
Fast keyed hash/pseudo-random function using

SIMD multiply and permute

J. Alakuijala, B. Cox, and J. Wassenberg

Google Research

November 20, 2017

Abstract

HighwayHash is a new pseudo-random function based on AVX2
multiply and permute instructions for thorough and fast hashing. It
is 3.8 times as fast as SipHash for 1 KB inputs. An open-source
implementation is available under a permissive license. We discuss
design choices and provide statistical analysis, speed measurements and
preliminary cryptanalysis. Assuming it withstands further analysis,
strengthened variants may also substantially accelerate file checksums
and stream ciphers.

1 Introduction

Hash functions are widely used for message authentication, efficient searching
and ‘random’ decisions. When attackers are able to find collisions (multiple
inputs with the same hash result), they can mount denial of service attacks or
disturb applications expecting uniformly distributed inputs. So-called ‘keyed-
hash’ functions prevent this by using a secret key to ensure unpredictable
outputs. These functions are constructed such that an attacker who controls
the inputs still cannot deduce the key, nor predict future outputs. The
authors of SipHash refer to these as ‘strong pseudo-random functions’ [1].
However, existing approaches are too slow for large-scale use. In this paper,
we introduce two alternatives that are about 2 and 4 times as fast as SipHash.

We are mainly interested in generating random numbers and message
authentication, for which 64-bit hashes are sufficient. These are not ‘collision-
resistant’ because adversaries willing to spend considerable CPU time could

find a collision after hashing about
√

π
2 264 inputs. However, small hashes
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decrease transmission overhead and are suitable for authenticating short-
lived messages such as network/RPC packets. If needed, our approach can
generate up to 256 hash bits at no extra cost.

Section 2 briefly discusses existing hash functions and their strength/speed
tradeoff. Section 3 describes SipTreeHash, a j-lanes extension of SipHash
that is twice as fast on large inputs. However, the SipHash construction
is relatively slow because it relies on rotate instructions not available in
SIMD instruction sets. Section 4 introduces HighwayHash, a novel hash
function that takes advantage of SIMD permute instructions for fast and
thorough mixing. Measurements in Section 5 indicate SipTreeHash is twice
as fast as SipHash for large inputs, and HighwayHash almost four times as
fast. Section 6 describes our test suite and shows that HighwayHash resists
common attack techniques from the literature. Further study may require
new cryptanalysis techniques.

2 Related Work

Current cryptographic hashes require at least 2-3 CPU cycles per byte [2],
which is about an order of magnitude slower than fast hashes such as
CityHash (0.23 c/b). Such a difference is unacceptable to practitioners,
especially if they are unconcerned about security. SipHash [1] is a good
compromise that has been studied since 2012 without any known weaknesses.
Our implementation requires about 1.3 c/b. Although relatively inexpensive
for a strong hash, this is still at least five times slower than fast hashes
such as Murmur3 and CityHash. However, these are vulnerable to collision
and key extraction attacks [3] and must not be exposed to untrusted inputs.
Several approaches have subsequently been proposed for taking advantage of
hardware-accelerated AES encryption [4, 5]. These include security proofs
and are about twice as fast as SipHash. The recent CLHash [6] is even faster
despite requiring 1064 byte keys. However, its mixing is insufficient to pass
smhasher’s avalanche test. A proposed fix adds an additional round of the
ad-hoc Murmur mixing function, but this still fails our distribution test for
zero-valued inputs (see Section 6.1). Note that CLHash was designed for
speed and almost-universality, and is not intended to withstand attacks [7].
We believe that SipHash remains a good default choice for non-cryptographic
applications because it offers (apparently) enough security at reasonable
speeds. A version with only 1 update and 3 finalization rounds is 1.2 to 2
times as fast (see Section 5) while still passing smhasher, which makes it an
interesting candidate for applications where security is less of a concern.
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We develop two alternatives that further increase throughput while
retaining the simplicity and thorough mixing of SipHash. We hope that these
algorithms will replace unsafe hash functions and increase the robustness of
applications without incurring excessive CPU cost.

3 SipTreeHash

Maximizing performance on modern CPUs usually requires the use of SIMD
instructions. These apply the same operation (e.g. addition) to multiple
‘lanes’ (elements) of a vector. This works best for data-parallel problems.
However, the SipHash dependency chain offers limited parallelism and cannot
fully utilize the four AVX2 vector lanes. Our SIMD implementation was
actually slower than the scalar version, presumably because of the lack
of bit rotation instructions. We instead compute four independent hash
results by logically partitioning input buffers into interleaved 64-bit pieces.
For example, consider a 64 byte input interpreted as eight 64-bit words:
A0, A1, A2, A3, B0, B1, B2, B3. These can be combined into four hash results
with two updates, one with Ai and the other with Bi. We must then fold
the four results into a single hash. XOR reduction is unsuitable because it
cannot distinguish between permutations of the 64-bit words. Instead, we
can just hash the results. This is known as a tree-hash construction and has
been used to accelerate SHA-256 [8].

Our implementation [9] is available as open source software under the
Apache 2 license. Being a straightforward extension of SipHash, this construc-
tion is likely to be secure. However, its hash results are of course different, so
this cannot be used as a drop-in replacement. We suggest HighwayHash be
considered instead because it is much faster, especially for smaller inputs.

4 HighwayHash

Tree hash constructions appear to be a good way to utilize SIMD instruc-
tions. However, the SipHash add-rotate-XOR construction is not ideally
suited for current instruction sets. As previously mentioned, bit rotations
must be implemented by ORing together the result of left and right shifts.
Although rotations of multiples of 8 bits can be implemented with very fast
byte permute instructions, this would weaken SipHash to an unacceptable
degree [1]. The individual add and XOR instructions also only achieve a
weak mixing effect. By contrast, AVX2 includes 32× 32 bit multiplication
instructions that mix their operands much more thoroughly. Although their
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latency is higher than non-SIMD multiplies (5 vs 3 cycles [10]), we believe the
increase in mixing efficiency vs. add/XOR is still worthwhile. The 64-bit Intel
architecture also provides 16 SIMD registers, which is enough to perform
two multiplies in parallel and thus hide some of the latency. Given that
multiplications are efficient, we now propose a new permutation step for
strong hashing.

4.1 Zipper Merge

Intuitively, it is clear that the highest and lowest bits of a multiplication
result are more predictable. This is the basis of the (problematic) “middle
square” random generator [11], which only retains the middle digits of a
multiplication result. We introduce a simple but seemingly novel approach:
mixing multiplication results with byte-level permute instructions.

Let us derive a suitable permutation. Recall that inputs are 64-bit
multiplication results that will become 32-bit multiplicands in the next update
round. It therefore makes sense to concentrate the poorly-distributed top and
bottom bytes in the upper 32 bits to ensure the multiplier bytes are uniformly
good (requirement 1). To increase mixing, we also wish to interleave bytes
from the neighboring SIMD lane, ideally with no more than two adjacent
bytes from the same lane (requirement 2). Mostly importantly, we strive to
equalize the ‘quality’ of each byte within a 64-bit lane (requirement 3). We
approximate this by counting the minimum distance of each bit’s position
from the ends of its lane, computing the sum of these distances for the bits
in a byte, and sorting these sums in decreasing order. By this measure, bytes
3 and 4 are best, 2, 5, 1, 6 are adequate, and 0 and 7 are worst. Permutation
results Ri for a 16 byte lane pair Si are expressed as hexadecimal offsets Pi,
such that Ri = SPi . In other words, the i-th offset indicates which source
byte to copy into the i-th result byte. Let i = 15 be listed first and i = 0
last. A partial permutation satisfying requirements 1 and 2 takes the form 7

8 6 9 ? ? ? ? 0 F 1 E ? ? ? ?. To see this, note that the source
lanes (offset divided by 8) alternate, and that the byte offsets (modulo 8)
are 7 0 6 1, which are the worst as mentioned. It remains to distribute
bytes 2-5 and A-D between both lower 32-bit lane halves. 5 2 C 3 and
D A 4 B is a feasible solution, with no more than two adjacent bytes and
exactly equal quality in both lanes. The final permutation is 7 8 6 9 D A

4 B 0 F 1 E 5 2 C 3. If we partition the inputs into two 64-bit parts and
view these as ‘highway lanes’, the bytes (nearly) alternate between these two
lanes. We therefore borrow the term ‘zipper merge’ from the road context.
Note that this particular permutation is not necessarily optimal – it would
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be interesting, but computationally expensive, to optimize it based on the
resulting hash bit bias (discussed in Section 6).

4.2 Update

The proposed Update folds a 32 byte vector of inputs (packet) into internal
state variables v* and mul* by multiplying and permuting:

v1 += packet ;
v1 += mul0 ;
mul0 ˆ= V4x64U( mm256 mul epu32 ( v0 , v1 >> 3 2 ) ) ;
v0 += mul1 ;
mul1 ˆ= V4x64U( mm256 mul epu32 ( v1 , v0 >> 3 2 ) ) ;
v0 += ZipperMerge ( v1 ) ;
v1 += ZipperMerge ( v0 ) ;

V4x64U is a vector class that provides member functions and overloaded
operators, which are more convenient than using SIMD intrinsics (such
as _mm256_mul_epu32) directly. Note the symmetrical structures, which
resemble the butterfly portion of Fast Fourier Transforms (FT). This is
reasonable – recursive discrete FT also need to combine or mix their inputs
in a similar way. The key operations here are permutations of the input and
state, which helps ensure no information about the key leaks (see the analysis
in Section 6). Note that the multiplication latency is partially hidden behind
other instructions because mul are only needed in the next Update. There
is no need to similarly delay ZipperMerge because its latency is just one
cycle [10].

4.3 Finalization

After consuming all input data, the internal state must be further mixed
to reduce the risk of key leakage. It is convenient to use the same Update

function. How many rounds are necessary? We hashed all 224 combinations
of three input bytes and computed the probability of an output bit toggling
in response to an input bit changing. Strong biases remain after two rounds,
but decrease by a factor of 300 after three rounds to 0.03%. We added a
fourth round for safety, which did not have a measurable impact on the
average bias.

To ensure the upper vector lanes are mixed into the final result, we
must also permute them between each round. Note that ZipperMerge only
combines adjacent lanes. The AVX2 instruction set generally does not allow
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interaction between the 128-bit halves of a vector, presumably to allow reuse
of logic from prior 128-bit SSE2 hardware. However, 64-bit lanes can be
shuffled at modest latency cost via _mm256_permutevar8x32_epi32. We
swap the 128-bit vector halves and also 32-bit lane halves of v0 using the
following indices of 32-bit parts: 2 3 0 1 6 7 4 5. The result is passed to
Update and this process repeated another three times. Note that the this
Permute operation will also be used during initialization.

We then add together the four state vectors v* and mul*, reducing the
1024-bit state into four 64-bit lanes. Mixing via addition is slightly more
thorough than XOR because of carry ripples. A 64-bit hash suffices for
many applications, in which case we only retain the lower lane, which is
slightly easier to extract into general-purpose registers. Note that a quantum
algorithm can find collisions in O( 3

√
N) time [12]. If a hash is to resist such

attacks, it should consist of at least 192 bits (N = 2192). HighwayHash can
produce up to 256-bit hashes at no additional cost; they also pass our test
suite. However, our analysis of differential attacks in Section 6.2 only applies
to the 64-bit case. HighwayHash needs further strengthening and analysis
before it can serve as a cryptographically secure message digest.

4.4 Initialization

We assume 256 key bits are reasonable and sufficient. Attackers have an
astronomically low, 1 in 2256−s chance of guessing the key after evaluating
2s inputs. The key must be expanded fourfold to populate the 1024 bits
of internal state. A two-fold expansion is achieved by initializing v0 with
the key XOR a constant, and v1 with the Permute-d key (see Section 4.3)
XOR a second constant. To make clear that there is no malicious intent
behind the choice of constants, we use “nothing up my sleeve” numbers and
document the process. We begin with a hexadecimal representation of the
initial digits of π [13]. To ensure each bit is set in at least one of the four
lanes, we modify the fourth number by setting each bit if zero or one other
lanes have that bit set. Finally, we initialize mul0, mul1 to the first and
second constant, respectively.

4.5 Padding

Update operates on entire 32-byte vectors, so inputs must be padded to
multiples of that size. We use the same scheme as SipHash [1], described
below for completeness. It is important that zero-valued buffers of various
sizes have different hashes. The only difference is their length, so we need
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to include that in the input data. To reduce the likelihood of processing an
additional vector, we wish to minimize the added size. We therefore insert
the size modulo 256, encoded in a single byte. To avoid potential page faults
caused by reading past the end of the input buffer, we conceptually copy the
remaining 0-31 bytes into a zero-initialized buffer, insert the length into the
most significant byte, load it into a vector and then Update.

An architectural limitation motivates a slightly different approach. Stores
to memory or even cache involve considerable latency. To speed up subsequent
loads, CPUs forward data directly from intermediate store buffers. However,
smaller unaligned stores (from copying the remainder bytes) cannot be
combined to satisfy a larger load of the entire vector [14]. We instead use the
new AVX2 instruction _mm256_maskload_epi32 to load all remaining 32-bit
pieces in the input. By masking off the padding, we avoid reading past the
end of the input buffer but still load as much of the input as possible in a
single operation. The remaining 0-3 bytes are loaded individually, combined
with the length byte and inserted into the rest of the vector. This increases
hash throughput by about 10 % for 1 KiB inputs.

4.6 Source Code

Our HighwayHash implementation [9] was published as open source software
in March 2016 under the Apache 2 license. Its SIMD operations are expressed
using V4x64U, a custom AVX2 vector class with overloaded operators. For
example, V4x64U a = b + c is easier to understand than the equivalent
SIMD intrinsic __m256i a = _mm256_add_epi64(b, c). To support older
CPUs, we also provide a SSE4.1 variant whose throughput is only about 10%
lower.

5 Throughput

We took unusual care in measuring the throughput of SipHash, SipTreeHash
and HighwayHash. Each is implemented in C++ using AVX2 intrinsics and
compiled with GCC 4.8.4 -std=c++11 -O3 -mavx2. The benchmark runs
on a single core of a desktop Xeon E5-2690 v3 clocked at 2.6 GHz. We record
high-resolution timestamps from the invariant TSC and use fences to ensure
the measured code is not reordered by the compiler or CPU. To prevent elision
of the benchmark computations, we pass the hash result as input constraints
to an empty inline assembly block. This forces the compiler to assume that
the result is used because the block allegedly modifies memory. We avoid
unrealistic branch prediction by randomly interleaving measurements for
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various sizes, rather than repeatedly hashing the same input size. Note
that the benchmark frequently accesses the same data, which ensures it is
cache-resident, so the resulting throughput is an upper bound. However,
this is common in benchmarks and can be ignored because the single-core
hash throughput is lower than the observed memory bandwidth, and far
below the peak bandwidth [15]. To eliminate any outliers due to background
activity or thermal throttling, we use a robust estimator (the mode). The
resulting measurements have a mean absolute deviation of about 0.2 cycles;
we retain the median as the final result. This ‘nanobenchmark’ performance
measuring infrastructure is included in the open-source release [9].

Table 1 lists throughputs for several input sizes in the usual unit of CPU
cycles per byte. For 1 KB inputs, SipTreeHash and HighwayHash are 2.1 and
3.8 times as fast as SipHash. Reducing SipHash rounds from 2 per update
and 4 during finalization to 1 and 3 also increases its throughput by a factor
of 1.2 to 2. HighwayHash is 1.1 to 1.3 times as fast as SipTreeHash13.

Table 1: Cycles per byte for various input sizes [bytes].

Algorithm 8 31 32 63 64 1023

SipHash 17.81 5.52 5.72 3.34 3.45 1.47
SipHash13 13.88 4.00 4.25 2.46 2.46 0.74

SipTreeHash 22.98 6.10 5.80 3.02 3.14 0.61
SSE41HighwayHash 17.38 4.58 4.40 2.37 2.28 0.39

SipTreeHash13 19.53 5.21 4.72 2.52 2.47 0.37
HighwayHash 15.42 4.32 3.79 2.04 2.05 0.34

Throughput generally increases for larger inputs (Figure 1) because the
finalization cost is amortized over more data. SipTreeHash is slower than
SipHash for smaller inputs because it processes entire 32-byte AVX2 vectors,
and also hashes the intermediate results. However, AVX2 SIMD instructions
process four 64-bit elements at a time, so SipTreeHash eventually outperforms
SipHash. It would be faster still if SIMD instruction sets supported bit
rotations, which are currently emulated with three instructions. Note the
periodic decreases every 32 bytes in both tree hashes. Inputs are padded to
entire vectors, so relative throughput decreases as padding increases. The
worst case is a multiple of the vector size; adding the extra length byte
requires another vector to be processed.

SipHash was designed to efficiently handle small inputs. The tree hashes
are much faster for large inputs because they process 32 bytes at a time.
Surprisingly, HighwayHash also outperforms SipHash for small inputs due to
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Figure 1: Throughput [bytes per cycle] increases with input size, with dips
at multiples of the packet size.

efficient finalization and optimized padding (Section 4.5).

6 Security Analysis

We are not experienced cryptographers, and do not see a way to reduce the
HighwayHash algorithm to provably secure constructions. This multiply-
permute scheme may require new methods of cryptanalysis. In the absence
of a formal proof, we use statistical testing to validate our main claim: High-
wayHash is a keyed hash function that is indistinguishable from a uniformly
random source, with an avalanche effect comparable to a cryptographic hash.

6.1 smhasher Test Suite

smhasher [16] is a test suite for hash functions that verifies their output
distribution and checks for collisions when hashing ‘difficult’ inputs. Recall
that CLHash (without additional mixing) fails the avalanche test [6], which
requires that half of the output bits change when an input bit is flipped.
We further strengthen this test by checking all input sizes between 4 and
32 bytes1, raising the iteration count from 300K to 900M (at the cost of

1Biases computed for 3 bytes are much larger and likely overestimates.
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about 5000 CPU-hours for all tests), and using high-quality random numbers.
A generator with period p should not be asked to produce more than 3

√
p

numbers [17]. The input data for all sizes are populated from 78 64-bit
random numbers. This implies a minimum period of 2109, which rules out
common generators such as XorShift64 and Tausworthe (288). We instead
use the pcg64_k32 permuted congruential generator [18] with a much larger
period of 22176. The avalanche test is considered successful if each output bit
has a bias (deviation from the expected 50% bit flip rate) of less than 1%.
FarmHash 1.1’s Fingerprint642 [19], a recent fast non-cryptographic hash,
results in 62-77% bias for 25-32 byte inputs. This may enable key recovery
or collision attacks. The other hashes have less than 1% bias (Table 2).

Table 2: Avalanche bias: percent difference between ideal and actual bit-flip
probability for 4-32 byte keys (lowest value per column underlined).

Algorithm Lowest Average Highest

SipHash 0.0117 0.0131 0.0162
Blake2bp 0.0115 0.0134 0.0156

SipHash13 0.0109 0.0133 0.0153
HighwayHash 0.0117 0.0133 0.0147

Interestingly, the Blake2bp cryptographic hash [20] has slightly higher mini-
mum, average and maximum bias than the faster hashes, and SipHash13 has
lower minimum and maximum bias than SipHash. HighwayHash has nearly
the same average bias as Blake2bp and SipHash13, but the narrowest range
and lowest maximum.

In addition to empirical verification, we discuss several possible attacks
and whether they apply to HighwayHash. Our attack model assumes that
the secret key is initially unknown.

6.2 Differential Attack

Let us begin by attempting a differential attack. Assume we start in a
randomized state, i.e. v0, v1 are uniformly distributed random variables,
which is holds true if the key was random. We will attempt to modify
sequential vectors A, B and C such that the state change caused by A is
reversed by B. The two rounds of Update have the following effect:

2Hash64WithSeed mixes more thoroughly, but its API contract does not guarantee
unchanging results.

10



1 v1 += A;
2 v1 += mul0 ;
3 mul0 ˆ= V4x64U( mm256 mul epu32 ( v0 , v1 >> 3 2 ) ) ;
4 v0 += mul1 ;
5 mul1 ˆ= V4x64U( mm256 mul epu32 ( v1 , v0 >> 3 2 ) ) ;
6 v0 += ZipperMerge ( v1 ) ;
7 v1 += ZipperMerge ( v0 ) ;
8 v1 += B;
9 v1 += mul0 ;

10 mul0 ˆ= V4x64U( mm256 mul epu32 ( v0 , v1 >> 3 2 ) ) ;
11 v0 += mul1 ;
12 mul1 ˆ= V4x64U( mm256 mul epu32 ( v1 , v0 >> 3 2 ) ) ;
13 v0 += ZipperMerge ( v1 ) ;
14 v1 += ZipperMerge ( v0 ) ;
15 v1 += C;

The last step is included in case C can help restore the value of v1. The
effect of A is to either change mul0 in line 3, or mul1 in line 5, except for a 1
in 232 chance that the 32 bits from v0 are 0. In that case, v1 can probably be
corrected in line 8, but we have still changed v0, which cannot be corrected
before propagating to mul0 or mul1 with all but 1 in 232 chance, and the
differential attack fails because we are no longer able to influence mul0 or
mul1. The combined probability that both changes from A and B do not
affect either mul value is at most 1 in 264, so that approach also fails. The
other case is where we allow mul0 or mul1 to change in line 3 or 5, hoping it
will be corrected by the corresponding line 10 or 12. The probability of this
is 2−32, with a higher likelihood when we change only 1 bit in A and then B,
and lower when we change more bits. In line 3 or 5, there will be at least
a 32-bit random change in either mul0 or mul1, which propagates to v0 or
v1 in line 9 or 11. Correcting v0 or v1 is at best another 1 in 232 chance in
lines 13-15, and again the attack fails. Note that this analysis holds even
in the first vector where the mul0 and mul1 values are known, but v0 and
v1 are random. Longer differentials that include a subsequent vector are
too late to help because changing one or more bit in A will avalanche from
adding/XORing/multiplying at least 64 bits of random initial state at line 1
from v0 v1 mul0 mul1 into each other after line 11.
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6.3 Length Extension Attacks

Length extension attacks are infeasible because the calls to PermuteAndUpdate
during finalization differ from previous calls to Update. In particular, the
permutation involves neighboring lanes, whereas regular Update invocations
do not. Also, the state is random, depending on the secret key, and permutes
in a manner that avalanches to new states on each call to Update, regardless
of the vector values. In cases where the input length is not a multiple of
the vector size (32 bytes), the padding scheme ensures that messages with
various numbers of trailing zero bytes result in different hashes.

6.4 Entropy Loss

When all input vectors except one are held constant, the final state will
differ for all 2256 possible vector values, because Update is a permutation.
Compression only occurs when injecting input data and discarding all but
the 64 output bits during finalization.

6.5 Rotational Attacks

The security of an ARX (Add, Rotate, XOR) scheme S depends on the
number of additions q [21]. For n-bit inputs I and a rotation function R we
have

Z = P (R(x+ y, r) = R(x, r) +R(y, r)) = (1 + 2r−n + 2−r + 2−n).

P [S(R(I, r)) = R(S(I), r)] = Zq

For an ARX scheme with too few additions, we can detect non-randomness
in the function by showing that S(R(I, r)) = R(S(I), r) more than a random
function, the probability of which is 2−n for an n-bit hash function. For
example, SipHash (with 2 update and 4 finalization rounds) involves 13
additions. The resulting state values, when XORed together, will be the
same whether we rotate the inputs by 32 or just the output by 32 with
probability 4−13 = 2−26. If keys are reused and attackers choose the input, a
significant bias should be detectable. However, it is not clear how this can
be used to either create collisions or reveal the key. Direct rotational attacks
to not seem to apply to the multiplier, since the output is 64-bits whereas
each operand is 32 bits. However, each multiplier contributes on the average
16 32-bit additions, and the four finalization rounds include 8 multiplications
for a total average of 128 32-bit additions. For the results to be equal after
rotating both inputs by 16, we need the upper 16 bits of one operand to be 0,
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and the lower 16 bits of the other to be 0, with probability 2−32. The chance
of this happening throughout all finalization rounds is negligible. With a
total of 32 multiplications (4 lanes times 8), the resulting 1 in 41024 bias is
far too small to detect.

6.6 SAT Solvers

Boolean satisfiability solvers have been applied to the problem of deriv-
ing unknown key bits when the attacker knows most bits of the key in
SipHash. Modified versions that use fewer finalization rounds were found
to be vulnerable to modern SAT solvers. However, formal verification of
CPU multiplier circuits remains a challenge. Polynomial time solutions for
verification have been discovered, but they rely on algebraic properties of
multiplication and cannot be used on larger circuits also including XOR gates.
We therefore expect HighwayHash to be far more resistant to SAT-solver
based key extraction than traditional ARX hash functions such as SipHash.

7 Conclusion

Faster hashing could save enormous amounts of CPU time in data centers.
However, algorithms entirely focused on speed, including Murmur3 and City-
Hash, are vulnerable to attacks [3]. For example, adversaries can skew the
distribution of ‘random’ decisions. We describe a strengthened version of
the smhasher test suite [16] that reveals a previously unknown weakness in
Fingerprint64 from FarmHash 1.1 [19] (but not Hash64WithSeed, which
is fast and well-distributed). Applications should not use such unsafe hash
functions unless they trust their input data. SipHash is a widely used pseudo-
random function for which no relevant attacks are known. However, it is
relatively slow (1.3 cycles per byte for 1 KB inputs). We propose Highway-
Hash, a novel keyed hash that is almost 4 times as fast thanks to SIMD
multiply and permute instructions. The source code is available under the
permissive Apache 2 license at https://github.com/google/highwayhash.
To the best of our current (non-expert) ability, we have analyzed the algo-
rithm and found no weaknesses. Statistical tests indicate HighwayHash is less
predictable than SipHash. We also considered powerful attacks, including
differential and rotational, and are confident the algorithm will withstand
these specific attacks. We welcome further cryptanalysis, especially be-
cause hash functions built using multiplication and permutation have not
yet been studied. Assuming this construction remains unbroken, it can be
recommended for pseudo-random number generators and fast message au-
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thentication codes. Strengthened variants may also substantially accelerate
stream ciphers and file hashing. Such sensitive applications should incorpo-
rate provably secure primitives into the finalization, while still benefiting
from the fast HighwayHash Update function.
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