
Fast Prefix Search in Little Space, with Applications

Djamal Belazzougui∗ Paolo Boldi† Rasmus Pagh‡ Sebastiano Vigna

Abstract

A prefix search returns the strings out of a given collection S that start with a given prefix.
Traditionally, prefix search is solved by data structures that are also dictionaries, that is, they
actually contain the strings in S. For very large collections stored in slow-access memory, we
propose extremely compact data structures that solve weak prefix searches—they return the correct
result only if some string in S starts with the given prefix. Our data structures for weak prefix search
use O(|S| log `) bits in the worst case, where ` is the average string length, as opposed to O(|S|`)
bits for a dictionary. We show a lower bound implying that this space usage is optimal.

1 Introduction
In this paper we are interested in the following problem (hereafter referred to as prefix search): given
a collection of n strings, find all the strings that start with a given prefix p. In particular, we will
be interested in the space/time tradeoffs needed to do prefix search in a static context (i.e., when the
collection does not change over time).

There is a large literature on indexing string collections. We refer to Ferragina et al. [11, 4] for
state-of-the-art results, with emphasis on the cache-oblivious model. Roughly speaking, results can
be divided into two categories based on the power of queries allowed. As shown by Pǎtraşcu and
Thorup [15] any data structure for bit strings that supports predecessor (or rank) queries must either
use super-linear space, or use time �(log |p|) for a query on a prefix p. On the other hand, it is
known that prefix queries, and more generally range queries, can be answered in constant time using
linear space [1].

Another distinction is between data structures (typically comparison-based) where the query time
grows with the number of strings in the collection, versus those (typically some kind of trie) where
the query time depends only on the length of the query string1. In this paper we fill a gap in the
literature by considering data structures for weak prefix search, a relaxation of prefix search, with
query time depending only on the length of the query string. In a weak prefix search we have the
guarantee that the input p is a prefix of some string in the set, and we are only requested to output the
ranks (in lexicographic order) of the strings that have p as prefix.

Our first result is that weak prefix search can be performed by accessing a data structure that
uses just O(n log `) bits, where ` is the average string length. This is much less than the space of
n` bits used for the strings themselves. We also show that this is the minimum possible space usage
for any such data structure, regardless of query time. We investigate different time/space tradeoffs:
∗Université Paris Diderot—Paris 7, France
†Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy
‡IT University of Copenhagen, Denmark
1Obviously, one can also combine the two in a single data structure.

At one end of this spectrum we have constant-time queries (for prefixes that fit in O(1) words), and
still asymptotically vanishing space usage for the index. At the other end, space is optimal and the
query time grows logarithmically with the length of the prefix. Precise statements can be found in the
technical overview below.

Technical overview. For simplicity we consider strings over a binary alphabet, but our methods
generalise to larger alphabets. Our main result is that weak prefix search needs just O(|p|/w+log |p|)
time and O(n log `) space, where ` is the average length of the strings, p is the query string, and w is
the machine word size. In the cache-oblivious model [12], we use O(p/B+ log |p|) I/Os. For strings
of fixed length w, this reduces to query time O(logw) and space O(n logw), and we show that the
latter is optimal regardless of query time. Throughout the paper we strive to state all space results in
terms of `, and time results in terms of the length of the actual query string p, because in a realistic
setting (e.g., term dictionaries of a search engine) string lengths might vary wildly, and queries might
be issued that are significantly shorter than the average (let alone maximum) string length. Actually,
the data structure size depends on the hollow trie size of the set S—a data-aware measure related to
the trie size [13] that is much more precise than the bound O(n log `).

Building on ideas from [1], we then give an O(|p|/w+1) solution (i.e., constant time for prefixes
of length O(w)) that uses space O(n`1/c log `) (for any c > 0). This structure shows that weak prefix
search is possible in constant time using sublinear space; queries requires O(|p|/B + 1) I/Os in the
cache-oblivious model.

Comparison to related results. If we study the same problem in the I/O model or in the cache-
oblivious model, the nearest competitors are the String B-tree [10] and its cache-oblivious ver-
sion [4], albeit they require access to the set S. The static String B-tree can be modified to use
space O(n log n + n log `); it has very good search performance with O(|p|/B + logB n) I/Os per
query (supporting all query types discussed in this paper), and its cache-oblivious version guarantees
the same bounds with high probability. However, a search for p inside the String B-tree may involve
�(|p| + log n) RAM operations (�(|p|/w + log n) for the cache-oblivious version), so it may be
too expensive for intensive computations. Our first method, which achieves the optimal space usage
of O(n log `) bits, uses O(|p|/w + log |p|) RAM operations and O(|p|/B + log |p|) I/Os instead.
The number of RAM operations is a strict improvement over String B-trees, while the I/O bound is
better for large enough sets. Our second method uses slightly more space (O(n`1/c log `) bits for any
c > 0) but features O(|p|/w + 1) RAM operations and O(|p|/B + 1) I/Os.

In [11], the authors discuss very succinct static data structures for the same purposes (on a generic
alphabet), decreasing the space to a lower bound that is, in the binary case, the trie size. The search
time is logarithmic in the number of strings. As in the previous case, we improve on RAM operations
and on I/Os for large enough sets.

The first cache-oblivious dictionary supporting prefix search was devised by Brodal et al. [5]
achieving O(|p|) RAM operations and O(|p|/B + logB n) I/Os. We note that the result in [5] is
optimal in a comparison-based model, where we have a lower bound of �(logB n) I/Os per query.
By contrast, our result, like those in [4, 11], assumes an integer alphabet where there is no such lower
bound.

Implicit in the paper of Alstrup et al. [1] on range queries is a linear-space structure for constant-
time weak prefix search on fixed-length bit strings. Our constant-time data structure, instead, uses
sublinear space and allows for variable-length strings.

2

Applications. Data structures that allow weak prefix search can be used to solve the non-weak
version of the problem, provided that the original data is stored (typically, in some slow-access mem-
ory): a single probe is sufficient to determine if the result set is empty; if not, access to the string set
is needed just to retrieve the strings that match the query. By the same means we can answer prefix
counting queries. It is also possible to solve range queries with two additional probes to the original
data (w.r.t. the output size), improving the results in [1]. We finally show that our results extend to
the cache-oblivious model, where we provide an alternative to the results in [5, 4, 11] that removes
the dependence on the data set size for prefix searches and range queries.

Our contributions. The main contribution of this paper is the identification of the weak prefix
search problem, and the proposal of a solutions based on techniques developed in [2]. Optimality
(in space or time) of the solution is also a central result of this research. The second interesting
contribution is the description of range locators for variable-length strings; they are an essential
building block in our weak prefix search algorithms, and can be used whenever it is necessary to
recover in little space the range of leaves under a node of a trie.

2 Notation and tools
In the following sections, we will use the toy set of strings shown in Figure 1 to display examples
of our constructions. We use von Neumann’s definition and notation for natural numbers: n =
{ 0, 1, . . . , n − 1 }, so 2 = { 0, 1 } and 2∗ is the set of all binary strings.
Weak prefix search. Given a prefix-free set of strings S ⊆ 2∗, the weak prefix search problem
requires, given a prefix p of some string in S, to return the range of strings of S having p as prefix;
this set is returned as the interval of integers that are the ranks (in lexicographic order) of the strings
in S having p as prefix.
Model and assumptions. The model of computation considered in most of the paper is a unit-
cost word RAM with word size w. We assume that |S| = O(2cw) for some constant c, so that
constant-time static data structures depending on |S| can be used. We extend several results also to
the cache-oblivious model [12]. Compacted tries. Consider the compacted trie built for a prefix-free
set of strings S ⊆ 2∗. For a given node α of the trie, we define (see Figure 1):

• eα , the extent of node α, is the longest common prefix of the strings represented by the leaves
that are descendants of α (this was called the “string represented by α” in [2]);

• cα , the compacted path of node α, is the string stored at α;

• nα , the name of node α, is the string eα deprived of its suffix cα (this was called the “path
leading to α” in [2]);

• given a string x , we let exit(x) be the exit node of x , that is, the only node α such that nα is a
prefix of x and eα is not a proper prefix of x ;

• the skip interval (iα . . jα] associated to α is (0 . . |cα|] for the root, and (|nα| − 1 . . |eα|] for all
other nodes.

Data-aware measures. Consider the compacted trie on a set S ⊆ 2∗. We define the trie measure of
S [13] as

T(S) =
∑
α

(jα − iα) =
∑
α

(|cα| + 1)− 1 = 2n − 2+
∑
α

|cα| = O(n`),

3

0
0
1
0
0
1

0 1

1
0

0
1
0

0 1

1
0

α

nam
e

(n
α)

c
α

handle
(h

α)

extent
(e

α)

skip
interval

(iα
..j

α]=
(6
..10]

T

0 → ∞

00 → ∞

0010 → 001001 (6)
0010010 → ∞

00100101 → 001001010 (9)
0010011 → ∞

00100110 → 0010011010 (10)
00100110100 → ∞

001001101001 → 0010011010010 (13)
00100110101 → 00100110101 (11)

P b
0010010 1
0010011 0
00100110100 1
00100110101 1
00100110110 0
0010100 0

Figure 1: The trie built on the sample set {001001010, 0010011010010, 00100110101}, and the
associated map and range locator. T maps handles to extents; the corresponding hollow z-fast prefix
trie just returns the lengths (shown in parentheses) of the extents. In the range locator table, we
boldface the zeroes and ones appended to extents, and we underline the actual keys (as trailing zeroes
are removed). The last two keys are 00100110101+ and 0010011+, respectively.

where the summation ranges over all nodes of the trie. For the purpose of this paper, we will also use
the hollow2 trie measure

HT(S) =
∑

α internal

(bitlength(|cα|)+ 1)− 1.

Since bitlength(x) = dlog(x + 1)e, we have HT(S) = O(n log `).
Storing functions. The problem of storing statically an r -bit function f : A → 2r from a given
set of keys A has recently received renewed attention [7]. For the purposes of this paper, we simply
recall that these methods allow us to store an r -bit function on n keys using rn + cn + o(n) bits for
some constant c ≥ 0, with O(|x |/w) access time for a query string x . Practical implementations
are described in [3]. In some cases, we will store a compressed function using a minimal perfect
function (O(n) bits) followed by a compressed data representation (e.g., an Elias–Fano compressed
list [3]). In that case, storing natural numbers x0, x1, . . . , xn−1 requires space

∑
iblog(xi + 1)c +

n log(
∑

iblog(xi + 1)c/n)+ O(n).
Relative dictionaries. A relative dictionary stores a set E relatively to some set S ⊇ E . That is,
the relative dictionary answers questions about membership to E , but its answers are required to be
correct only if the query string is in S. It is possible to store such a dictionary in |E | log(|S|/|E |) bits
of space with O(|x |/w) access time [2].
Rank and select. We will use two basic blocks of several succinct data structures—rank and select.
Given a bit array (or bit string) b ∈ 2n , whose positions are numbered starting from 0, rankb(p) is
the number of ones up to position p, exclusive (0 ≤ p ≤ n), whereas selectb(r) is the position of
the r -th one in b, with bits numbered starting from 0 (0 ≤ r < rankb(n)). It is well known that
these operations can be performed in constant time on a string of n bits using additional o(n) bits,
see [14, 16].

2A compacted trie is made hollow by replacing the compacted path at each node by its length and then discarding all its
leaves. A recursive definition of hollow trie appears in [3].

4

3 From prefixes to exit nodes
We break the weak prefix search problem into two subproblems. Our first goal is to go from a given
prefix of some string in S to its exit node.

Hollow z-fast prefix tries. We start by describing an improvement of the z-fast trie, a data structure
first defined in [2]. The main idea behind a z-fast trie is that, instead of representing explicitly a binary
tree structure containing compacted paths of the trie, we will store a function that maps a certain
prefix of each extent to the extent itself. This mapping (which can be stored in linear space) will be
sufficient to navigate the trie and obtain, given a string x , the name of the exit node of x and the exit
behaviour (left, right, or possibly equality for leaves). The interesting point about the z-fast trie is
that it provides such a name in time O(|x |/w + log |x |), and that it leads easily to a probabilistically
relaxed version, or even to hollow variants.

To make the paper self-contained, we recall the main definitions from [2]. The 2-fattest number
in a nonempty interval of positive integers is the number in the interval whose binary representation
has the largest number of trailing zeros. Consider the compacted trie on S, one of its nodes α, and
the 2-fattest number f in its skip interval (iα . . jα]; if the interval is empty, which can happen only
at the root, we set f = 0. The handle hα of α is eα[0 . . f), where eα[0 . . f) denotes the first f bits
of eα . A (deterministic) z-fast trie is a dictionary T mapping each handle hα to the corresponding
extent eα . In Figure 1, the part of the mapping T with non-∞ output is the z-fast trie built on the trie
of Figure 1.

We now introduce a more powerful structure, the (deterministic) z-fast prefix trie. Consider again
a node α of the compacted trie on S with notation as above. The pseudohandles of α are the strings
eα[0 . . f ′), where f ′ ranges among the 2-fattest numbers of the intervals (iα . . t], with iα < t < f .
Essentially, pseudohandles play the same rôle as handles for every prefix of the handle that extends
the node name. We note immediately that there are at most log(f − iα) ≤ log |cα| pseudohandles
associated with α, so the overall number of handles and pseudohandles is bounded by HT(S) +∑

x∈S log |x | = O(n log `). It is now easy to define a z-fast prefix trie: the dictionary providing the
map from handles to extents is enlarged to pseudohandles, which are mapped to the special value∞.

We are actually interested in a hollow version of a z-fast prefix trie—more precisely, a version
implemented by a function T that maps handles of internal nodes to the length of their extents, and
handles of leaves and pseudohandles to∞. The function (see again Figure 1) can be stored in a very
small amount of space; nonetheless, we will still be able to compute the name of the exit node of any
string that is a prefix of some string in S using Algorithm 1:

Theorem 1 Let p be a nonempty string that is a prefix of some string in S and X = { p0 =

ε, p1, . . . , pt }, where p1, p2, . . . , pt are the extents of the nodes of the trie that are proper prefixes
of p, ordered by increasing length. Let (a . . b) be the interval maintained by Algorithm 1. Before and
after each iteration the following invariant is satisfied: a = |pj | for some j , and a ≤ |pt | < b.

Proof. We note that the invariant is trivially true at the start, as the initial interval is (0 . . |p|). We
now prove by induction that in the rest of execution the invariant is true. At each step we pick the
2-fattest number f ∈ (|pi | . . b), and change interval. We have two cases (we follow the notation of
Algorithm 1):

• If f > |pt |, since f < |p| then it is either the length of the handle of the exit node of p, or the
length of a pseudohandle associated with the exit node of p, so we set b = f and the invariant
is preserved.

5

Algorithm 1
Input: a prefix p of some string in S.
Output: the name of exit(p).
a, b← 0, |p|
while b − a > 1 do

f ← the 2-fattest number in (a . . b)
g← T

(
p[0 . . f)

)
if g ≥ |p| then

b← f
else

a← g
end if

end while
if a = 0 then

return ε
else

return p[0 . . a + 1)
end if

Algorithm 2
Input: the name x of a node.
Output: the interval [i . . j) of
strings prefixed by x .
if x = ε then

i ← 0, j ← n
else

i ← rankb h(x←)
if x = 111 · · · 11 then

j ← n
else

j ← rankb h((x+)←)
end if

end if
return [i . . j)

Figure 2: Algorithms for weak prefix search and range location.

• Otherwise, f is 2-fattest in (|pi | . . |pt |], so p[0 . . f) must be the handle of an ancestor of
exit(p) (as f is 2-fattest in every subinterval of (|pi | . . |pt |] that contains it) which implies
g = |pk | for some k. Thus, by setting a = g the invariant is preserved.

By the previous theorem, Algorithm 1 is correct and completes in at most log |p| iterations. We note
that finding the 2-fattest number in an interval requires the computation of the most significant bit3,
but alternatively we can check that (1� i)& a 6= (1� i)& b for decreasing i : if the test is satisfied,
the number is b &−1� i , otherwise we decrement i .

Space and time. The space needed for a hollow z-fast prefix trie depends on the component chosen
for its implementation. The most trivial bound uses a function mapping handles and pseudohandles to
one bit that makes it possible to recognise handles of internal nodes (O(n log `) bits), and a function
mapping handles to extent lengths (O(n log L) bits, where L is the maximum string length).

These results, however, can be significantly improved. First of all, we can store handles of internal
nodes in a relative dictionary. The dictionary will store n − 1 strings out of O(n log `) strings,
using O(n log((n log `)/n)) = O(n log log `) bits. Then, the mapping from handles to extent lengths
hα 7→ |eα| can actually be recast into a mapping hα 7→ |eα| − |hα|. But since |eα| − |hα| ≤ |cα|, by
storing these data by means of a compressed function we will use space∑

α

blog(|eα| − |hα| + 1)c + O(n log log `)+ O(n)

≤

∑
α

blog(|cα| + 1)c + O(n log log `) ≤ HT(S)+ O(n log log `),

where α ranges over internal nodes.

3More precisely, the 2-fattest number in (a..b] is −1� msb(a ⊕ b)& b.

6

Algorithm 1 cannot iterate more than log |p| times; at each step, we query constant-time data
structures using a prefix of p: using incremental hashing [6, Section 5], we can preprocess p in time
O(|p|/w) (and in |p|/B I/Os) so that hashing prefixes of p requires constant time afterwards. We
conclude that Algorithm 1 requires time O(|p|/w + log |p|).

Faster, faster, faster. . . We now describe a data structure mapping prefixes to exit nodes inspired
by the techniques used in [1] that needs O(n`1/2 log `) bits of space and answers in time O(|p|/w),
thus providing a different space/time tradeoff. The basic idea is as follows: let s =

⌈
`1/2⌉ and,

for each node α of the compacted trie on the set S, consider the set of prefixes of eα with length
t ∈ (iα . . jα] such that either t is a multiple of s or is smaller than the first such multiple. More
precisely, we consider prefixes whose length is either of the form ks, where ks ∈ (iα . . jα], or in
(iα . .min{ k̄s, jα }], where k̄ is the minimum k such that ks > iα .

We store a function F mapping each prefix p defined above to the length of the name of the
corresponding node α (actually, we can map p to |p| − |nα|). Additionally, we store a mapping G
from each node name to the length of its extent (again, we can just map nα 7→ |cα|).

To retrieve the exit node of a string p that is a prefix of some string in S, we consider the string
q = p[0 . . |p| − |p| mod s) (i.e., the longest prefix of p whose length is a multiple of s). Then, we
check whether G(p[0 . . F(q))) ≥ |p| (i.e., whether p is a prefix of the extent of the exit node of
q). If this is the case, then clearly p has the same exit node as q (i.e., p[0 . . F(q))). Otherwise, the
map F provides directly the length of the name of the exit node of p, which is thus p[0 . . F(p)). All
operations are completed in time O(|p|/w). The proof that this structure uses space O(n`1/2 log `)
is deferred to the full paper.

4 Range location
Our next problem is determining the range (of lexicographical ranks) of the leaves that appear under
a certain node of a trie. Actually, this problem is pretty common in static data structures, and usually
it is solved by associating with each node a pair of integers of log n ≤ w bits. However, this means
that the structure has, in the worst case, a linear (O(nw)) dependency on the data.

To work around this issue, we propose to use a range locator—an abstraction of a component
used in [2]. Here we redefine range locators from scratch, and improve their space usage so that it is
dependent on the average string length, rather than on the maximum string length. A range locator
takes as input the name of a node, and returns the range of ranks of the leaves that appear under that
node. For instance, in our toy example the answer to 0010011 would be [1 . . 3). To build a range
locator, we need to introduce monotone minimal perfect hashing.

Given a set of n strings T , a monotone minimal perfect hash function [2] is a bijection T → n
that preserves lexicographical ordering. This means that each string of T is mapped to its rank in T
(but strings not in T give random results). We use the following results from [3]:4

Theorem 2 Let T be a set of n strings of average length ` and maximum length L, and x ∈ 2∗ be a
string. Then, there are monotone minimal perfect hashing functions on T that:

1. use space O(n log `) and answer in time O(|x |/w);

2. use space O(n log log L) and answer in time O(|x |/w + log |x |).

4Actually, results in [3] are stated for prefix-free sets, but it is trivial to make a set of strings prefix-free at the cost of
doubling the average length.

7

We show how a reduction can relieve us from the dependency on L; this is essential to our goals, as
we want to depend just on the average length:

Theorem 3 There is a monotone minimal perfect hashing function on T using space O(n log log `)
that answers in time O(|x |/w + log |x |) on a query string x ∈ 2∗.

Proof. We divide T into the set of strings T− shorter then ` log n, and the remaining “long” strings
T+. Setting up a n-bit vector b that records the elements of T− with select-one and select-zero
structures (n + o(n) bits), we can reduce the problem to hashing monotonically T− and T+. We
note, however, that using Theorem 2 the set T− can be hashed in space O(|T−| log log(` log n)) =
O(|T−| log log `), as 2` ≥ log n, and T+ can be hashed explicitly using a (log n)-bit function; since
|T+| ≤ n/ log n necessarily, the function requires O(n) bits. Overall, we obtain the required bounds.

We now describe in detail our range locator, using the notation of Section 2. Given a string x , let
x← be x with all its trailing zeroes removed. We build a set of strings P as follows: for each extent e
of an internal node, we add to P the strings e←, e1, and, if e 6= 111 · · · 11, we also add to P the string
(e1+)←, where e1+ denotes the successor of length |e1| of e1 in lexicographical order (numerically,
it is e1 + 1). We build a monotone minimal perfect hashing function h on P , noting the following
easily proven fact:

Proposition 1 The average length of the strings in P is at most 3`.

The second component of the range locator is a bit vector b of length |P|, in which bits corre-
sponding to the names of leaves are set to one. The vector is endowed with a ranking structure rankb
(see Figure 1).

It is now immediate that given a node name x , by hashing x← and ranking the bit position thus
obtained in b, we obtain the left extreme of the range of leaves under x . Moreover, performing the
same operations on (x+)←, we obtain the right extreme. All these strings are in P by construction,
except for the case of a node name of the form 111 · · · 11; however, in that case the right extreme is
just the number of leaves (see Algorithm 2 for the details).

A range locator uses at most 3n + o(n) bits for b and its selection structures. Thus, space usage
is dominated by the monotone hashing component. Using the structures described above, we obtain:

Theorem 4 There are structures implementing range location in time O(|x |/w) using O(n log `)
bits of space, and in O(|x |/w + log |x |) time using O(n log log `) bits of space.

We remark that other combinations of monotone minimal perfect hashing and succinct data struc-
tures can lead to similar results. Among several such asymptotically equivalent solutions, we believe
ours is the most practical.

5 Putting It All Together
In this section we gather the main results about prefix search:

Theorem 5 There are structures implementing weak prefix search in space HT(S) + O(n log log `)
with query time O(|p|/w + log |p|), and in space O(n`1/2 log `) with query time O(|p|/w).

Proof. The first structure uses a hollow z-fast prefix trie followed by the range locator of Theorem 3:
the first component provides the name nα of exit node of |p|; given nα , the range locator returns the

8

correct range. For the second structure, we use the structure defined in Section 3 followed by the first
range locator of Theorem 2.

Actually, the second structure described in Theorem 5 can be made to occupy space O(n`1/c log `)
for any constant c > 0 (the proof will be given in the full version):

Theorem 6 For any constant c > 0, there is a structure implementing weak prefix search in space
O(n`1/c log `) with query time O(|p|/w).

We note that all our time bounds can be translated into I/O bounds in the cache-oblivious model if
we replace the O(|p|/w) terms by O(|p|/B) (where B is the I/O block size in bits). The O(|p|/w)
term appears in two places: first, in the phase of precalculation of a hash-vector of d|p|/we hash
words on the prefix p which is later used to compute all the hash functions on prefixes of p; second,
in the range location phase, where we need to compute x← and (x+)←, where x is a prefix of p
and subsequently compute the hash vectors on x← and (x+)← . Observe that the above operations
can be carried on using arithmetic operations only, without any additional I/O (we can use 2-wise
independent hashing involving only multiplications and additions for computing the hash vectors and
only basic arithmetic operations for computing x← and (x+)←) except for the writing of the result
of the computation which occupies O(|p|/w) words of space and thus take O(|p|/B) I/Os. Thus in
both cases we need only O(|p|/B) I/Os corresponding to the time needed to read the pattern and to
write the result.

6 A space lower bound
In this section we show that the space usage achieved by the weak prefix search data structure de-
scribed in Theorem 5 is optimal up to a constant factor. In fact, we show a matching lower bound
for the easier problem of prefix counting (i.e., counting how many strings start with a given prefix),
and consider the more general case where the answer is only required to be correct up to an additive
constant less than k. We note that any data structure supporting prefix counting can be used to achieve
approximate prefix counting, by building the data structure for the set that contains every k-th element
in sorted order.

Theorem 7 Consider a data structure (possibly randomised) indexing a set S of n strings with aver-
age length ` > log(n)+1, supporting k-approximate prefix count queries: Given a prefix of some key
in S, the structure returns the number of elements in S that have this prefix with an additive error of
less than k, where k < n/2. The data structure may return any number when given a string that is not
a prefix of a key in S. Then the expected space usage on a worst-case set S is�((n/k) log(`− log n))
bits. In particular, if no error is allowed and ` > (1+ε) log n, for constant ε > 0, the expected space
usage is �(n log `) bits.

Proof. Let u = 2` be the number of possible keys of length `. We show that there exists a probability
distribution on key sets S such that the expected space usage is �((n/k) log log(u/n)) bits. By
the “easy directions of Yao’s lemma,” this implies that the expected space usage of any (possibly
randomised) data structure on a worst case input is at least �((n/k) log log(u/n)) bits. The bound
for ` > (1+ ε) log n and k = 1 follows immediately.

Assume without loss of generality that n/(k+1) and k are powers of 2. All strings in S will be of
the form abc ∈ 2∗, where |a| = log2(n/(k+1)), |b| = `− log2(n/(k+1))− log2 k, and |c| = log2 k.
Let t = `− log2(n/(k + 1))− log2 k denote the length of b. For every value of a the set will contain
exactly k + 1 elements: One where b and c are strings of 0s, and for b chosen uniformly at random

9

among strings of Hamming weight 1 we have k strings for c ∈ 2log2 k . Notice that the entropy of the
set S is n/(k + 1) log2 t , as we choose n/(k + 1) values of b independently from a set of t strings.
To finish the argument we will need to show that any two such sets require different data structures,
which means that the entropy of the bit string representing the data structure for S must also be at
least n/(k + 1) log2 t , and in particular this is a lower bound on the expected length of the bit string.

Consider two different sets S′ and S′′. There exists a value of a, and distinct values b′, b′′ of
Hamming weight 1 such that S′ contains all k `-bits strings prefixed by ab′, and S′′ contains all k
`-bits strings prefixed by ab′′. Assume without loss of generality that b′ is lexicographically before
b′′. Now consider the query for a string of the form a0`, which is a prefix of ab′ but not ab′′ –
such a string exists since b′ and b′′ have Hamming weight 1. The number of keys with this prefix is
k + 1 and 1, respectively, for S′ and S′′, so the answers to the queries must be different (both in the
multiplicative and additive case). Hence, different data structures are needed for S′ and S′′.

Note that the trivial information-theoretical lower bound does not apply, as it is impossible to recon-
struct S from the data structure.

It is interesting to note the connections with the lower and upper bounds presented in [11]. This
paper shows a lower bound on the number of bits necessary to represent a set of strings S that, in the
binary case, reduces to T(S) + log `, and provide a matching data structure. Theorem 5 provides a
hollow data structure that is sized following the naturally associated measure: HT(S)+O(n log log `).
Thus, Theorem 5 and 7 can be seen as the hollow version of the results presented in [11], albeit our
lower bound is a match only asymptotically. Improving Theorem 7 to HT(S) + o(HT(S)) is an
interesting open problem.

References
[1] S. Alstrup, G. S. Brodal, and T. Rauhe. Optimal static range reporting in one dimension. In STOC ’01,

pages 476–482, 2001.

[2] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal perfect hashing: Searching a sorted
table with O(1) accesses. In SODA ’09, pages 785–794, New York, 2009. ACM Press.

[3] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Theory and practise of monotone minimal perfect hashing.
In ALENEX 2009. SIAM, 2009.

[4] M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul. Cache-oblivious string B-trees. In PODS 2006,
pages 233–242, New York, NY, USA, 2006. ACM.

[5] G. S. Brodal and R. Fagerberg. Cache-oblivious string dictionaries. In SODA ’06, pages 581–590, 2006.

[6] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are reliable (extended
abstract). In ICALP ’92, volume 623 of LNCS, pages 235–246. Springer-Verlag, 1992.

[7] M. Dietzfelbinger and R. Pagh. Succinct data structures for retrieval and approximate membership (ex-
tended abstract). In ICALP ’08, volume 5125 of LNCS, pages 385–396. Springer, 2008.

[8] P. Elias. Efficient storage and retrieval by content and address of static files. J. Assoc. Comput. Mach.,
21(2):246–260, 1974.

[9] P. Elias. Universal codeword sets and representations of the integers. IEEE Trans. on Info. Theory, 21:194–
203, 1975.

[10] P. Ferragina and R. Grossi. The string B-tree: a new data structure for string search in external memory
and its applications. Journal of the ACM, 46(2):236–280, 1999.

[11] P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. S. Vitter. On searching compressed string collections
cache-obliviously. In PODS ’08, pages 181–190, 2008.

10

[12] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In (FOCS ’99),
pages 285–297. IEEE Comput. Soc. Press, 1999.

[13] A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed data structures: Dictionaries and data-aware
measures. Theor. Comput. Sci., 387(3):313–331, 2007.

[14] G. Jacobson. Space-efficient static trees and graphs. In FOCS ’89, pages 549–554, 1989.

[15] M. Pǎtraşcu and M. Thorup. Randomization does not help searching predecessors. In SODA ’07, pages
555–564, 2007.

[16] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to encoding k-ary
trees and multisets. In SODA’02, pages 233–242. ACM Press, 2002.

11

