.

A different schema is useful here. REPEATEDSTEPFAR-
LEFT (Algorithm 10) takes the lower median of 4 in the first
step, like REPEATEDSTEPLEFT. Then, instead of the me-
dian of 3 in the second step, it takes the minimum of 3.

Algorithm 10: REPEATEDSTEPFARLEFT

Data: A, k
Result: Pivot p, 0 ≤ p < |A|; A partitioned at A[p]

1 if |A| < 12 then
2 return HOAREPARTITION(A, |A|/2);
3 end
4 f ← |A|/4;
5 for i← f through 2f − 1 do
6 LOWERMEDIAN4(A, i− f, i, i+ f, i+ 2f);
7 end
8 f ′ ← f/3;
9 for i← f through f + f ′ − 1 do

10 if A[i+ f ′] < A[i] then SWAP(A[i+ f ′], A[i]);
11 if A[i+ 2f ′] < A[i] then SWAP(A[i+ 2f ′], A[i]);
12 end
13 QUICKSELECT(REPEATEDSTEPFARLEFT,

A[f : f + f ′], kf ′/|A|);
14 return

EXPANDPARTITION(A, f, f + kf ′/|A|, f + f ′ − 1);

In that case, there are at least |A|
12 elements less than

or equal to the pivot on the left, and 3|A|
8 elements

greater than or equal to the pivot on the right. (If the up-
per median was chosen, the numbers would be reversed.)
The subarray passed down to QUICKSELECT is placed at
A [|A|/4 : |A|/3]. C(n) obeys:

C(n) ≤ C
( n

12

)
+ C

(
5n

6

)
+

4n

4
+

3n

12
+ n (11)

with the same term positions as in Eq. 4. For this algorithm,
C(n) is also linear and bounded by 21n. However, if RE-
PEATEDSTEPFARLEFT is used only when k ≤ |A|

12 , then the
pivot is guaranteed on the right so the bound gets better be-
cause 3|A|

8 or more elements are discarded.
The algorithm REPEATEDSTEPFARRIGHT (not shown)

is defined symmetrically with REPEATEDSTEPFARLEFT: it
takes the upper medians of 4 and places them in the 3rd
quartile, then within that quartile it takes the maximum of 3.
The margins are 3|A|

8 on the left and |A|
12 on the right, and

the subarray passed down to QUICKSELECT is placed at
A [2|A|/3 : 3|A|/4].

5.4 Choosing Strategy Dynamically in QUICKSELECT

How to tie these specialized algorithms together? We defined
QUICKSELECT as a higher-order function parameterized by
the partitioning primitive used. That made it convenient to
discuss and analyze a variety of partitioning algorithms us-
ing the same QUICKSELECT skeleton.

At this point, in order to implement full adaptation,
we need to dynamically choose the partitioning algo-
rithm from among REPEATEDSTEPADAPTIVE, REPEATED-
STEPLEFT, REPEATEDSTEPRIGHT, REPEATEDSTEPFAR-
LEFT, and REPEATEDSTEPFARRIGHT. A good place to de-
cide strategy is the QUICKSELECT routine itself, which has
access to all information needed and controls iteration. Be-
fore each partitioning step, a partitioning algorithm is cho-
sen depending on the relationship between |A| and k. After
partitioning, both A and k are modified and a new decision
is made, until the search is over. QUICKSELECTADAPTIVE
(Algorithm 11) embodies this idea.

The cutoff 1.0
12.0 is dictated by the lower margin of RE-

PEATEDSTEPFARLEFT and REPEATEDSTEPFARRIGHT; as
mentioned, in those cases we never want the pivot to be be-
tween the sought index and the closest array edge. The cutoff
7.0
16.0 has been chosen experimentally.

6. Engineering Considerations
The deterministic partitioning algorithms presented so far
do not “cheat” (by estimating from samples, making as-
sumptions about data distribution etc): they look at the en-
tire data set and provide guaranteed margins. The absolute
cost of a search is front-loaded, during the first few itera-
tions of QUICKSELECTADAPTIVE, when the data examined
is largest. For large data sets with usual distribution statistics,
a good sampling strategy that finds a good pivot without in-
specting the entire data may make a large speed difference.
It is therefore very tempting for the optimization-minded en-
gineer to do away with rigorous determinism and try a few
shots at sampling when the data size is large.

However, we resisted the lure of switching to one of the
classic heuristics. When data is large, indeed the reward of
a cheap good pivot is excellent, but conversely the cost of a
bad pivot choice is high, and all heuristics may compute an
arbitrarily bad pivot.

We adopted an engineering solution that offers good
speed improvements on average for only moderate slow-
down in the worst case and a minor code change. Each
search starts optimistically with a “sampling mode” flag on.
As long as sampling is enabled, the first median step in all
REPEATEDSTEP algorithm variations is skipped. For exam-
ple, in Algorithm 7, the loop at line 5 is not executed if sam-
pling is on. This makes the pivot to be evaluated only from
the mid tertile; the first and last tertile are not inspected at
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Algorithm 11: QUICKSELECTADAPTIVE

Data: A, k with 0 ≤ k < |A|
Result: Puts kth smallest element of A in A[k] and

partitions A around it.
1 while true do
2 r ← real(k)/real(|A|);
3 if |A| < 12 then
4 p← HOAREPARTITION(A, |A|/2);
5 else if r ≤ 7.0/16.0 then
6 if r ≤ 1.0/12.0 then
7 p← REPEATEDSTEPFARLEFT(A, k);
8 else
9 p← REPEATEDSTEPLEFT(A, k);

10 end
11 else if r ≥ 1.0− 7.0/16.0 then
12 if r ≥ 1.0− 1.0/12.0 then
13 p← REPEATEDSTEPFARRIGHT(A, k);
14 else
15 p← REPEATEDSTEPRIGHT(A, k);
16 end
17 else
18 p← REPEATEDSTEPIMPROVED(A, k);
19 end
20 if p = k then return;
21 if p > k then
22 A← A[0 : p];
23 else
24 i← k − p− 1;
25 A← A[p+ 1 : |A|];
26 end
27 end

all, so this mechanism effectively implements sampling. The
rest of the function proceeds the same. The pivot now de-
grades in quality from within 2n

9 to within n
9 of either end of

the array. However, a quality check step in QUICKSELECT-
ADAPTIVE turns the sampling mode flag off as soon as one
partitioning step did not meet its margin guarantees. There-
fore, there may be at most one bad pivot choice per search,
and even that is not arbitrarily bad. The time complexity is
not affected. This sampling strategy makes QUICKSELECT-
ADAPTIVE adaptive to both k and the data distribution and
takes its performance from passable to compelling.

The implementation also contains a few micro-
optimizations not shown in the pseudocode: some
computations are memoized and sentinel techniques
are used in some loops to reduce overheads. The perfor-
mance gains from most of these optimizations are minor but
measurable.

7. Experiments and Results
We tested performance on a HP ENVY 810qe Desktop (Intel
Core i7 3.6 GHz) machine with 32GB RAM, against arrays
of various sizes of 64-bit floating point data (results on 32-
and 64-bit integrals are similar). The code and tests were
written in the D programming language [1]. The compiler
used was the LLVM-based ldc [22] version 0.14.0 (we ob-
tained similar results and rankings with dmd 2.069). We ran
each experiment five times (with different random data sets)
and took the median of the five timings obtained. The data
sets used are:

• Uniformly-distributed random floating-point numbers in
the range −5 000 000 through 5 000 000.

• Numbers generated as above, but sorted prior to testing.
• Normally-distributed data with mean 0 and standard de-

viation 3 333 333.

Many pivot choosing strategies have been proposed in the
literature. We chose the most competitive and in prevalent
industrial use, also mentioned in the introduction:

• MEDIAN3: Median of 3 deterministic;
• MEDIAN3RANDOMIZED: Median of 3 randomized;
• NINTHER: Tukey’s ninther deterministic; and
• NINTHERRANDOMIZED: Ninther randomized.

The deterministic heuristics are particularly relevant on
almost sorted data, where they perform very well. We tried
but did not plot two more heuristics: single random pivot
performed poorly, and medians of 5 did not perform better
than the ninther.

7.1 Finding the Median
First we focus on finding the median. Fig. 1 plots the abso-
lute run times of the algorithms tested for finding the median
in arrays of uniformly-distributed floating point numbers. To
avoid clutter, we did not plot MEDIAN3 and NINTHER be-
cause their behavior on random data is similar to their re-
spective randomized versions.

To give a clearer image of the relative performance of
the algorithms, Fig. 2 shows the relative speedup of QUICK-
SELECTADAPTIVE over all other algorithms. Fig. 3 shows
speedup only over heuristics-based algorithms.

Ranking is similar on Gaussian-distributed floating point
numbers. Fig. 4 shows the speedup of QUICKSELECTADAP-
TIVE over the others, and Fig. 5 shows its speedup only over
heuristics-based algorithms.

One interesting aspect is that REPEATEDSTEPADAPTIVE
performed better than REPEATEDSTEP even on this task
(searching for the median), where adaptation is not ostensi-
bly involved. The reason is that adaptation still helps, just not
in the first iteration: after one or more iterations in QUICK-
SELECTADAPTIVE’s main loop, the index, the array limits,
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Figure 1. Run times of various selection algorithms (64-bit uniformly distributed floating point numbers)
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Figure 2. Relative speedup of QUICKSELECTADAPTIVE
over other algorithms (64-bit uniformly distributed floating
point numbers).

and their relationship changes. For example, if the first par-
tition pass finds a good approximate pivot, the second pass
will process a k close to one edge of the array, where adap-
tive algorithms have an advantage.

On sorted data, as expected, the deterministic heuris-
tics (MEDIANOF3 and NINTHER) perform the best by
a large margin. This is because they are engineered to
find the exact median if the data is already sorted, so
the cost of QUICKSELECT is essentially that of one pass
through HOAREPARTITION. The randomized versions ME-
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Figure 3. Detail: Relative speedup of QUICKSELECT-
ADAPTIVE over heuristics-based algorithms (64-bit uni-
formly distributed floating point numbers).

DIANOF3RANDOMIZED and NINTHERRANDOMIZED also
perform well on this highly structured input.

7.2 Finding Indexes Other than the Median
This experiment measures how adaptation helps in search-
ing for indexes other than the median. This time, |A| is fixed
at 1 000 000 and the ratio between k and |A| varies between
5% and 95%. Fig. 8 plots absolute run times for the algo-
rithms tested. Fig. 9 shows the relative speedup of QUICK-
SELECTADAPTIVE over the other algorithms. The improve-
ments over non-adaptive MEDIANOFMEDIANS derivatives
are strong for all percentiles tested, especially toward the
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end of the scale, as expected. Fig. 10 gives only the rela-
tive speedup over heuristics-based strategies, again showing
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good improvements. Results on Gaussian-distributed data
(not shown) are similar.

8. Summary and Future Work
We refine the definition of MEDIANOFMEDIANS and its
variant REPEATEDSTEP to improve their speed. Measure-
ments show that the best deterministic algorithm QUICK-
SELECTADAPTIVE outperforms state-of-the-art baselines in
the task of partitioning an array around a specified quantile.

There are several future directions we plan to follow. One
is to devise principled methods of choosing the group sizes
and layouts for each of the specialized algorithms, depend-
ing on the index searched. Currently we use three algorithms
chosen experimentally, but perhaps a single algorithm with
the proper parameterization might replace them all. We also
plan to investigate the use of fast deterministic selection al-
gorithms for sorting.
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Figure 9. Relative speedup of QUICKSELECTADAPTIVE
over other algorithms for varying order statistics.
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Figure 10. Detail: Relative speedup of Adaptive over
heuristics-based algorithms for varying order statistics.
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