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Abstract

Recent advances in random linear systems on finite fields have paved the way for the
construction of constant-time data structures representing static functions and minimal
perfect hash functions using less space with respect to existing techniques. The main
obstruction for any practical application of these results is the cubic-time Gaussian
elimination required to solve these linear systems: despite they can be made very small,
the computation is still too slow to be feasible.

In this paper we describe in detail a number of heuristics and programming techniques
to speed up the resolution of these systems by several orders of magnitude, making the
overall construction competitive with the standard and widely used MWHC technique,
which is based on hypergraph peeling. In particular, we introduce broadword programming
techniques for fast equation manipulation and a lazy Gaussian elimination algorithm.
We also describe a number of technical improvements to the data structure which further
reduce space usage and improve lookup speed.

Our implementation of these techniques yields a minimal perfect hash function data
structure occupying 2.24 bits per element, compared to 2.68 for MWHC-based ones, and
a static function data structure which reduces the multiplicative overhead from 1.23 to
1.03.

1 Introduction
Static functions are data structures designed to store arbitrary mappings from finite sets to
integers; that is, given a set of n pairs (ki, vi) where ki ∈ S ⊆ U, |S| = n and vi ∈ 2b, a static
function will retrieve vi given ki in constant time. Closely related are minimal perfect hash
functions (MPHFs), where only the set S of ki’s is given, and the data structure produces an
injective numbering S → n. While these tasks can be easily implemented using hash tables,
static functions and MPHFs are allowed to return any value if the queried key is not in the
original set S; this relaxation enables to break the information-theoretical lower bound of
storing the set S. In fact, constructions for static functions achieve just O(nb) bits space and
MPHFs O(n) bits space, regardless of the size of the keys. This makes static functions and
MPHFs powerful techniques when handling, for instance, large sets of strings, and they are
important building blocks of space-efficient data structures such as (compressed) full-text
indexes [7], monotone MPHFs [3, 5], Bloom filter-like data structures [8], and prefix-search
data structures [4].

An important line of research, both theoretical and practical, involves lowering the
multiplicative constants in the big-O space bounds, while keeping feasible construction times.
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In this paper we build on recent advances in random linear systems theory, and in perfect hash
data structures [14, 22], to achieve practical static functions with the lowest space bounds so
far, and construction time comparable with widely used techniques. The new results, however,
require solving linear systems rather than a simple depth-first visit of a hypergraph, as it
happens in current state-of-the-art solutions.

Since we aim at structures that can manage billions of keys, the main challenge in making
such structures usable is taming the cubic running time of Gaussian elimination at construction
time. To this purpose, we introduce novel techniques based on broadword programming [18]
and a lazy version of structured Gaussian elimination. We obtain data structures that are
significantly smaller than widely used hypergraph-based constructions, while maintaining or
improving the lookup times and providing still feasible construction time.

All implementations discussed in this paper are distributed as free software as part of the
Sux4J project (http://sux4j.di.unimi.it/).

2 Notation and tools
We use von Neumann’s definition and notation for natural numbers, identifying n with
{ 0, 1, . . . , n− 1 }, so 2 = { 0, 1 } and 2b is the set of b-bit numbers.
Model and assumptions Our model of computation is a unit-cost word RAM with word
size w. We assume that n = |S| = O(2cw) for some constant c, so that constant-time static
data structures depending on |S| can be used.
Hypergraphs An r-hypergraph on a vertex set V is a subset E of

(
V
r

)
, the set of subsets

of V of cardinality r. An element of E is called an edge. The k-core of a hypergraph is its
maximal induced subgraph having degree at least k.

A hypergraph is peelable if it is possible to sort its edges in a list so that for each edge there
is a vertex that does not appear in following elements of the list. A hypergraph is peelable
if and only if it has an empty 2-core. It is orientable if it is possible to associate with each
hyperedge a distinct vertex. Clearly, a peelable hypergraph is orientable, but the converse is
not necessarily true.

3 Background and related work
Linear functions and MWHC. Most static function constructions work by finding a
linear function that satisfies the requirements. For simplicity start with the special case of
functions with binary values, that is vi ∈ F2 (the field with two elements); the task is to find
a vector w ∈ Fm2 such that for each i

hθ(ki)
Tw = vi (1)

where hθ is a function U → Fm2 from a suitable family H indexed by θ. To make the lookup
constant-time, we add the additional constraint that hθ(k) has a constant number r of ones,
and that the positions of these ones can be computed in constant time. Then, with a slight
abuse of notation, we can write hθ,j to be the position of the j-th nonzero element, and hence
the lookup just becomes

whθ,0(ki) + · · ·+ whθ,r−1(ki) = vi. (2)

It is clear that, if such a function exists, the data structure just requires to store w and
θ. Note that if hθ is fixed, just writing down the n equations above yields a linear system:
stacking the row vectors hθ(ki)T into a matrix H and the values vi into the vector v, we are
looking to solve the equation

Hw = v. (3)
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A sufficient condition for the solution w to exist is that the matrix H has full rank. To
generalize to the case where vi ∈ Fb2 is a b-bit integer, just replace v with the n× b matrix
V obtained by stacking the vi’s as rows, and w by a m × b matrix. Full rank of H is still
a sufficient condition for the solvability of HW = V . It remains to show how to pick the
number of variables m, and the functions hθ, so that H has full rank.

In their seminal paper [20], Majewski, Wormald, Havas and Czech (MWHC hereinafter)
introduced the first static function construction that can be described using the framework
above. They pick as H the set of functions U → Fm2 whose values have exactly r ones, that
is, hθ(k) is the vector with r ones in positions hθ,j(k) for j ∈ r, using the same notation
above. If the functions are picked uniformly at random, the r-uples

(
hθ,0(k), . . . , hθ,r−1(k)

)
can be seen as edges of a random hypergraph with m nodes. When m > crn for a suitable
cr, with high probability the hypergraph is peelable, and the peeling process triangulates
the associated linear system; in other words, we have both a probabilistic guarantee that
the system is solvable, and that the solution can be found in linear time. The constant cr
depends on the degree r, which attains its minimum at r = 3, c3 ≈ 1.23. The family H can
be substituted with a smaller set where the parameter θ can be represented with a sublinear
number of bits, so the overall space is 1.23bn+ o(n) bits. In practice, hθ,j(k) will be simply a
hash function with random seed θ, which can be represented in O(1) bits.
MPHFs. Chazelle, Kilian, Rubinfeld and Tal [12], unaware of the MWHC construction,
proposed it independently, but also noted that as a side-effect of the peeling process each
hyperedge can be assigned an unique node; that is, each key can be assigned injectively an
integer in m. We just need to store which of the r nodes of the hyperedge is the assigned one
to obtain a perfect hash function S → m, and this can be done in crdlog ren+ o(n) bits. To
make it perfect, that is, S → n, it is possible to add a ranking structure. Again, the best r is
3, which yields theoretically a 2.46n+ o(n) data structure [10].
HEM. Botelho, Pagh and Ziviani [10] introduced a practical external-memory algorithm
called Heuristic External Memory (HEM) to construct MPHFs for sets that are too large to
store their hypergraph in memory. They replace each key with a signature of Θ(log n) bits
computed with a random hash function, and check that no collision occurs. The signatures
are then sorted and divided into small chunks based on their most significant bits, and a
separate function is computed for each chunk with the approach described above (using a
local seed). The representations of the chunk functions are then concatenated into a single
array and their offsets (i.e., for each chunk, the position of the start of the chunk in the global
array) are stored separately.
Cache-oblivious constructions. As an alternative to HEM, in [2] the authors propose
cache-oblivious algorithms that use only scanning and sorting to peel hypergraphs and compute
the corresponding structures. The main advantage is that of avoiding the cost of accessing
the offset array of HEM without sacrificing scalability.
CHD. Finally, specifically for the purpose of computing MPFHs Belazzougui, Botelho and
Dietzfelbinger [6] introduced a completely different construction, called CHD (compressed
hash-and-displace), which, at the price of increasing the expected construction time makes it
possible, in theory, to reach the information-theoretical lower bound of ≈ 1.44 bits per key.
Beyond hypergraphs. The MWHC construction for static functions can be improved:
Dietzfelbinger and Pagh [14] introduced a new construction that allows to make the constant
in front of the nb space bound for static functions arbitrarily small ; by Calkin’s theorem,
a constant βr exists such that if m > βrn and the rows of the matrix H are just drawn at
random from vectors of weight r then H has full rank with high probability. Contrary to cr
which has a finite minimum, βr vanishes quickly as r increases, thus the denser the rows,
the closer m can be to n. For example, if r = 3, β3 ≈ 1.12 < c3 ≈ 1.23. Unlike MWHC’s
linear-time peeling algorithm, general matrix inversion requires superquadratic time (O(n3)
with Gaussian elimination); to obtain a linear-time algorithm, they shard the set S into small
sets using a hash function, and compute the static functions on each subset independently;
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the actual construction is rather involved, to account for some corner cases (note that the
HEM algorithm described above is essentially a practical simplified version of this scheme).

The authors also notice that solvability of the system implies that the corresponding
hypergraph is orientable, thus making it possible to construct minimal perfect hash functions.
Later works [15, 16, 13] further improve the thresholds for solvability and orientability: less
than 1.09 for r = 3, and less than 1.03 for r = 4.

4 Squeezing space
In this paper, we combine a number of new results and techniques to provide improved
constructions. Our data structure is based on the HEM construction [10]: the key set is
randomly sharded into chunks of expected constant size, and then the (minimal perfect hash)
function is computed independently on each chunk. Instead of using a vertex/edge ratio that
guarantees peelability, however, we choose a lower one that still guarantees orientability and
solvability of the associated linear system (with high probability). Losing peelability implies
that we have to use Gaussian elimination to solve the linear system, but since the chunks
have constant size the overall construction is linear-time (plus an O(n log n) step to sort the
signatures, which is actually a small part of the execution time in practice). We also describe
improvements to the HEM data structure in Section 7.

First of all, we use the orientability thresholds in [13], which are shown to be the same as
those of XORSAT solvability; for example, when a random 3-hypergraph has a vertex/edge
ratio c > 1.09, it contains a nonempty 2-core (i.e., a maximal subgraph all whose vertices have
degree at least 2), but the hypergraph is orientable and the incidence matrix has full rank. We
can thus extend the MWHC technique to 3-hypergraphs with a nonempty 2-core: after the
peeling procedure, we simply solve the equations specified by the 2-core. The main obstacle
to this approach, before the results described in this paper, was that construction time was
two orders of magnitude slower than that of the MWHC construction [1], making the whole
construction unusable in practice. In Michael Rink’s Ph.D. thesis [22] these considerations
are described in some detail.

Moreover, since recently Goerdt and Falke have proved a result analogous to XORSAT for
modulo-3 systems [17],1 we can also obtain an orientation of a random 3-hypergraph using
the generalized selfless algorithm [13], and then solve the modulo-3 linear system induced
by the orientation to obtain a perfect hash function. Both procedures have some controlled
probability of failure. In case such a failure occurs, we generate a new hypergraph. We then
show how to manage the ranking part essentially with no space cost.

5 Broadword programming for row operations
Our first step towards a practical solution by Gaussian elimination is broadword program-
ming [18] (a.k.a. SWAR—“SIMD in A Register”), a set of techniques to process simultaneously
multiple values by packing them into machine words of w bits and performing the computa-
tions on the whole words. In theoretical succinct data structures it is common to assume that
w = Θ(log n) and reduce to subproblems of size O(w), whose results can be precomputed
into sublinear-sized tables and looked up in constant time. For practical values of n, however,
these tables are far from negligible; in this case broadword algorithms are usually sufficient
to compute the same functions in constant or near-constant time without having to store a
lookup table.

1Technically, the proof in the paper is for k > 15, but the author claim that the result can be proved for
k ≥ 3 with the same techniques, and in practice we never needed more than two attempts to generate a
solvable system.
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For our problem, the inner loop of the Gaussian elimination is entirely composed of row
operations: given vectors x and y, and a scalar α, compute x+ αy. It is trivial to perform
this operation w elements at a time when the field is F2, which is the case for static functions
computation: we can just pack one element per bit, and since the scalar can be only 1 the
sum is just a bitwise XOR x ^ y, using the C notation. For MPHFs, instead, the field is F3,
which requires more sophisticated algorithms. First, we can encode each element {0, 1, 2} into
2 bits, thus fitting w/2 elements into a word. The scalar α can be only 1 or −1, so we can
treat the cases x+ y and x− y separately.

For the addition, we can start by simply adding x and y. When elements on both sides
are smaller than 2, there’s nothing to do: the result will be smaller than 3. When however at
least one of the two is 2 and the other one is not 0, we need to subtract 3 from the result
to bring it back to the canonical representation in [0 . . 3). Note that when the two sides are
both 2 the result overflows its 2 bits (102 + 102 = 1002), but since addition and subtraction
modulo 2w are associative we can imagine that the operation is performed independently on
each 2-bit element, as long as the final result fits into 2 bits. Thus we need to compute a mask
that is 3 wherever the results is at least 3, and then subtract it from x+ y.

uint64_t add_mod3_step2(uint64_t x, uint64_t y) {
uint64_t xy = x | y;
// Set MSB if (x or y == 2) and (x or y == 1).
uint64_t mask = (xy << 1) & xy;
// Set MSB if (x == 2) and (y == 2).
mask |= x & y;
// The MSB of each 2-bit element is now set
// iff the result is >= 3. Clear the LSBs.
mask &= 0x5555555555555555 << 1;
// Now turn the elements with MSB set into 3.
mask |= mask >> 1;
return x + y - mask;

}

Subtraction is very similar. We begin by subtracting elementwise y from 3, which does
not cause any carry since all the elements are strictly smaller than 3. The resulting elements
are thus at least 1. We can now proceed to compute x + y with the same case analysis as
before, except now the right-hand elements are in [1 . . 3] so the conditions for the mask are
slightly different.

uint64_t sub_mod3_step2(uint64_t x, uint64_t y) {
// y = 3 - y.
y = 0xFFFFFFFFFFFFFFFF - y;
// Now y > 0
// Set MSB if x == 2.
uint64_t mask = x;
// Set MSB if (x == 2 and y >= 2) or (y == 3).
mask |= ((x | y) << 1) & y;
mask &= 0x5555555555555555 << 1;
mask |= mask >> 1;
return x + y - mask;

}

Both addition and subtraction take just 10 arithmetic operations, and on modern 64-bit
CPUs they can process vectors of 32 elements at a time.

Finally, when performing back substitution we will need to compute row-matrix multipli-
cations, where a row is given by the coefficients of an equation and the matrix contains the
solutions computed so far.

In the field F2, this can be achieved by iterating on the ones of the row, and adding up
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the corresponding b-bit rows in the right-hand matrix. The ones can iterate by finding the
LSB of the current row word, and deleting it with the standard broadword trick x = x & -x.

For MPHFs, instead, the field is F3 but the matrix of solutions is a vector, so the product is
just a scalar product. To compute it, we use the following broadword algorithm that computes
the scalar product of two vectors represented as 64-bit words.

uint64_t prod_mod3_step2(uint64_t x, uint64_t y) {
uint64_t high = x & 0xAAAAAAAAAAAAAAAA;
uint64_t low = x & 0x5555555555555555;
// Make every 10 into a 11 and zero everything else.
uint64_t high_shift = high >> 1;
// Exchange ones with twos , and make 00 into 11.
uint64_t t = (y ^ (high | high_shift))

& (x | high_shift | low << 1);
return popcount(t & 0xAAAAAAAAAAAAAAAA) * 2

+ popcount(t & 0x5555555555555555);
}

The expression computing t takes care of placing in a given position a value equivalent to
the product of the associated positions in x and y (this can be easily check with a case-by-case
analysis). We remark that in some cases we actually use 3 as equivalent to zero. At that point,
the last lines compute the contribution of each product (popcount() returns the number of
bit in a word that are set). Note that the results has still to be reduced modulo 3.

6 Lazy Gaussian Elimination
Even if armed with broadword algorithms, solving by Gaussian elimination systems of the size
of a HEM chunk (thousands of equations and variables) would be prohibitively slow, making
construction of our data structures an order of magnitude slower than the standard MWHC
technique.

Structured Gaussian elimination aims at reducing the number of operations in the solution
of a linear system by trying to isolate a number of variables appearing in a large number of
equations, and then rewrite the rest of the system using just those variables. It is a heuristics
developed in the context of computations of discrete logarithms, which require the solution of
large sparse systems [21, 19]. The standard formulation requires the selection of a fraction
(chosen arbitrarily) of variables that appear in a large number of equations, and then a number
of loosely defined refinement steps.

We describe here a new parameterless version of structured Gauss elimination, which we
call lazy Gaussian elimination. This heuristics turned out to be extremely effective on our
systems, reducing the size of the system to be solved by standard elimination to around 4%
of the original one.

Consider a system of equations on some field. At any time a variable can be active, idle,
or solved and an equation can be sparse or dense. Initially, all equations are sparse and all
variables are idle. We will modify the system maintaining the following invariants:

• dense equations do not contain idle variables;

• an equation can contain at most one solved variable;

• a solved variable appears in exactly one dense equation.

Our purpose is to modify the system so that all equations are dense, trying to minimize the
number of active variables (or, equivalently, maximize the number of solved variables). At
that point, values for the active variables can be computed by standard Gaussian elimination
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on the dense equations that do not contain solved variables, and solved variables can be
computed easily from the values assigned to active variables.

The weight of a variable is the number of sparse equations in which it appears. The priority
of a sparse equation is the number of idle variables in the equation. Lazy Gaussian elimination
keeps equations in a min-priority queue, and performs the following actions:

1. If there is a sparse equation of priority zero that contains some variables, it is made
dense. If there are no variables, the equation is either an identity, in which case it is
discarded, or it is impossible, in which case the system is unsolvable and the procedure
stops.

2. If there is a sparse equation of priority one, the only idle variable in the equation
becomes solved, and the equation becomes dense. The equation is then used to eliminate
the solved variable from all other equations.

3. Otherwise, the idle variable appearing in the largest number of sparse equations becomes
active.

Note that if the system is solvable the procedure always completes—in the worst case, by
making all idle variables active (and thus all equations dense).

Two observations are in order:

• The weight of an idle variable never changes, as in step 2 we eliminate the solved variable
and modify the coefficients of active variables only. This means that we can simply sort
initially (e.g., by countsort) the variables by the number of equations in which they
appear, and pick idle variables in that order at step 3.

• We do not actually need a priority queue for equations: simply, when an equation
becomes of priority zero or one, it is moved to the left or right side, respectively, of a
deque that we check in the first step.

Thus, the only operations requiring superlinear time are the eliminations performed in step 2,
and the final Gaussian elimination on the dense equations, which we compute, however, using
broadword programming.

7 Data structure improvements
Improving HEM. Our HEM version uses on-disk bucket sorting to speed up construction:
keys are first divided into 256 on-disk physical chunks, depending on the highest bits of their
hash value (we use Jenkins’s SpookyHash). The on-disk chunks are then loaded in memory and
sorted, and virtual chunks of the desired size are computed either splitting or merging physical
chunks. Since we store a 192-bit hash plus a 64-bit value for each key, we can guarantee that
the amount of memory used that depends on the number of keys cannot exceed one bit per
key (beside the structure to be computed).
Eliminating the ranking structure. In the case of minimal perfect hashing, we can
further speed up the structure and reduce space by getting rid of the ranking structure that
is necessary to make minimal the perfect hashing computed by the system of equations.

In the standard HEM construction, the number of vertices associated to a chunk of size s
is given by dcse, where c is a suitable constant, and the offset information contains the partial
sums of such numbers.

We will use a different approach: the number of vertices associated with the chunk will be
dc(S+s)e−dcSe, where S is the number of elements stored in previous chunks. The difference
to dcse is at most one, but using our approach we can compute, given S and s, the number of
vertices associated with the chunk.
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Thus, instead of storing the offset information, we will store for each chunk the number S
of elements stored in previous chunks. The value can be used as a base for the ranking inside
the chunk: this way, the ranking structure is no longer necessary, reducing space and the
number of memory accesses. When r = 3, as it is customary we can use two bits for each value,
taking care of using the value 3, instead of 0, for the vertex associated to a hyperedge. As a
result, ranking requires just counting the number of nonzero pairs in the values associated
with a chunk, which can be performed again by broadword programming:

int count_nonzero_pairs(uint64_t x) {
return popcount ((x | x >> 1) & 0x5555555555555555);

}

Compacting offsets and seeds. After removing the ranking structure, it is only left to
store the partial sums of the number of keys per chunk, and the seed used for the chunk hash
function. This is the totality of the overhead imposed by the HEM data structure with respect
to constructing the function over the whole input set at once.

Instead of storing these two numbers separately, we combine them into a single 64-bit
integer. The main observation that allows us to do so is that due to the extremely high
probability of finding a good seed for each chunk, few random bits are necessary to store it:
we can just use the same sequence of seeds for each chunk, and store the number of failed
attempts before the successful one. In our experiments this number is distributed geometrically
and never greater than 24. If we are storing n keys, 64−dlog ne bits are available for the seed,
which are more than sufficient for any realistic n.

8 Experimental results
We performed experiments in Java using two datasets derived from the eu-2015 crawls
gathered by BUbiNG [9] on an Intel R© CoreTM i7-4770 CPU @3.40GHz (Haswell). The smaller
dataset is the list of hosts (11 264 052 keys, ≈ 22B/key), while the larger dataset is the list
of pages (1 070 557 254 keys, ≈ 80B/key). The crawl data is publicly available at the LAW
website.2

Besides the final performance figures (which depends on the chosen chunk size), it is
interesting to see how the measures of interest vary with the chunk size. In Figure 1 we show
how the number of bits per element, construction time and lookup time vary with the chunk
size for r = 3. Note that in the case of minimal perfect hash functions we show the actual
number of bits per key. In the case of general static function, we build a function mapping
each key to its ordinal position and report the number of additional bits per key used by the
algorithm.

As chunks gets larger, the number of bits per key slightly decreases (as the impact of the
offset structure is better amortized); at the same time:

• construction time increases because the Gaussian elimination process is superlinear
(very sharply after chunk size 211);

• in the case of minimal perfect hash functions, larger chunks cause the rank function to
do more work linearly with the chunk size, and indeed lookup time increases sharply in
this case;

• in the case of static functions, chunks larger than 210 yield a slightly improved lookup
time as the offset array becomes small enough to fit in the L3 cache.

2http://law.di.unimi.it/

8



7 8 9 10 11 12 13

Chunk size (lg)

2.2

2.3

2.4

2.5

2.6

S
iz

e
 (

b
it

s)

MPHF

eu-2015-host

eu-2015

7 8 9 10 11 12 13

Chunk size (lg)

1.090

1.095

1.100

1.105

1.110

1.115

1.120

S
iz

e
 (

b
it

s)

SF

eu-2015-host

eu-2015

7 8 9 10 11 12 13

Chunk size (lg)

0

5

10

15

20

25

30

C
o
n
st

ru
ct

io
n
 t

im
e
 (

µ
s)

MPHF

eu-2015-host

eu-2015

7 8 9 10 11 12 13

Chunk size (lg)

0

5

10

15

20

25

30

C
o
n
st

ru
ct

io
n
 t

im
e
 (

µ
s)

SF

eu-2015-host

eu-2015

7 8 9 10 11 12 13

Chunk size (lg)

100

200

300

400

500

600

700

800

900

1000

Q
u
e
ry

 t
im

e
 (

n
s)

MPHF

eu-2015-host

eu-2015

7 8 9 10 11 12 13

Chunk size (lg)

100

200

300

400

500

600

700

800

900

1000
Q

u
e
ry

 t
im

e
 (

n
s)

SF

eu-2015-host

eu-2015

Figure 1: Size in bits per element, and construction and lookup time in microseconds for the
eu-2015 and eu-2015-host datasets when r = 3.

In Table 1, we show the lookup and construction time of our “best choice” chunk size,
210, with respect to the data reported in [1] for the same space usage (i.e., additional
1.10b/key), and to the C code for the CHD technique made available by the authors
(http://cmph.sourceforge.net/) when λ = 3, in which case the number of bits per key is
almost identical to ours. We remark that in the case of CHD for the larger dataset we had to
use different hardware, as the memory available (16GB) was not sufficient to complete the
construction, in spite of the final result being just 3GB.

eu-2015-host eu-2015 ADR

MPHF SF CHD MPHF SF CHD SF

Lookup (ns) 186 210 408 499 438 1030 ?
Construction (µs) 1.61 1.12 0.98 2.45 1.73 3.53 270

Table 1: A comparison of per-key construction and evaluation time, r = 3. CHD is from [6],
ADR is from [1].

In the case of static function, we can build data structures about two hundred times
faster than what was previously possible [1] (the data displayed is on a dataset with 107
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eu-2015-host eu-2015 ADR

Lookup (ns) 236 466 ?
Construction (µs) 1.75 2.6 ≈2000

Table 2: Per-key construction and evaluation time of static functions, r = 4.

elements; lookup time was not reported). To give our reader an idea of the contribution of each
technique we use, Table 3 shows the increase in construction time using any combination of the
peeling phase (which is technically not necessary—we could just solve the system), broadword
computation instead of a standard sparse system representation, and lazy instead of standard
Gaussian elimination. The combination of our techniques brings a fifty-fold increase in speed
(our basic speed is already fourfould that of [1], likely because our hardware is more recent).

Table 3: Increase in construction time for r = 3 using just pre-peeling (P), broadword
computation (B), lazy Gaussian elimination (G) or a combination.

BG GP G BP B P None

+13% +57% +98% +296% +701% +2218% +5490%

In the case of MPHFs, we have extremely competitive lookup speed (twice that of CHD)
and much better scalability. At small size, performing the construction entirely in main
memory, as CHD does, is an advantage, but as soon as the dataset gets large our approach
scales much better. We also remark that our code is a highly abstract Java implementation
based on strategies that turn objects into bit vectors at runtime: any kind of object can thus
be used as key. A tight C implementation able to hash only byte arrays, such as that of CHD,
would be significantly faster. Indeed, from the data reported in [2] we can estimate that it
would be about twice as fast.

The gap in speed is quite stable with respect to the key size: testing the same structures
with very short (less than 8 bytes) random keys provides of course faster lookup, but the ratio
between the lookup times remain the same.

Finally, one must consider that CHD, at the price of a much greater construction time,
can further decrease its space usage, but just a 9% decrease in space increases construction
time by an order of magnitude, which makes the tradeoff unattractive for large datasets.

With respect to our previous peeling-based implementations, we increase construction
time by ≈ 50% (SF) and ≈ 100% (MPHF), at the same time decreasing lookup time.

In Table 2 we report timings for the case r = 4 (the construction time for [1] has been
extrapolated, as the authors do not provide timings for this case). Additional space space
required now is just ≈ 3% (as opposed to ≈ 10% when r = 3). The main drawbacks are the
slower construction time (as the system becomes denser) and the slower lookup time (as more
memory has to be accessed). Larger values of r are not interesting as the marginal gain in
space becomes negligible.

9 Further applications
Static functions are a basic building block of monotone minimal perfect hash functions [5], data
structures for weak prefix search [4], and so on. Replacing the common MWHC implementation
of these building blocks with our improved construction will automatically decrease the space
used and the lookup time in these data structures.

We remark that an interesting application of static functions is the almost optimal storage
of static approximate dictionaries. By encoding as a static function the mapping from a key
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to a b-bit signature generated by a random hash function, one can answer to the question
“x ∈ X?” in constant time, with false positive rate 2−b, using (when r = 4) just 1.03nb bits;
the lower bound is nb [11].

10 Conclusions
We have discussed new practical data structures for static functions and minimal perfect hash
functions. Both scale to billion keys, and both improve significantly lookup speed with respect
to previous constructions. In particular, we can build static functions based on Gaussian
elimination two orders of magnitude faster than previous approaches, thanks to a combination
of broadword programming and a new, parameterless lazy approach to the solution of sparse
system. We expect that these structure will eventually replace the venerable MWHC approach
as a scalable method with high-performance lookup.
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