Fast Multiplication in Binary Fields on GPUs via
Register Cache

Eli Ben-Sasson
Technion
Haifa, Israel
eli@cs.technion.ac.il

Mark Silberstein
Technion
Haifa, Israel
mark@ee.technion.ac.il

ABSTRACT

Finite fields of characteristic 2 — “binary fields” — are used
in a variety of applications in cryptography and data storage.
Multiplication of two finite field elements is a fundamen-
tal operation and a well-known computational bottleneck in
many of these applications, as they often require multiplica-
tion of a large number of elements. In this work we focus on
accelerating multiplication in “large” binary fields of sizes
greater than 232. We devise a new parallel algorithm opti-
mized for execution on GPUs. This algorithm makes it pos-
sible to multiply large number of finite field elements, and
achieves high performance via bit-slicing and fine-grained
parallelization.

The key to the efficient implementation of the algorithm
is a novel performance optimization methodology we call
the register cache. This methodology speeds up an algo-
rithm that caches its input in shared memory by transform-
ing the code to use per-thread registers instead. We show
how to replace shared memory accesses with the shuffle()
intra-warp communication instruction, thereby significantly
reducing or even eliminating shared memory accesses. We
thoroughly analyze the register cache approach and charac-
terize its benefits and limitations.

We apply the register cache methodology to the imple-
mentation of the binary finite field multiplication algorithm
on GPUs. We achieve up to 138x speedup for fields of
size 232 over the popular, highly optimized Number The-
ory Library (NTL) [26], which uses the specialized CLMUL

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

ICS ’16 June 1-3, 2016, Istanbul, Turkey
© 2016 ACM. ISBN 123-4567-24-567/08/06. . .$15.00
DOI:10.475/123_4

Matan Hamilis
Technion
Haifa, Israel

hamilis@cs.technion.ac.il

Eran Tromer
Tel-Aviv University
Tel-Aviv, Israel
tromer@cs.tau.ac.il

CPU instruction, and over 30x for larger fields of size be-
low 225, Our register cache implementation enables up to
50% higher performance compared to the traditional shared-
memory based design.

CCS Concepts

*Computer systems organization — Single instruction,
multiple data; s-Mathematics of computing — Mathemat-
ical software performance;

Keywords

GPGPU; SIMD; Finite Field Multiplication; Parallel Algo-
rithms;GPU Code Optimization

1. INTRODUCTION

A binary field is a Galois field (GF) (also called finite
field) of size 2™, where n is an integer; we denote it by
GF (2™). Binary fields have numerous applications in cryp-
tography and data storage. For instance, the Advanced En-
cryption Standard (AES) [13]] uses GF (28), as does the er-
ror correction scheme used on Compact Discs (CDs) and
Digital Versatile Discs (DVDs). Large fields are the basis
for distributed storage systems like those used by Google
and Amazon, which employ fields of size 232,264 and 2128
to ensure secure and reliable storage of data on multiple
disks [15]]. They are also the basis for the application mo-
tivating this work: an efficient implementation of a family
of probabilistically checkable proofs (PCP) of quasi-linear
length [8]]. This application is envisioned to enable verifi-
able execution, whereby a client that offloads a computation
to untrusted computing resources, e.g., to a cloud system,
receives a proof which attests that the results have indeed
been produced by the execution of the offloaded computa-
tion. PCPs require very large binary fields: most of our
work focuses on GF (2%2) and GF (2°%) but we also sup-
port fields of up to GF(22%4%). Because all the applications
mentioned above need to perform multiplication of a large

10.475/123_4

number of finite field elements, their performance is dom-
inated by the cost of finite field multiplication, motivating
the never-ending quest for more efficient implementations
of this fundamental arithmetic operation.

In this paper we focus on accelerating finite field multi-
plication for large binary extension fields of size larger than
GF(232) on GPUs, where field elements are represented us-
ing a standard basis (cf. Section[d]for definitions). The main
computational bottleneck in this case is the multiplication of
polynomials over GF(2), that is, polynomials with {0,1}-
coefficients. The challenge posed by polynomial multiplica-
tion operations over GF(2) has led Intel and AMD to add an
instruction set extension CLMUL to support it in hardware.

We devise a novel parallel algorithm for multiplication in
large binary extension fields on GPUs, which significantly
outperforms the dedicated CPU hardware implementation.
The algorithm is based on two main ideas: First, we apply
bit-slicing, enabling a single thread to perform 32 multipli-
cations in parallel. As a result, all the arithmetic operations
involved in multiplication are performed on 32 bits together
instead of a single bit at a time for single multiplication,
therefore matching the width of hardware registers and en-
abling full ALU utilization. Second, the computation of a
single multiplication is further parallelized in a fine-grained
manner to eliminate execution divergence among the partic-
ipating threads. This critical step allows these computations
to be mapped to the threads of a single GPU warp, whose
threads are executed in lock-step.

We then focus on an implementation of the algorithm on
modern NVIDIA GPUs. The key to implementation effi-
ciency is a novel optimization technique that we call the
register cache. The register cache enables us to use per-
thread registers in conjunction with the shuffle() intrin-
sics to construct a register-based cache for threads in a sin-
gle warp. This cache serves the same purpose as the on-die
shared memory, but is much faster thanks to higher band-
width and reduced synchronization overhead. We propose
a general methodology for transforming a traditional algo-
rithm that stores its inputs in shared memory into a poten-
tially more efficient one that uses private per-thread registers
to cache the input for the warp’s threads. We thoroughly
study the benefits and limitations of the register cache ap-
proach on the example of a well-known k-stencil kernel.

Finally, we apply the register cache methodology to op-
timize the implementation of the finite field multiplication
algorithm for GF(QN) where N=32,...,2048. The primary
challenge is to scale the efficient single-warp implementa-
tion to larger fields while retaining the performance benefits
of the register cache methodology. We analyze several de-
sign options, and apply an algorithm that uses a low-degree
multiplication as a building block for multiplication in larger
fields.

We evaluate our implementation across a variety of field
and input sizes using NVIDIA Titan-X GPU with 12GB of
memory, and compare it to a highly optimized CPU version
of a popular Number Theory Library (NTL) [26] running on
a single core of Intel® Xeon® CPU E5-2620 v2 @ 2.10GHz
that uses the Intel’s CLMUL CPU instruction set extension.

Our optimized implementation that uses register cache is
up to 138x faster than NTL for GF(23%) when multiply-
ing more than 22° finite field elements. The register cache
approach enables us to speed up the original shared memory
version by about 50% over all field sizes.

Our contributions in this paper are as follows:

1. A novel algorithm for polynomial multiplication over
GF(2) on GPUs,

2. A general optimization methodology for using GPU
registers as an intra-warp user-managed cache, along
with an in depth analysis of this approach and its ap-
plication to polynomial multiplication.

3. Efficient GPU finite field multiplication that is up to
two orders of magnitude faster in fields (GF(23?)) than
the CPU implementation that uses the specialized hard-
ware instruction.

This paper is organized as follows. In Sections we
introduce and analyze the register cache optimization ap-
proach, and highlight its benefits by applying it to a sim-
ple k-stencil kernel. In Sections we explain the parallel
algorithm for finite field multiplication on GPUs, and show
how to apply the register cache methodology to boost its per-
formance. We conclude with an evaluation (Section [9) and
related work (Section [T0).

2. GPU BACKGROUND

We briefly outline the basic concepts of the GPU architec-
ture and programming model, using NVIDIA CUDA® ter-
minology; more details about CUDA® and the GPU model
can be found in [6].

Execution hierarchy. GPUs are parallel processors that run
thousands of threads. Threads are grouped into warps, warps
are grouped into threadblocks, and multiple threadblocks form
a GPU kernel which is invoked on the GPU by the CPU. A
warp is a set of 32 threads that are executed in lockstep, i.e.,
at a given step all the threads in the warp execute the same in-
struction. Threads in a threadblock are invoked on the same
core, called the Streaming Multiprocessor (SM), and may
communicate and synchronize efficiently.

Memory hierarchy. Each thread has a set of dedicated pri-
vate registers. Registers are the fastest type of memory. Threads
in the same threadblock share a fast, threadblock-private,
on-die scratchpad called shared memory. The performance
characteristics of shared memory are similar to those of an
L1 cache. In particular, it has lower bandwidth than the reg-
isters [28]]. Shared memory is implemented using 32 mem-
ory banks, such that accesses to each bank are served in-
dependently. Each bank holds a stride of memory addresses
such that concurrent accesses to 32 consecutive 4-byte words
are served by different banks concurrently. Concurrent ac-
cesses to the same bank are serialized, resulting in bank con-
flict. All threads in the kernel share global GPU memory.
Global memory provides about an order of magnitude lower
bandwidth than shared memory. Accesses to global memory
are cached in a two-level hardware cache.

Inter-thread communication. Threads in the kernel may
communicate via global memory. Threads in the same thread-

block may also communicate via shared memory, and syn-
chronize by using efficient hardware barriers. Threads in the
same warp can communicate via shuffle(x,y) intrinsics,
exchanging values stored in their private registers without
using shared memory as an intermediary.

The shuffle(t;,r) instruction is executed concurrently
by multiple threads in a single warp. It allows thread ¢; to
share a value r it stores in a register and directly read private
data shared by thread ¢;. Variable r holds the data shared by
the caller with the other threads in the warp. The instruction
returns the data that the caller thread reads from thread ;.
The results are well defined only if the target thread ¢; also
calls shuffle(). The instruction supports arbitrary com-
munication patterns between the warp threads, but allows a
given thread to share only one 4-byte value at a time.

Thread divergence. Threads in a warp are executed in lock-
step; therefore they are best suited to a single instruction —
multiple data (SIMD) execution pattern. However, from the
programming perspective, each thread in a warp is indepen-
dent and may run its own code. When the warp threads en-
counter different, divergent, execution paths their execution
is serialized. Therefore, to optimize performance, program-
mers seek algorithms that minimize or completely avoid di-
vergence among threads.

Throughout the paper we denote by W the number of
threads in a warp, by 7 B the number of threads in a thread-
block and B as the width of hardware registers in bits. In
current GPUs W = 32 and B = 32.

3. INTRA-WARP REGISTER CACHE

On-die shared memory is commonly used for data sharing
among threads in the same threadblock. One common prac-
tice is to optimize input data reuse, whereby the kernel input
is first prefetched from the global memory into the shared
memory, thus saving global memory access cost on the fol-
lowing accesses.

In this section we focus on the register cache, a design
methodology whose goal is to improve kernel performance

by transforming computations to use registers instead of shared

memory. We use private registers in each thread as a dis-
tributed storage, effectively implementing a layer of user-
managed cache for the threads in the same warp with the
help of the shuffle() instruction.

The benefits of using registers and shuffle() are well
known in SIMD architectures [4]], and are embraced in GPU
computing [20, 27, |21} |1} 23 [11]. The shuffle()-based
design removes the threadblock-wise synchronization over-
head associated with the use of shared memory, and allows
higher effective memory bandwidth to the data stored in reg-

isters. However, the existing uses of shuffle() are application-

specific and offer no guidance for the design of the algo-
rithm. Here we suggest a systematic approach to construct-
ing shuffle()-based algorithms, aiming specifically to op-
timize applications with significant input data reuse.

Problem setting. We consider a common application sce-
nario in which threads prefetch the shared threadblock input
into shared memory and then access it repeatedly. Our goal

is to reduce the use of shared memory as much as possible
by identifying sharing and access patterns among the threads
of a single warp, and replacing certain or all shared memory
accesses by shuffle().

Overview. We start with a shared memory-based implemen-
tation. The following steps accomplish the kernel transfor-
mation to use registers instead.
1. Identify warp inputs in shared memory.
2. Distribute inputs across warp threads such that each
thread stores some part of the shared input in its regis-
ters. The optimal distribution is application dependent.

3. Logically break computations into two interleaving bulk-

synchronous phases: communication and computation.
The communication phase corresponds to the shared
memory accesses in the original implementation. The
computation phase is similar to the original implemen-
tation, but uses only the data in local registers.
Communication phase. We now describe the communica-
tion phase transformations in greater detail.
1. For each thread, declare the data to be read from other

warp threads. We refer to each access as a Read(var, tid)

operation, such that tid is the thread to read from, and
var is the remote variable holding the data, both deter-
mined by the data distribution.

2. For each thread, compile the list of local variables re-
quired for the other threads by observing Read opera-
tions issued by them. Declare each such variable using
Publish(var) operations.

3. Align Read and Publish operations in each thread
and across the threads, such that (a) there is one Read
for each Publ1ish in each thread, and (b) there is one
Publish for the value in the remote thread for each
local Read. This step might require duplicating some
calls to achieve perfect alignment, and/or redistribu-
tion of the inputs to reduce conflicts, i.e., when aligned
Read requests from different threads need different
variables from the same thread. Replace Read-Publi
tuples with shuffle() calls.

3.1 Example: 1D k-stencil

We now illustrate this scheme using a 1D k-stencil kernel.
We then apply the same principles to the finite field multi-
plication in Section[7}
1D k-Stencil. Given an input array ao, . . . , a,—1, the output

of a k-stencil kernel is an array by, . .., b,_1 such that b; =

Stk a4y .) . .
%, assuming a; = 0 for i < O or ¢ > n. k is also

called a window size. Note that each input element is read
2k + 1 times during computation. Thus, any implementation
must cache the input in order to exploit data reuse.

For simplicity we use k = 1, W =32 threads per warp.
Shared memory implementation. We consider the follow-
ing implementation: (1) copy input from global memory into
a temporary array in shared memory using all threadblock
threads; (2) wait until the input is stored in shared mem-
ory; (3) compute one output element; (4) store the results in
global memory.

sh

Output 32
Figure 1: Input distribution in 1-stencil computation

Tid [0 I 2-29 30 31
Tteration 1 R(0,2)
P(0)
Iteration 2 | R(0,I) P(0,2) R(0,s+1) R(0,31) R(1,0)
P(1) PO P(0) P(0) P(0)
Tteration 3 | R(0,2) R(0,3) R(0,:+2) R(1,00 R(I,)
P(1) P(1) P(0) P0) P(0)

Table 1: Read (R) and Publish (P) operations in each itera-
tion of the 1D 1-stencil computation. Tid denotes the thread
index in a warp.

We follow the register cache methodology suggested above
to eliminate shared memory accesses.
Step one: Identify warp inputs. Given that 7 is the index of
the output element computed by thread O in a warp, the warp
calculates the output elements ¢, . . . , 7 + 31, and depends on
34 inputelements ¢ — 1, . ..,7+ 32, denoted as input array.
Step two: Determine input distribution. We use a round-
robin distribution of input arrays among the threads, as
illustrated in Figure E} In this scheme, input [i] is as-
signed to thread j=¢ mod 32, where j is the thread index
in the warp. Thread O and thread 1 each store two elements,
while all the other threads store only one. We denote the first
cached element as 7[0] and the second as r[1]. Observe that
this distribution scheme mimics the data distribution across
banks of shared memory.
Step three: Communication and computation. We iden-

tify three communication phases — one for each input ele-
ment read by each thread. Table [I] lists all Read (R) and

Publish (P) operations performed by each thread. Read(s, j)

indicates a read from thread j of its element r[i]. The first
communication phase is local, and provided for clarity.

We now merge Publish-Read tuples into shuffle(). At
this point computations in a warp do not use shared memory.
All that remains is to efficiently compute thread and register
indexes in the shuffle() calls while avoiding divergence.

The complete implementation is in Listing

3.2 Analysis

Bank conflicts and shuffle() conflicts. One of the main
challenges of the register cache design is to transform the
Publish and Read operations into shuffle() calls. In
particular, if there are two or more threads performing
Read(var, tid), such that tid is the same and var is differ-
ent, this is called a conflict, since thread tid may fulfill these
requests only in multiple Publish calls.

#define REGISTER_ARRAY_SIZE 2
#define FILTER_SIZE 1
__global__ void kstencilShuffle(
int* in,
int* out,
int size){
int threadInput [REGISTER_ARRAY_SIZE];
int threadOutput = 0, reg_idx , tid_idx;
int lindex = threadldx.x & (WARP_SIZE — 1);
10 int gindex =
11 threadIdx .x + blockIdx.x * blockSize.x;
12 // PREFETCH. note: in is padded by FILTER_SIZE
13 int lowldx = gindex — FILTER_SIZE;
14 int highldx = lowldx + WARP_SIZE;
15 threadInput[0] = input[lowldx];
16 threadInput[1] = input[highldx];

O 001NN W~

17

18 // First iteration data available locally
19 threadOutput+=threadlnput [0];

20

21 //COMMUNICATE + COMPUTE

22 reg_idx=(lindex==0)? 1 : 0 ;

23 tid_idx=(lindex+1) & (WARP_SIZE —1);
24 threadOutput+=

25 __shfl(threadInput[reg_idx],tid_idx);
26

27 //COMMUNICATE + COMPUTE

28 reg_idx =

29 (lindex == 0 Il lindex == 1) 2 1 : 0 ;

30 tid_idx = (lindex+2) & (WARP_SIZE —1);

31 threadOutput+=

32 __shfl(threadInput[reg_idx], tid_idx);

33 output[gindex] = threadOutput / FILTER_SIZE;

Listing 1: 1-stencil implementation using the register
cache.

One may argue that register cache conflicts are more likely
than the bank conflicts in the original implementation. We
argue that this is not the case. Consider the round-robin in-
put distribution we used in the k-stencil example. This dis-
tribution mimics the distribution of data across the banks in
shared memory, because, to the best of our knowledge, the
number of banks in NVIDIA GPUs is the same as the num-
ber of threads in a warp. Thus, when using the round-robin
distribution, the number of register cache conflicts will be
exactly the same as the number of shared memory conflicts.

Moreover, register cache might make it possible to reduce
the number of conflicts by using an alternative, application-
optimized distribution of inputs. We leave this optimization
question for future work.

Performance improvement over shared memory. The main
benefits of register cache come from lower latency of shuffle()
operations versus shared memory accesses [20]], and higher
bandwidth to registers compared to shared memory [27].

As an illustration, we compare the performance of shared

memory and register cache implementations of the k-stencil
kernel. We find that the register cache implementation achieves
64% higher throughput compared to the shared memory ver-
sion for input sizes of 227 elements.
Thread coarsening. One common technique in program
optimizations is thread coarsening [3||. This technique in-
creases the number of outputs produced by each thread, and
thus enables some of the data to be reused across iterations
by storing it in registers.

Speedup

2 4 8 16
Outputs per thread

—e— k =1 - Register Cache —#— k = 7 - Register Cache
—o— k = 1 - Shared Memory —— k = 7 - Shared Memory

Figure 2: Speedup obtained from coarsening in the compu-
tation of 1 — Stencil and 7 — Stencil for register cache and
shared memory implementation

In the case of the register cache, thread coarsening is some-
times required in order to achieve the desired performance
improvements. The reason lies in the small number of threads
sharing the cache. Since the register cache is limited to the
threads of a single warp, only the inputs necessary for the
warp threads are prefetched and cached. However, the input
reuse might occur across the warps. For example, for the
k = 1-stencil kernel, the value array[0] in warp ¢ is the
same as array[31] in warp ¢ — 1; however, both warps read
it from the global memory. Thus, assuming the maximum
of 32 warps in a threadblock, one threadblock in a regis-
ter cache implementation performs 34 x 32 = 1088 global
memory accesses, which is 6% more than the global mem-
ory accesses in a shared memory implementation with the
same threadblock size. Moreover, the number of redundant
memory accesses grows with k, reaching 88% for k = 16.

Thread coarsening helps reduce the effect of redundant

global memory accesses. In Figure 2] we show the perfor-
mance improvement due to computing more outputs per thread
(2,4,8 and 16) for the implementations using register cache
and shared memory, for different values of k. We see that
the improvement due to thread coarsening is almost negligi-
ble for the shared memory version, but it is significant for
the register cache. We note that with a single output per
thread the shared memory version is actually 1.8-2 times
faster than the one using register cache for all k (not shown in
the graph). However with two and more outputs per thread,
the register cache version is faster.
High data reuse. As with any cache, the effect of the regis-
ter cache is amplified with higher data reuse. Figure[3|shows
the relative performance of the register cache implementa-
tion of k-stencil over the shared memory implementation for
different k, as a proxy for evaluating different amounts of
data reuse. The speedup achieved by the register cache is
about 10% higher for £ = 15 than for k£ = 1. Each thread
computes 16 outputs.

3.3 Limitations

Access pattern known at compile time. The register cache
design may work only for a shared memory access pattern
known at compile time. The main reason is that a thread

1.75
1.7

Speedup

1.65 -

Figure 3: Speedup of the shuffle-based k-Stencil implemen-
tation over the shared memory-based implementation as a
function of k

must Publish its data exactly when the other threads need
it, which requires static provisioning of the respective
shuffle() calls. For memory accesses determined at run-
time, such provisioning is impossible.

Register pressure. The register cache uses additional regis-
ters, and increases register pressure in a kernel. Even though
recent NVIDIA GPUs increase the number of hardware reg-
isters per threadblock, the register pressure poses a hard limit
on the number of registers available for caching and must be
considered to avoid spillage.

4. FINITE FIELD MULTIPLICATION -
ALGEBRAIC BACKGROUND

This section briefly reviews the basic elements of polyno-
mial rings and Galois fields required by our implementation.
For a thorough introduction to Galois fields, see, e.g., [22].
The ring of polynomials. GF (2) is a field with two ele-
ments (0, 1), with addition (¢) and multiplication (®) per-
formed modulo 2. A polynomial over GF (2) is an expres-
sion of the form A(z) := Y.% , a;a’, where a; € GF(2)
and x is a formal variable; henceforth we simply call A(x) a
polynomial because all polynomials mentioned in this paper
are over GF (2). The degree of A, denoted deg(A), is the
largest index ¢ such that a; # 0. Addition and multiplication
of polynomials (also called ring addition and multiplication)
are defined in the natural way, i.e., for B(z) = 1" bz’
with m > d we have A(z) ® B(z) = > i~ (a; ® b;)a’
and A(z) © B(z) = 00" a7 - @7_g a; © bj_;. The set
of polynomials with the operations of addition and multi-
plication defined above, forms the ring of polynomials over
GF (2), denoted GF (2) [z]. Later, we reduce the problem of
efficient multiplication in the field GF (2™) to the problem of
multiplying polynomials in the ring GF (2) [z].

The standard representation of a binary field. The most
common way to represent GF (2"), also used here, is via
a standard basis, as described next. A polynomial r(z) €
GF (2) [z] of degree n is called irreducible if there is no pair
of polynomials g(x), f(z) € GF(2) [z] such that r(x) =
g(x) © f(z) and deg(g),deg(f) < n. Many irreducible
polynomials exist for every degree n. (Later, a special class
of irreducible polynomials will be used to speed up multi-
plication.) Having fixed an irreducible r(z), for every pair
A, B of polynomials of degree < n, there exists a unique
polynomial C of degree < n such that r(x) divides A(z) ©®

B(z) @ C(z) in the ring GF (2) [x]; i.e., there exists C’(z)
such that A(x) ©® B(z) ® C(z) = r(z) © C'(z). De-
note the transformation that maps the pair of polynomials
(A(z), B(z)) to the polynomial C'(z) by ®,., where r is used
to emphasize that this transformation depends on the irre-
ducible polynomial r(z). The set of polynomials of degree
< n, along with ring addition & and multiplication ®,. de-
fined above, is a standard basis representatio of GF (2").
When the irreducible polynomial % is clear from context, we
drop it and denote GF (2™) multiplication simply by ®.
Example of multiplication in standard representation. In
this example we show the field multiplication of two ele-
ments in GF (24), using the standard representation induced
by the irreducible degree-4 polynomial r(z) := 2% + x + 1.
Consider the two elements A(x) = z + 2 and B(x) = 1 +
22, represented in the standard basis by a := (1010),b :=
(0101). To compute the 4-bit string ¢ = a ®, b we work as
follows:

e Compute the product C’(z) of the two polynomials A(z),
in the ring GF (2) [z], namely, C’(z) := A(z) ® B(z) =
(z+2%)©(1+2?) = 24225 +2° (middle term canceled
because we work modulo 2).

e Compute the remainder C(x) of the division of C’(x) by
7(x); in our example C(z) = x? and one can verify that
deg(C) < 4and r(z) © x = C'(x) ® C(z), as defined
above.

Thus, ¢ ®, b = ¢ where ¢ := (0100).

Field multiplication reduces to ring multiplication. The
previous definitions and example show two main points that
we exploit next. First, when multiplying two elements in
the standard representation induced by r(z), it suffices to
(i) multiply polynomials in the ring GF (2) [z] and then (ii)
compute the remainder modulo 7(z). Second, the structure
of r(x) may influence the complexity of computing field
multiplication.

5. SEQUENTIAL FINITE FIELD MUL-
TIPLICATION

We now provide an efficient algorithm (Algorithm [T)) for
finite field multiplication, one that reduces field multiplica-
tion to a small number of polynomial multiplications; it re-
quires a special standard basis, induced by a 2-gapped poly-
nomial, defined next. In this section we use the following
notation: given a polynomial h(z) = >°1" (h;z" , we define
Wy (x) = S0, i

DEFINITION 1 (2-GAPPED POLYNOMIAL). A polyno-
mial r(x) is 2-Gapped if the degree of its second-largest
term is at most L%J, ie, ifr(z) = 2" + ri(x) with
deg(r1(z)) < 5.

Algorithm 1| performs GF(2") multiplication by reducing
itto 3 GF (2) [z] ring multiplications. Thus, the performance

IThe term “basis” refers to the algebraic fact that the n

elements 1,2,22,...,2" ! are linearly independent over
GF (2), i.e., they form a basis for GF (2™) over GF (2); cf.
[22] for more information.

B(z)

Algorithm 1 Multiplication in GF(2")
Input:
e a(xz),b(x) of degree at most n — 1 in Fy [X].
e r(x) = a™+r(x), 2-gapped polynomial in Fy [X] of

degree n.
Output: h(x) = (a(z) © b(z)) mod r(z)
I: h(z) < a(z) © b(x)

& hl (@) O (o) O o

: h(x)<—hﬂ/2 l(x
) @ ho () © ()

2)
3: h(z) « by M (2) @
4: return h(z)

of field multiplication is determined almost entirely by the
complexity of multiplication of polynomials in the ring of
polynomials. Therefore, in the rest of the paper we focus on
the problem of fast polynomial multiplication on GPUs.

5.1 The CPU CLMUL instruction

Finite field arithmetic, in particular GF(2") multiplica-
tion, has received considerable attention (cf. [14,|9]) and has
efficient CPU implementations in popular software libraries
like NTL [26] and MPFQ ﬂ Moreover, in large part because
of the importance of GF (2™) multiplication, Intel introduced
in 2010 a dedicated CPU instruction set extension CLMUL,
which performs GF (2) [x] ring multiplication of polynomi-
als of degree up to 64 in 7-14 cycles [10]. Both NTL and
MPFQ use this dedicated instruction. This instruction can
be used to multiply polynomials of higher degree, thereby
supporting GF (2™) multiplication for values n > 64 (cf. [5]
for one such implementation).

5.2 Sequential polynomial multiplication

The complexity of polynomial multiplication has been ex-
tensively studied. The number of bit operations performed
by naive Algorithm [2/is O (n?). More sophisticated algo-
rithms by Karatsuba [[18]] and by Schonhage and Strassen 25}
7|] are asymptotically faster, requiring O (logs 3) and
O(nlognloglogn) bit operations, respectively.

In this work we use the naive Algorithm [2] because it is
the fastest for polynomials of degrees below 1000 [19] and
its simplicity makes it a prime starting point for study.

The following simple equation, which explicitly computes
coefficients of the output polynomial, will be used later to
balance work in the GPU.

k
_ .. . < —
Cp = { Zéﬁggl br—i k<n-1)
Yok Gn—14k—i - bi—pg1 k>n-—1

6. PARALLEL POLYNOMIAL MULTI-
PLICATION

We consider the problem of performing multiplication of
a large number of pairs of polynomials.

A naive, purely data-parallel approach is to assign a single
multiplication of two polynomials to one thread. Here, each
polynomial of degree n — 1 is represented as a bit array of

http://mpfq.gforge.inria.fr/doc/doc.html

Algorithm 2 Naive polynomial multiplication

Input:
a(x),b(x) of degree at most n — 1.
Output: ¢(z) = a(z) ® b(x)
:fori=0,....,n—1do
ci+ 0
for j=0,...,ido
C; < C; @aj @b,;_j
—2do
ci+ 0
forj=1,...,2n —2do
Ci ¢ Ap_1+4i—j O bj_nt1

1
2
3
4.
5: fori=n,...,2n
6
7
8
9 ity et

. return c(z) =

B3 '/%g}ﬁ
Tid=2 Tid=3
. ///////// o 2
v)

80, %) i
Figure 4: Illustration of the access pattern of the multipli-
cation algorithm for GF(2*) with W =4. Each frame en-
closes the indexes of rows in A and B accessed for comput-
ing the respective rows c; specified on the top. Tid denotes
the thread index in the warp.

size n, where the i element represents the coefficient of x*
in the polynomial.

This solution is highly inefficient, however. On a platform
with B-bit registers and ALUs, performing single-bit opera-
tions uses only 1/B of the computing capacity. We therefore
develop an alternative algorithm which eliminates this inef-

ficiency.

6.1 Bit slicing

We reorganize the computation such that one thread per-
forms bit-wise operations on B bits in regular registers, ef-
fectively batching multiple single-bit operations together. This
technique, which packs multiple bits for parallel execution,
is often called biz-slicing [29]].

To employ bit-slicing for polynomial multiplication, we
first introduce a new data structure, a chunk, to represent
multiple polynomials, and then reformulate the multiplica-
tion algorithm using chunks.

DEFINITION 2 (CHUNK). A chunk is an n X B matrix
M of bits that represents a set of B polynomials P(i), i €
{0,...,B — 1} of degree less than n. We denote the j"
column in M by M7, and the i*" row by M;. M7 represents
the coefficients of the jth polynomial in the set. In other
words, A(i) = Y1, ! M,

To explain how to compute using chunks, we first con-

'
S

2

A A 42 4 A+B
11011\@':1000'—»0011
L[O[1]|0O=>@q0|1|0|1|—{1]1]1]1
x20101<>1001r1100

Figure 5: Polynomial addition in 4-bit chunks. Computing
the output chunk requires 3 bit-wise XORs, each performing
4 concurrent @ operations.

sider polynomial addition. It is easy to see that it can be
performed by bit-wise XOR of the respective rows of the in-
put chunks A and B. Thus, a single A;® B; computes the 7"
coefficients for all B output polynomials at once. Figure]
shows two input chunks A, B, and the chunk representing
their sum A @ B. Each chunk represents 4 polynomials of
degree 3. For example, A! represents polynomial 2. Fig-
ure [5] also shows an example of polynomial addition using
chunks, assuming B = 4.

Similarly, it is straightforward to extend the single-bit poly-
nomial multiplication Algorithm [2 to use chunks. This is
done by replacing the references to individual bits in lines
[214li6] and [8] with the references to chunk rows, and replacing
single-bit operations with bit-wise operations.

6.2 Parallel polynomial multiplication us-
ing chunks

We show how to parallelize chunk-based polynomial mul-
tiplication. We seek a parallel algorithm that enables effi-
cient, divergence-free execution by the threads of a single
warp, which is the key to high performance on GPUs.

A simple parallelization whereby one thread computes one
row in the output chunk is inefficient due to divergence among
the threads. As we see from Eq. [I} different coefficients in
the output polynomial require different numbers of computa-
tions. For example, computing the coefficient of 22 requires
only three @ operations, while computing the one for x° re-
quires four. Thus, different threads in a warp would perform
different numbers of operations, resulting in divergence.

The key to achieve load-balanced execution among the
threads is to realize that pairs of coefficients require exactly
the same number of computations in total, as we show be-
low.

Denote by Add(k) and Mwul(k) the number of @ and ®
operations respectively to compute the k" coefficient in the
output polynomial. From Eq. [l| we derive that Add(k) =
min{k, 2n—2—k}, Mul(k) = min{k+1,2n—2—k+1} =
Add(k) + 1. Therefore Add(k) and Mul(k) are symmetric
around n — 1. Consequently, for each 0 < k < n Add(k) +
Add(k+n) =n—2, Mul(k) + Mul(k+n) =n

We conclude that the number of computations needed to
compute both coefficients k£ and k + n together is exactly
the same for all k. Therefore, allocating such pairs of coef-
ficients to be computed by each thread will balance the load
perfectly among the threads. Note that computations always
interleave bitwise @ and ® operations; therefore there is no
divergence as long as the number of such operations in all

__global__ void multiply_shmem (
intx A, B, C,

int N)

1

2

3

4

5 __shared__ int sA[32];
6 __shared__ int sB[32];
7 int output=0;

8 int lindex = threadldx.x & (WARP_SIZE — 1);
10| // PREFETCH

11 sA[lindex]=A[lindex];
12 sB[lindex |]=B[lindex];

13 __syncthreads ();

14

15 for (int i=0;i<=lindex ;i++){
16 int a = sA[i];

17 int b = sB[lindex—i];

18 output "= a&b;

19 }

20 C[lindex]J=output;

21 output=0;

22 for (int i=lindex+1;i<N;i++){
23 int a = sA[i];

24 int b = sB[N—1+lindex—i];
25 output "= a&b;

26 }

27 C[lindex+N]=output;

28|}

Listing 2: Multiplication of polynomials of degree 32 in
a warp using shared memory.

threads is the same.

In summary, our parallel polynomial multiplication algo-
rithm allocates each thread in a warp to compute one or more
pairs of rows (k, k + IN) in the output chunk. Each thread
computes the coefficients of B polynomials at once, thanks
to bit-slicing.

We illustrate the execution of the algorithm for GF(2*)
and W = 4 threads per warp as an example in Figure]

Implementation. The implementation closely follows the
algorithm. We dedicate one warp to compute 2V rows in
the output chunk C'. All the rows in the input are accessed by
all the threads, and therefore they are prefetched into shared
memory. Figure[2]lists the implementation for a single warp,
assuming VW =N=32. For clarity we split the implementation
into two separate loops (line 15 and 22), each computing one
output row. This leads to divergence in practice, so in the
real implementation these two loops are merged.
Limitations. The algorithm achieves divergence-free execu-
tion for polynomial multiplication in GF (2N) when N|W,
ie., 32, 64, 96. We leave the question of efficient multipli-
cation of polynomials of other degrees to future work.

7. POLYNOMIAL MULTIPLICATION VIA

REGISTER CACHE

In this section we apply the register cache methodology
presented in Section [3|to speed up ring multiplication (List-
ing [3) and compare it (here and later) to the less efficient
and simpler shared memory implementation (Listing [2)). To
describe the register cache optimizations, we focus on a sin-
gle warp performing multiplication of polynomials of degree
n=W =32. We then discuss the application of this method to

1| __global__ void multiply_reg_cache(

2 intx= A, B, C,

3 int N)

4 {

5 int a_cached, b_cached, output=0;

6 int lindex = threadldx.x & (WARP_SIZE — 1);
7

8| // PREFETCH

9 a_cached=A[lindex];

10 b_cached=B[lindex |;

11

12 for (int i =0 ; i <N ; i++)

13 { // COMMUNICATE

14 int a = __shfl(cached_a,i);

15 int b = __shfl(cached_b,lindex—i);
16 /1 COMPUTE

17 if (i <= lindex) output ~= a&b;

18 }

19 C[lindex]J=output;

20 output=0;

21 for (int i = 0; i <N ; i++){

22 int a = __shfl(cached_a,i);

23 int b = __shfl(cached_b ,N—1+lindex—i);
24

25 if (i > lindex) output "= a&b;

26 }

27 C[lindex+N]=output;

28| }

Listing 3: Multiplication of polynomials of degree 32 in
a warp using the register cache.

polynomials of higher degree.
We start with the shared memory implementation described
in Section

Step one: Identify warp inputs in shared memory. Since
each warp is dedicated to the calculation of a single product
of two chunks, each warp reads only its input chunks.

Step two: Distribute inputs among warp threads. The
rows in chunks are distributed in a round-robin fashion across
the warp threads. For each of the two input chunks, thread ¢
stores all the chunk rows ¢ such that / = ¢ mod w. Conve-
niently, since YW = n, thread i stores rows A; and B; of the
respective chunks.

Step three: Split the algorithm into communication and
computation steps. Each thread communicates with the
other threads to obtain the operands of each ® operation.
Therefore, each ©® is a computation step that is preceded by
a communication step in which the operands are received.
We refer to two such steps together as an iteration, because
they correspond to one iteration of the loops in lines 15 and
22 in Listing[2]

We first determine the data accessed by each thread. We
derive this from the accesses to shared memory in lines 16-
17 and 23-24 in Listing 2] Due to the round-robin data distri-
bution we use, and since the number of rows in each chunk
equals the number of threads, the indexes in shared memory
coincide with the warp indexes of the threads holding the
data.

Now we derive which data must be published by each
thread in each iteration. Figure [4]is useful to reason about
this. We see that the value of A;, stored in thread ¢, is needed
by all the threads only in iteration ¢, and hence each thread
must publish it in iteration ¢. B;, however, is read by differ-

ent threads in different iterations. For example, By is used
by thread O in the first iteration, thread 1 in the second, and
so on. Thus, thread ¢ must publish B; in each iteration.

The computation in each iteration remains the same as in
the shared memory version.

Replacing each communication step with shuffles. To use
shuffle(), we must align Read and Publish operations
in each communication step. To simplify, we consider the
case in which we first align all accesses to B and then to A.

Aligning accesses to B is straightforward, because (1)
each thread publishes its single cached value and reads one
value in every iteration, and (2) no two threads require two
different values at once from the same thread (which would
result in a conflict).

The accesses to A cause a problem, because each thread
publishes only in one iteration, but reads in each iteration.
The solution is to simply duplicate the Publ1ish operation
to each iteration, even though it is redundant.

The complete algorithm is presented in Listing 3]

8. EXTENDING TO POLYNOMIALS OF
LARGER DEGREES

We now extend the register cache-based multiplication im-
plementation described in the previous section to polynomi-
als of larger degrees. Doing so requires us to cope with the
challenge of limited register space.

The shared memory algorithm in Listing [2] can be ex-
tended to up to n = 1024 by adding more warps, each using
the same code structure. The register cache, however, is ap-
plicable only within a single warp. Therefore such a simple
extension does not work for the optimized algorithm.

However, extending the register cache for higher degree
polynomials is problematic in other ways as well. Caching
these large polynomials requires more register space. Thus,
at a certain threshold ng, high register pressure results in reg-
ister spillage to global memory, thereby rendering the regis-
ter cache method described above inapplicable. We found
empirically that the threshold is ng = 64.

In order to efficiently multiply polynomials of degree n >
64, we develop a hybrid solution that uses the efficient regis-
ter cache-based implementation for multiplying polynomials
of lower degree. The idea is to use the lower-degree multi-
plication as a building block for multiplying polynomials of
higher degrees, at the expense of employing shared memory.

The full description of this algorithm is omitted for lack
of space. But we now explain the main idea behind it, by
showing how to multiply degree-64 polynomials using mul-
tiplication of degree-32 polynomials as a building block.

Let a(x) = Y a;2* and b(z) = > bz’ be two poly-
nomials of degree 64 that we wish to multiply. Denote the
efficient procedure for multiplying two polynomials of de-

gree 32 by mult32 (). We can represent a(xz) = aop(z) +

23%ay (x), where ag(z) = Y200 Aiz’ and a; = Y004, 2.

Observe that ap and a; are two polynomials of degree at
most 31. Using the same representation for b(x), we obtain
a(z) © b(x) = (ao(x) +2°2a1(x)) © (bo(2) + 272b1 () =
mult32(ap(z),bo(z)) + 32mult32(ai (), bo(x)) +

Version | Throughput | Shared memory | Reg/Thread
(mult/s x10%) accesses

shmem 1.04 16384 25

mult32 2.7 512 30

rcache 3.6 0 32

Table 2: Performance of three different implementations of
64-degree polynomial multiplication.

23?mult32(ag(z), b1 (7)) + 2% mult32(a;s (), by ().

There are many possible implementations of this idea and
those we are aware of use shared memory. We choose to
implement one such solution that uses two warps. The first
warp computes mult 32 (ag,bg) and mult32 (ag,bg) , and
the second one computes mult 32 (ag, by) and mult32(aq, by).
Since the input is reused across the warps, it is stored in
shared memory. In addition, each warp stores its output in
shared memory, so the two warps can combine the results of
mult32 (ag, bl) and mult32 (aq, bo) .

We use the same principle to implement multiplication for
polynomials of higher degree.

8.1 Comparison of the different designs

We would like to compare the relative speedup offered by
the hybrid algorithm over the purely shared memory imple-
mentation, and over the implementation that uses the register
cache only. Comparing these three designs is possible only
for n < 64 because, as mentioned, register pressure in the
register cache version results in register spillage.

In our implementation, the naive shared memory version
runs in two warps. The hybrid mult 32-based implementa-
tion uses the mult 32 function internally, and uses shared
memory to share input and intermediate outputs between
warps. Finally, the optimized degree-64 multiplication uses
register cache natively, without shared memory. In this im-
plementation each thread stores 4 input coefficients and pro-
duces 4 outputs.

The results of the comparison are presented in Table[2]and
demonstrate the benefits of using register cache. We observe
that the shared memory (shmem) implementation is about
3.5 times slower than the one using register cache (rcache).
The hybrid version (mult32) achieves 2.6 times faster exe-
cution over shmem, and about 30% slower than the optimal
rcache version.

These results also indicate that the best building block
for the hybrid algorithm is the multiplication kernel of the
largest degree that fits in the register cache. Therefore, we
use n-64 polynomial multiplication and evaluate its perfor-
mance in Section

8.2 Application to larger fields

The shared memory based multiplication requires 16n bytes
of shared memory. In a GPU with up to 48KB of shared
memory per threadblock for full occupancy (as NVIDIA Titan-
X), we are limited to fields of size < 23972, With the reg-
ister cache we use half the amount of shared memory, and
therefore can implement multiplication in fields as large as
GF (26144)'

However, we do not implement it for fields larger than

GF (22048). For larger fields the hybrid algorithm outlined
here with asymptotic running time O(n?) becomes relatively
inefficient when compared to the more sophisticated Karat-
suba algorithm, as detailed in Section [9]

9. EVALUATION

We evaluate the complete implementation of GF(2"™) mul-
tiplication. The source code is available online '] We incor-
porate the algorithms in Section [7]into the finite field multi-
plication implementation according to Algorithm [I]

Methodology. We use GeForce® GTX TITAN-X GPU, and
a Supermicro Server with 2x6 Intel® Xeon® E5-2620 v2 @
2.10GHz CPUs with 64GB of RAM. For each measurement
we perform five executions, remove the highest and lowest
results, and compute the average of the remaining three. We
observe negligible standard deviation, less than < 4%. Hy-
perthreading and CPU power management are disabled to
achieve reproducible CPU performance. Each experiment
uses random data for its input. As a CPU baseline we use
NTL version 8.1.2 [26]], which is a highly-optimized single-
core CPU library for finite field arithmetics that uses CLMUL
CPU intrinsics for polynomial multiplication.

Speedup over CPU for GF(2%?) and GF(25%). Our im-

plementation for GF(23?) and GF(2%*) employs optimized
register cache implementations of n=32 and n=64 polyno-
mial multiplication respectively. We emphasize that we ap-
ply the same optimizations the NTL does when 2-gapped
polynomials are used, and that the NTL implementation is
based on the CLMUL instruction.

Figure |6 shows the results. The GPU implementations
for GF(QQ and GF(232) are up to 99 x and 138 x faster
than NTL’s CPU multiplication for inputs exceeding 226 el-
ements.

We observe that the speedups are not constant. The reason
lies in the variability in the NTL performance, which drops
by about 15% for larger inputs. The GPU implementation
performance keeps rising until it plateaus out for inputs ex-
ceeding 22° elements.

The peak throughputs of GPU implementations are 3.15
and 2.09 billion finite field multiplications per second for
GF(232) and GF(264) respectively. Note that these through-
puts are slightly lower than the throughput of the respective
polynomial multiplication, because finite field multiplication
involves multiple polynomial multiplications.

Register cache vs. shared memory. We compare two im-
plementations for multiplication in GF(25%): with shared
memory and with register cache. This experiment seeks to
evaluate the impact of our register cache optimization on the
end-to-end application performance. We observe that the
register cache version is 50% faster than the shared mem-
ory version. As expected, the performance boost is smaller
than in the pure polynomial multiplication case reported in
Table2

Performance for larger fields. We evaluate the performance
of the finite field multiplication in fields of higher degrees.

3 https://github.com/HamilM/GpuBinFieldMult

10

120 B
£
§ 80 |- 1
A
40 | 1
0 - |
21() 212 214 216 218 220 222 224 226 228
Number of multiplications
—e— GF(2%1) —=— GF(2%?)
Figure 6: Speedup of register cache multiplication in

GF(264) and GF(232) over NTL

Here we incorporate our hybrid implementation for polyno-
mial multiplication described in Section [8] using the n=32
polynomial multiplication as its building block. We measure
the performance for fields from GF(2%2) to GF(2204%). We
use 223 elements per input.

Figure [/| shows the speedup of our implementation over
NTL. We achieve significant speedups for smaller fields, but
when fields grow larger our speedup diminishes (to 2.17x
in GF(22948)). The reasons are found in the NTL imple-
mentation. For fields smaller than GF(264), NTL uses the
CLMUL intrisics, which allow only multiplication of n=64
degree polynomials; the implementation is therefore ineffi-
cient for these fields. Our GPU implementation does not suf-
fer from this limitation. However, for larger fields NTL uses
a different hybrid algorithm (Karatsuba), which is asymptot-
ically faster than the quadratic algorithm we use. The prob-
lem of implementing the Karatsuba algorithm on GPUs is in
the difficulty to balance the load across threads. We leave
the implementation of a GPU Karatsuba for future work.

100
50

Speedup

0 ! \
264 2128 2256

2512 21024 22048

Field size
—e— Register cache —#— Shared Memory ‘

Figure 7: Speedup over NTL for varying field sizes

Performance for other fields. Figure [8| shows the perfor-
mance of our GPU implementation for GF(2") where N #
2™. As expected, we observe the step function, where in each
step the inputs are processed by the same number of warps.
The number of warps in our implementation employed in
GF(2V)is [

Considering alternative CPU implementations. In all our
experiments we use a single-threaded NTL implementation
for CPU as the performance baseline. NTL natively supports
multiplication of a single pair of elements and uses CLMUL
instruction. One could argue, however, that extending NTL

https://github.com/HamilM/GpuBinFieldMult

— 15 B
A

10 |- B
£

= 5 |
[a%7

0k e e e I e

964 9128 9192 9256 9320 9384

Field Size
’ —e— Register cache —&— Shared Memory
Figure 8: Finite field multiplication performance for

GF(2") where N is not a power of 2.

to support multiplication of many pairs in a batch, as we do
in GPUs, might open additional optimization opportunities,
e.g., bit-slicing techniques like those proposed in Section [6}
Thus, it would become possible to use the AVX vector in-
struction set instead of CLMUL, potentially improving NTL
performance.

We now show why CLMUL implementation is superior.
In the AVX instruction set [10] a single 512-bits wide AND
and XOR takes 1 cycle each. Therefore, using our bit-slicing
algorithm, we can multiply 512 pairs of polynomials of de-
gree 64 in 2 x (64?) = 8192 cycles. Note that this estimate
is rather optimistic, as we ignore the time to reorganize the
input bits to allow vectorized execution. On the other hand,
each CLMUL instruction multiplies a single pair of polyno-
mials of degree 64 in 3.5 cycles (latency 7 cycle, through-
put=2) [[10]. Therefore, 512 polynomials can be multiplied
in 3.5 x 512 = 1792 cycles alone, much faster then the bit-
sliced AVX-based implementation.

10. RELATED WORK

2-gapped polynomials. The CPU implementation of NTL [26]]

for the multiplication in binary fields uses the CLMUL [[12]
instruction and employs 2-gapped polynomials to replace re-
duction with multiplications. We apply a similar algorithm
in our work.

SIMD and bit-slicing. The CPU SIMD instructions have
been used to perform bit-slicing to parallelize GF(2") mul-
tiplication [[16]]. Their implementation, however, is limited
to small fields (up to GF(232)). The GPU architecture suits
SIMD computation and can provide the same functionality
as the CPU SIMD instruction set [24]. The proposed im-
plementation is, however, also limited to small fields (e.g
GF(2'%)). Our implementation applies to larger fields.

Finite field multiplication on GPUs. The previous works [16]

24)] are limited to fields of size smaller than 232. Partic-
ularly, Plank [16]] shows a CPU implementation that deals
with computing a product of multiple elements by a single
scalar, using scalar-dependent pre-computed lookup tables.
Our work focuses on multiplying many pairs of arbitrary el-
ements, therefore the lookup table approach is inapplicable.

Cohen et al. [2] describes an implementation of finite field
multiplication in specific binary fields. The performance re-
ported in their paper is 3-orders of magnitude slower than the

11

performance reported in our work, and their implementation
would benefit from bit slicing, register cache and reduced
synchronization techniques presented here.

An implementation of finite field multiplication on GPUs
over GF(q) for some specific large NIST primes g is dis-
cussed in [17]. Our implementation, however, is optimized
for binary fields in a scalable fashion to achieve a generic
implementation for a large variety of field sizes.

Register-based optimizations. The benefits of reusing data
in registers on GPUs to boost performance are well known.
Volkov and Demmel [27] present GPU implementations of
LU decomposition and SGEMM.

Enfedaque et al. [21]] show how to implement the DWT
(discrete wavelet transform) of an image of varying sizes
where each warp calculates a different part of the output.
They also show that shuffle-based communication achieves
better results when the data each warp fetches from global
memory is reused more times, as also confirmed by our re-
sults (cf. Section[3).

Davidson and Owens [1]] suggest a method called regis-
ter packing to reduce shared memory traffic in GPU when
dealing with a downsweep patterned computation, by per-
forming some parts of the computation in registers.

Catanzaro et al. [4]] show a shuffle-based implementation
for SIMD architectures, including the GPU. They discuss
the benefits of the instruction for reducing shared-memory
bandwidth and show the relation to the Array of Structs —
Struct of Arrays transforms.

nVIDIA’s Kepler Tuning Guide [20] stresses the benefits
of registers over shared memory in terms of latency and ca-
pacity. The shuf fle instruction is suggested as an alterna-
tive for the use of shared memory in some cases.

We leverage the lessons learned in the previous work, and
take one additional step by suggesting a register cache de-
sign methodology for reducing shared memory accesses to
the input data. We demonstrate the application of this method-
ology on a challenging case of finite field multiplication in
binary fields, and show that it achieves significant perfor-
mance benefits.

Acknowledgements

Mark Silberstein is supported by the Israel Science Founda-
tion (grant No. 1138/14), the Israeli Ministry of Science, and
the Israeli Ministry of Economics.

11. REFERENCES

[1] A. Davidson, and J. D. Owens. Register packing for
cyclic reduction: A case study. In Proceedings of the
Fourth Workshop on General Purpose Processing on
Graphics Processing Units, pages 4:1-4:6. ACM,
2011.

A. E. Cohen and K. K. Parhi. GPU Accelerated
Elliptic Curve Cryptography in GF'(2™). In I[EEE
53rd International Midwest Symposium on Circuits
and Systems, pages 57-60, Aug 2010.

A. Magni, C. Dubach, and M. F. P. O’Boyle. A
Large-scale Cross-architecture Evaluation of

(2]

(3]

Thread-coarsening. In Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis, pages
11:1-11:11. ACM, 2013.
B. Catanzaro, A. Keller, and M. Garland. A
decomposition for in-place matrix transposition.
Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pages 193-206, 2014.
C. Su, and H. Fan. Impact of Intel’s new instruction
sets on software implementation of GF(2)[x]
multiplication. Inf. Process. Lett., 112(12):497-502,
June 2012.
D. B. Kirk, and W. W. Hwu. Programming Massively
Parallel Pocessors: A Hands-on Approach. Newnes,
2012.
[7] D. G. Cantor, and E. Kaltofen. On fast multiplication
of polynomials over arbitrary algebras. Acta
Informatica, 28(7):693-701, 1991.
E. Ben-Sasson, and M. Sudan. Short PCPs with
polylog query complexity. SIAM Journal on
Computing, 38(2):551-607, 2008. Preliminary version
appeared in STOC *05.
E. D. Win, A. Bosselaers, S. Vandenberghe, P. D.
Gersem, and J. Vandewalle. A fast software
implementation for arithmetic operations in GF(2").
In Proceedings of the International Conference on the
Theory and Applications of Cryptology and
Information Security: Advances in Cryptology, pages
65-76. Springer-Verlag, 1996.
A. Fog. Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA
CPUs. Available at
http://www.agner.org/optimize/instruction_tables.pdf,
1996-2016. [Online; accessed 28-Mar-2016].
G. L. Steele Jr., and J. B. Tristan. Using
butterfly-patterned partial sums to optimize GPU
memory accesses for drawing from discrete
distributions. CoRR, abs/1505.03851, 2015.
G. Shay, and M. E. Kounavis. Intel(R) carry-less
multiplication instruction and its usage for computing
the GCM mode - rev 2.02. Intel Corporation, April
2014.
J. Daemen, and V. Rijmen. AES proposal: Rijndael.
Available at http:
/fjda.noekeon.org/JDA_VRI_Rijndael_V2_1999.pdf,
1998. [Online; accessed 28-Mar-2016].
J. L. Massey, and J. K. Omura. Computational method
and apparatus for finite field arithmetic. US patent
number 4587627. May 1986.
[15] J. Luo, K. D. Bowers, A. Oprea, and L. Xu. Efficient
software implementations of large finite fields GF(2")

[4]

(5]

[6]

(8]

[10]

(11]

[12]

[13]

[14]

12

for secure storage applications. Trans. Storage,
8(1):2:1-2:27, February 2012.
J. S. Plank, K. M. Greenan, and E. L. Miller.

Screaming fast Galois field arithmetic using Intel
SIMD instructions. In 11th USENIX Conference on

File and Storage Technologies, pages 298-306,

February 2013.

K. Leboeuf, R. Muscedere, and M. Ahmadi. High

performance prime field multiplication for GPU. In

IEEE International Symposium on Circuits and

Systems, pages 93-96, May 2012.

A. Karatsuba and Y. Ofman. Multiplication of

Many-Digital Numbers by Automatic Computers.

Doklady Akad. Nauk SSSR145, 293-294, 1962.

Translation in Physics-Doklady 7, 595-596, 1963.

M. Arabi. Comparison of Traditional, Karatsuba and

Fourier Big Integer Multiplication. B.Sc. Thesis.

University of Bath, May 2005.

[20] nVidia. Kepler Tuning Guide. http://docs.nvidia.com/
cuda/kepler-tuning- guide/index.html, 2015. [Online;
accessed 26-Jan-2016].

[21] P. Enfedaque, F. Auli-Llinas, and J. C. Moure.
Implementation of the DWT in a GPU through a
register-based strategy. IEEE Transactions on Parallel
and Distributed Systems, 26(12):3394-3406, Dec
2015.

[22] R. Lidl and H. Niederreiter. Finite Fields. (2nd ed.),
Cambridge University Press, 1997.

[23] S. Ashkiani, A. Davidson, U. Meyer, and J. D. Owens.
GPU Multisplit. Proceedings of the 21st ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 12:1-12:13, 2016.

[24] S. Kalcher, and V. Lindenstruth. Accelerating Galois
field arithmetic for Reed-Solomon erasure codes in
storage applications. In IEEE International
Conference on Cluster Computing, pages 290-298,
Sept 2011.

[25] A. Schonhage and V. Strassen. Schnelle multiplikation
grosser zahlen. Computing, 7(3-4):281-292, 1971.

[26] V. Shoup. NTL: A library for doing number theory.
Avilable at http://www.shoup.net/ntl, 2003. [Online;
accessed 28-Mar-2016].

[27] V. Volkov, and J. W. Demmel. Benchmarking GPUs to
tune dense linear algebra. In International Conference
for High Performance Computing, Networking,
Storage and Analysis, Nov 2008., pages 1-11.

[28] V. Volkov. Better performance at lower occupancy.
Proceedings of the GPU Technology Conference,
2010.

[29] Wikipedia. Bit slicing — Wikipedia,. [Online;
accessed 27-Mar-2016].

[16]

[17]

[18]

[19]

http://www.agner.org/optimize/instruction_tables.pdf
http://jda.noekeon.org/JDA_VRI_Rijndael_V2_1999.pdf
http://jda.noekeon.org/JDA_VRI_Rijndael_V2_1999.pdf
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://www.shoup.net/ntl

	Introduction
	GPU background
	Intra-warp register cache
	Example: 1D k-stencil
	Analysis
	Limitations

	Finite Field Multiplication - Algebraic Background
	Sequential finite field multiplication
	The CPU CLMUL instruction
	Sequential polynomial multiplication

	Parallel polynomial multiplication
	Bit slicing
	Parallel polynomial multiplication using chunks

	Polynomial multiplication via register cache
	Extending to polynomials of larger degrees
	Comparison of the different designs
	Application to larger fields

	Evaluation
	Related work
	References

