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Executive SummaryExecutive SummaryExecutive SummaryExecutive Summary    

    

 

Sort is a fundamental kernel used in many database operations.  In-memory sorts are now feasible; 

sort performance is limited by compute flops and main memory bandwidth rather than I/O. In [29], we 

had earlier presented a competitive analysis of comparison and non-comparison based sorting 

algorithms on CPUs and GPUs. In this report, we extend this comparison to the  Intel Many Integrated 

Core (MIC) architecture. We evaluate radix sort on Knights Ferry (an implementation of Intel MIC 

architecture), obtaining a performance gain of 2.2X and 1.7X over the best sort performance on the 

Intel Core i7 CPU and GTX 280 respectively. We also improve the performance of GPU radix sort by 

1.6X over previous results. 
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1. 1. 1. 1. IntroductionIntroductionIntroductionIntroduction    
Sorting is of fundamental importance in databases. Common applications of sorting in database 

systems include index creation, user-requested sort queries, and operations such as duplicate 

removal, ranking and merge-join operations. Sorting on large databases has traditionally     focused on 

external sorting algorithms. However, the rapid increase in main memory capacity has made in-

memory sorting feasible. In previous work, [29], we evaluated how two main memory sorting 

algorithms, a radix and a merge sort, performed on CPUs and GPUs.  

In this work, we evaluate radix sort on the upcoming Intel MIC architecture [28], a Larrabee [23] 

based silicon platform for many-core research and software development. In particular, we implement 

our radix sort on Knights Ferry (KNF), an implementation of this architecture that has 32-cores each 

with 512-bit SIMD units. The implementation of merge sort on KNF is work-in-progress. We also 

improve the GPU radix performance by 1.6X from that reported in [22] using techniques to improve 

SIMD efficiency and Instruction-Level Parallelism.  

 

2222. Radix Sort. Radix Sort. Radix Sort. Radix Sort    

In this section, we describe our changes to the GPU radix sort algorithm as well as the radix 

implementation on the Intel MIC Architecture. Both these implementations use the SIMD-friendly 1-bit 

split algorithm described in [29]. 

We use the following symbols in Sections 4 and 5.                                  

 

N - number of elements to be sorted 

K - data size of key in bits 

T - number of threads 

C - size of local storage  cache (CPUs) / shared memory (GPUs) 

S - SIMD width  number of 32-bit keys stored in a SIMD register 

 

The following symbols are specific to radix sort: 

D - radix size (number of bits/digit) 

B - buffer size (in number of elements) per each of the 2D radixes 

H - histogram of radixes, H (k) is count of elements in radix k 

M - the number of blocks into which data is grouped 

Hm - a local histogram for block m 

 

2222....1111        Implementation on GPUsImplementation on GPUsImplementation on GPUsImplementation on GPUs 

The NVIDIA GPU architecture consists of multiple cores (called shared multiprocessors, or SMs). The 

GTX 280 has 30 such SMs.  GPUs hide memory latency through multi-threading. Each GPU SM is 

capable of having more multiple threads of execution (up to 32 on the GTX 280) simultaneously 

active. Each such thread is called a tttthread blockhread blockhread blockhread block in CUDA.  
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 Each GPU core has multiple scalar processors that execute the same instruction in parallel. In this 

work, we view them as SIMD lanes. The GTX 280 has 8 scalar processors per SM, and hence an 8-

wide SIMD. However, the logical SIMD width of the architecture is 32. Each GPU instruction works on 

32 data elements (called a thread warp), which are executed in 4 cycles. As a consequence, scalar 

code is 32X off in performance from the peak compute flops.  For radix sort, this means that the 

scalar buffer version of radix sort performs badly. Consequently, the best version of radix sort is the 

split-based local sort that can use SIMD. We describe the details of this scheme next. 

 

2.1.1. Detailed Implementation 

In this section, we describe our GPU radix implementation.   

We describe the GPU algorithm using the notations described above. Radix sort is carried out in P = K 

/D passes. Each pass involves the following steps:  

 

Step 1:Step 1:Step 1:Step 1: First, we divide the data evenly into a set of blocks M , each of size B. Assign each block to a 

GPU thread block.  Each block computes a local histogram Hm(d) for each bin d by incrementing 

appropriate bins for each input. This is achieved by maintaining per-thread local histograms in local 

shared memory, and using gathers/scatters to update these histograms. 

Step 2Step 2Step 2Step 2::::    We update Hm(d), the starting write offset for bin d of block m, as ∑m’ ϵ M, d’ < d Hm’ (d’) +   ∑m’ < M, d’ 

= d Hm’ (d’). This step is a global prefix sum on the 2D histogram entries of each of the M blocks.      

Step 3Step 3Step 3Step 3:::: Each thread block first rearranges data locally on the basis of D bits by using D 1-bit stream 

splits operation. 1-bit splits are implemented using scan operations on the GPU [22].  To avoid the 

SIMD inefficiency of scans, it is best to perform scans in scalar code as much as possible. This can be 

achieved by a verticalverticalverticalvertical scan organization – each thread in different SIMT lanes in a warp scans its own 

set of data items. Each thread produces the sum of its local values as it is done scanning its values. 

Threads within each warp then cooperatively use a SIMD scan algorithm to scan these sum values. 

The scan values corresponding to each thread are then independently added back by the thread to 

each of its individual values.  

 On the GTX 280, C = 16KB. For best efficiency, we found that each thread within a thread warp must 

independently scan at least 13 elements. This corresponds to a total of 13*32 = 416 elements/warp 

(~1.664 KB). We can then run a total of 16 KB/1.66 ~ 9.5 warps. We found using 8 warps (arranged as 

2 blocks of 4 warps each) yields the best performance. The choice of D was picked to be 4, since that 

resulted in most bins having more than 16 elements, resulting in efficient coalesced writes in Step 3.  

 

2.1.2. Analysis 

Step 1 is the histogram computation. Each thread performs spends 4 ops in reading the element and 

computing the index and 2 ops to scatter into shared memory. Histogram computations can be 

organized to have no shared memory bank conflicts - hence gets good IPC. The per-thread histograms 

are then reduced into a per-data block histogram using 32 scalar operations per histogram bin, for a 

total of 32*64 ops per data block. Thus in total SSSStep1 takestep1 takestep1 takestep1 takes 6*416 + 32*64 ops/block, or ~ ~ ~ ~ 12 scalar 

ops/element. This translates to less than 0.3 SIMD ops/elementless than 0.3 SIMD ops/elementless than 0.3 SIMD ops/elementless than 0.3 SIMD ops/element (using 32-wide SIMD). From a 

bandwidth perspective, each element requires 4 bytes to be loaded and 64 bytes per block (416 

elements) for histogram (1 byte per histogram bin). This is a total of ~ 4.25 bytes per element. GPUs 

get a high bandwidth of about 2.8 bytes/cycle/core – but Step 1 is  still bandwidth boundStep 1 is  still bandwidth boundStep 1 is  still bandwidth boundStep 1 is  still bandwidth bound due to the 

low computation performed – the expected bandwidth bound time is about 1.4 cycles per element.  

Step 2 takes negligible time. Step 3 involves a local 4-bit sort of data using 4 1-bit stream splits.  
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Each split operation involves 14.5 ops per element (4 ops to read data from shared memory and 

compute the bit, 1.5 in the local thread scan, 1 to perform the coordinated warp scan, 1 to add back 

the warp scan results to the local thread scan, 6 to compute the rank of each element and 1 to move 

the values according to the rank). In addition, the first split requires a memory to buffer read 

consuming 4 ops, and the last split also requires 4 ops to write back data from shared to global 

memory. In addition, we measure about 6 extra ops of overhead in setting up registers before the 

compute loop. Step 3 thus takes a total of 70 ops for the 4of 70 ops for the 4of 70 ops for the 4of 70 ops for the 4----bit split (or 2bit split (or 2bit split (or 2bit split (or 2.2.2.2.2    SIMD ops per element)SIMD ops per element)SIMD ops per element)SIMD ops per element). In 

terms of bandwidth, each data element needs to be read and written once, for a total of 8 

bytes/element, which requires 2.9 cycles on the GTX 280. Step 3 is expected to be compute bound, 

and should take about 9 cycles per element. Most of this time is spent in the split operationssplit operationssplit operationssplit operations, which 

take 59 scalar/1.84 SIMD ops, which is about 1.84/(2.2 + 0.3) = 73% of the total operations. . . . In 

practice, since Step 1 is bandwidth bound, we expect the split operations to take split operations to take split operations to take split operations to take about about about about 65% of 65% of 65% of 65% of 

overall timeoverall timeoverall timeoverall time. The split operation thus has significant impact on performance; for instance, introducing 

hardware to double the speed of the split operation will increase the overall sorting rate by about 

1.5X. 

 

2222....2222    Radix sort on MIC ArchitectureRadix sort on MIC ArchitectureRadix sort on MIC ArchitectureRadix sort on MIC Architecture 

We study how radix sort would perform on the Intel Many Integrated Core (MIC) Architecture [28]. 

The MIC architecture is an x86-based many-core processor architecture based on small in-order cores 

that uniquely combines full programmability of today’s general-purpose CPU architectures with 

compute-throughput and memory bandwidth capabilities of modern GPU architectures. Each core is a 

general-purpose processor, which has a scalar unit based on the Pentium processor design, as well as 

a vector unit that supports 16 32-bit float or integer operations per clock. The MIC architecture has 

two levels of cache: low latency L1 cache and larger globally coherent L2 cache that is partitioned 

among the cores. Knights Ferry (KNF) [28] (an implementation of the MIC architecture), has a 32 KB 

L1 cache and 256 KB partitioned L2 cache. To further hide latency, each core is augmented with 4-

way multithreading.  

Since MIC has a large 16-wide SIMD, we adopted the SIMD-friendly split-based sorting technique. We 

follow the same 3-step radix sort algorithm as for CPUs and GPUs, with a histogram, prefix sum and 

scatter stages. Given the larger cache size of 256 KB per core on KNF as compared to the 16 KB 

shared memory per core on GPUs, we perform 6 bits per pass rather than 4 (expect the last stage 

when we handle 8 bits per pass). Each pass is implemented using a 1-bit split approach where 

efficient SIMD operations for gathering the 0’s and 1’s are used. This helps save bandwidth compared 

to the GPU. Our KNF radix sort is about 1.7X faster than the GTX 280. 

 

 

3333. Performance Evaluation. Performance Evaluation. Performance Evaluation. Performance Evaluation    

    

Machine Configuration: Machine Configuration: Machine Configuration: Machine Configuration: We now evaluate the performance of our radix sort implementations on GPUs 

and the Intel MIC architectures with the CPU results reported in [29]. The CPU is an Intel quad-core 

3.2 GHz Core i7 CPU and the GPU is an NVIDIA GTX 280 GPU running at 1.3GHz. Both the CPU and 

GPU systems have 4 GB RAM and run Linux. The MIC architecture is a Knights Ferry (KNF) system 

running at 1.2 GHz.  

3333.1 .1 .1 .1     Comparative Analysis across architecturesComparative Analysis across architecturesComparative Analysis across architecturesComparative Analysis across architectures    

We first present our sorting performance results on a random distribution of 32-bit integers. Figure 1 

presents our results of (a) the best radix sort implementation and (b) the best merge sort on Core i7 
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and the GTX 280. We additionally report our radix sort performance on the Intel MIC architecture. The 

merge sort implementation on Intel MIC is work-in-progress. The best radix sort implementation on 

Core i7 is our scalar buffer version while the best one on the GTX 280 and MIC is the stream split 

version. We present the sorting throughput (in millions of elements/second) versus log2 N , where N is 

the length of input to be sorted. N varies from 216 to the largest input that fits in memory on the 

respective platforms (our sorts are out-of-place; we must store the input, output and some 

temporaries in memory).  The effect of the computational complexity of merge and radix sort can be 

seen from the figure. The sorting rate of CPU radix sort is constant at sizes above 128K elements, in 

line with the linear O(N ) complexity of radix sort. On the other hand, the sorting rate of merge sort 

reduces with N from about 240 M elements/second at N = 128 K to 140 M elements/second at N = 

128 M. This is the effect of the O(N logN ) complexity of merge sort. GPU trends are also similar at 

large N over one million. However, synchronization costs and high kernel call overheads on GPUs leads 

to slower performance of both radix and merge sort for N smaller than 1million.   
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Figure 1: Sorting performance of radix and merge sorts on Intel Core i7, NVIDIA GTX 28 

architectures. Radix sort performance on the Intel KNF architecture is also shown. 

    

CPU performance: CPU performance: CPU performance: CPU performance: On the Core i7, radix sort has a throughput of 240M elements/second and 

outperforms merge sort for most values of N starting from 128K elements. At N = 227, the radix sort 

throughput is 1.7X the merge sort throughput of 144M elements/ second. In terms of cycles per 

element (cpe), a single pass of radix sort is written using scalar instructions and takes about 13 cpe, 

while a single pass of merge sort (using SSE instructions) only takes2.5 cpe (which is a 3.8X speed-up 

over scalar code). Radix sort always takes 4 passes, and hence 52 cpe. Merge sort takes logN passes 

and hence 2.5logN cpe. Our radix sort performance is the best reported performance on CPU 

architectures to date. 

 

GPU performance: GPU performance: GPU performance: GPU performance: On the GTX 280 GPU, radix sorts is faster than merge sort for large N. Radix sort 

takes about 115 cycles/element, which is spent in performing 32 1-bit splits (each takes about 2.3 

cycles per element), plus the time taken for histogram computations (2*8 = 16 cycles/element) and 

writing out local sorted data to global memory (3*8 = 24 cycles/element). The throughput of the split 

code is about 325 M elements/second. A single pass of merge sort takes only about 1.4 instructions 

per element in the bitonic merge network (this is about half the instructions as on the Core i7 due to 

the SIMD width being twice as large). This would mean that for N = 226 elements, merge sort could 
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potentially run at 268 M elements/second. However, we found that the merge code suffers from 

overheads due to index computations and array reversal, resulting in an achieved performance of 

only 176 M elements/second. On an architecture where these overheads are lower, merge sort can 

perform better than the split radix sort.   

MIC MIC MIC MIC performance: performance: performance: performance: On the MIC architecture, our best radix sort implementation uses the large L2 cache 

to buffer more data than possible on GPUs; and hence performs fewer passes over the data.  This 

allows for a 1.8X gain in performance over the GTX 280. Our sort runs at about 560 M 

elements/second. 

Comparing CPUs andComparing CPUs andComparing CPUs andComparing CPUs and    GPUs: GPUs: GPUs: GPUs: In terms of absolute performance of CPU versus GPU, we find that the 

best radix sort, the GPU radix sort outperforms the best CPU sort by about 20%. The  reason for the 

relatively low speedup is that scalar buffer code performs badly on the GPU. This necessitates a move 

to the split code that has many more instructions than the buffer code. On the other hand, the GPU 

merge sort does perform slightly better than the CPU merge sort, but the difference is still small. The 

difference is due to the absence of a single instruction scatter, and the additional overheads, such as 

index computations, affecting GPU performance.                

 

3.23.23.23.2        Comparison to Analytical ModelComparison to Analytical ModelComparison to Analytical ModelComparison to Analytical Model 

We analyze the performance of our new radix sort algorithm on GPUs and compare it to the analytical 

model presented earlier.  

GPU Radix Sort:GPU Radix Sort:GPU Radix Sort:GPU Radix Sort: The number of SIMD instructions in each step closely matches expected numbers. 

Step 1 is  bandwidth bound, but with each pass taking about 2 cycles/second rather than the 

expected 1.4 cycles/second in bandwidth. Step2 takes negligible time. Each of the 4 1-bit splits of 

Step 3 takes about 0.52  instructions/element, closely  following our analysis – for a total of ~ 2.08 

instructions/element. Each SIMD instruction takes 4 cycles; hence the 1-bit splits take a total of 8.32 

cycles/element per pass. Step 3 also involves global memory reads and writes, which take an 

additional 4 cycles/element per pass (there is some impact due to memory latency). Overall, our 

algorithm takes about 14.8 cycles/element per pass, or a total of 14.8*8 = 118.4 cycles/element for 8 

passes. This accounts for our performance. 

    

3333....3333        Comparison to Other SortsComparison to Other SortsComparison to Other SortsComparison to Other Sorts 

We implemented the state-of-the-art algorithms on the latest CPU and GPU platforms. Our CPU radix 

sort and GPU merge sort implementations improved on existing best known non-comparison CPU 

sorts and comparison based GPU sorts respectively.  

 

Table 1 compares the best reported running times of comparison and non-comparison sorts on CPU 

and GPU platforms.  On the CPU platform, a 3.2 GHz Corei7, we compare our radix sort 

implementation with the best known radix implementation, the Intel IPP radix sort [2] and state of 

the art comparison based sorts -our implementation of the merge sort by Chhugani et al [9], and AA-

Sort [13]. All results were collected on the same platform. Our radix sort is up to 1.7X faster than the 

best reported sort so far (the merge sort based on Chhugani et al. [9]), and up to 3.8X better than AA-

Sort. The main reason is that the radix sort algorithm has fewer operations than merge sort due to 

computational complexity, and the small SSE width of the CPU is insufficient to compensate for the 

higher complexity. We are also 2X better than the IPP radix sort at larger data sizes. This is because 

IPP radix sort suffers from cache misses, in particular conflict misses, and becomes bound by main 

memory bandwidth and latency for large data sets.   
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 CPU (Core i7)CPU (Core i7)CPU (Core i7)CPU (Core i7)    GPU (GTX 280)GPU (GTX 280)GPU (GTX 280)GPU (GTX 280)    

 Radix IPP [2] Merge 

[9] 

Radix Radix  Merge Sample 

[18] 

256K 1.1 1.2 1.2 2.1 1.1 1.3 2.5 

1M 4.4 5.2 5.3 9.6 3.5 5.0 9.1 

4M 17.2 25.4 23.3 40.9 12.4 21.6 38.1 

16M 67.6 160.7 101.5 185.7 49.5 94.5 139.8 

64M 271.0 550.5 439.7 835.5 193.3 381.8 524.3 

 

Table 1: Performance comparison of the best performing sorting algorithms across platforms. We 

italicize our sorting implementations. Running times are in milliseconds, so lower numbers are better. 

 

On the GPU, an NVIDIA GTX 280, we compare our GPU merge implementation versus a recent 

comparison based sample sort [18] (the best reported GPU comparison sort). The performance results 

for sample sort is taken from [18]. We are about 1.5-2X better than their recent implementation. 

While their implementation is on a Tesla C1040 platform, this has the same compute flops as the GTX 

280. Their results show that their implementation is compute bound, and performance is not 

expected to improve on the GTX 280. Our merge sort is the fastest reported comparison based sort 

on GPUs. We also compare our merge sort implementation to our optimized radix sort implementation. 

Our merge sort is slightly faster than radix up to 256 K elements, but the complexity of radix sort 

takes over at larger inputs.  

 

4444. Large Keys and. Large Keys and. Large Keys and. Large Keys and    PayloadsPayloadsPayloadsPayloads    

We have so far reported sorting performance on 4-byte keys.  While 4-byte keys are useful in many 

database applications, larger keys are used in certain contexts, like sorting on names/dates [5, 7].  

Databases also frequently need to sort entire records, in which case we need to sort keys with 

payloads. 

 

Handling variable length keys and payloads:Handling variable length keys and payloads:Handling variable length keys and payloads:Handling variable length keys and payloads: We advocate using fixed length keys and using record ids 

instead of entire records while sorting. This is to maximize the use of SIMD and to minimize 

bandwidth requirements while reordering data. In order to handle variable length data, we use the 

work of Bohannon et al [7] to remap variable length keys to fixed length keys of 4 or 8 byte keys. We 

investigate both these cases in this section. To handle payloads, we use fixed length rids during the 

sort and perform a epilogue to rearrange entire records once sorting is done. Such a technique is also 

used in Kim et al. for join algorithms [16]. 
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Figure 2: Performance of radix and merge sort on large keys (relative to 32-bit radix performance) on 

Intel Core i7 and NVIDIA GTX 280. 

 

Impact on Radix Sort:Impact on Radix Sort:Impact on Radix Sort:Impact on Radix Sort: Increasing the key length from 4-bytes to larger keys leads to increase in both 

compute and bandwidth resources during sort. For radix sort, as the key-width doubles, each pass will 

need to read and write twice the data that it did previously.  Moreover, since radix sort considers a 

constant number of bits per pass, the number of passes also doubles as we double key widths.  The 

bandwidth requirement of radix sort therefore scales quadratically with key-width.  

 

For the scalar CPU buffer radix sort, the original code to sort 32- bit keys does not use SSE registers. 

When we sort larger keys, we utilize these unused SSE registers to store keys up to 16 bytes, and run 

the scalar buffer code on data in SSE registers. The number of instructions per pass, is therefore 

constant; compute only increases linearly with the number of passes. For the GPU split code, we 

already utilize SIMD registers. Parts of the algorithm such as local scatters need to store the entire 

keys in SIMD; these portions scale linearly with key width per pass; and since the number of passes 

increases linearly with key width, the net effect is a quadratic scaling.  There are however, other 

parts of the algorithm (histogram update and 1-bit scans) that only work with a few bits at a time and 

are unaffected by key width. These only scale linearly, and hence overall compute does not scale 

quadratically. Since compute scales slower than bandwidth requirements of radix sort with increasing 

key widths, radix sort gets bandwidth bound on large keys.  

 

 Figure 2 shows the time taken to run radix and merge sort with increasing key widths relative to the 

32-bit key radix sort times on each architecture (lower bars indicate better performance). For radix 

sort, we see that CPU performance on 64-bit and 128-bit keys is 2.7X and 10.9X slower than 32-bit 

keys. CPUs become bandwidth bound for larger than 6 byte keys, and thereafter slow down 

quadratically with key width. On GPUs, the slowdown on 64-bit and 128-bit keys is 3.0X and 9.7X. 

Only parts of the GPU implementation are bandwidth bound; hence the performance drop is more 

than linear but less than quadratic in key width. 

 

Handling payload: Figure 2 also shows that the performance of 32-bit key and rid pairs is only 1.3X 

worse than 32-bit key sort on CPUs and only 1.2X worse on GPUs. This is because the number of 

passes of radix is the same as for keys only; the only performance loss is due to the instructions and 

extra bandwidth required for moving the rids. 
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5555. Conclusions. Conclusions. Conclusions. Conclusions    

This paper presents new results for GPU radix and Intel MIC architecture. We improve the GPU radix 

sort performance by 1.6X. We present analytical models for analyzing the performance. We evaluate 

radix sort on Knights Ferry (an implementation of Intel MIC architecture), obtaining a performance 

gain of 2.2X and 1.7X over the best sort performance on the Intel Core i7 CPU and GTX 280 

respectively.  

 

6666. Future Work. Future Work. Future Work. Future Work    

As future work, we intend to implement merge sort on the Intel MIC architecture and evaluate both 

merge and radix sorts on the NVIDIA Fermi architectures.  
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