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ABSTRACT
In this paper, we focus on sorted-set intersection which is
an important part in many algorithms, e.g., RID-list inter-
section, inverted indexes, and others. In contrast to tradi-
tional scalar sorted-set intersection algorithms that try to
reduce the number of comparisons, we propose a parallel
algorithm that relies on speculative execution of compar-
isons. In general, our algorithm requires more comparisons
but less instructions than scalar algorithms that translates
into a better overall speed. We achieve this by utilizing ef-
ficient single-instruction-multiple-data (SIMD) instructions
that are available in many processors. We provide different
sorted-set intersection algorithms for different integer data
types. We propose versions that use uncompressed integer
values as input and output as well as a version that uses a
tailor-made data layout for even faster intersections. In our
experiments, we achieve speedups up to 5.3x compared to
popular fast scalar algorithms.

1. INTRODUCTION
Sorted-set intersection is a fundamental operation in

query processing in the area of databases and information
retrieval. It is part of many algorithms and often accounts
for a large fraction of the overall runtime. Examples are in-
verted indexes in information retrieval [25], lists intersection
in frequent-itemset mining [1, 28], and merging of RID-lists
in database query processing [19]. In many of these applica-
tion areas low latencies are a key concern so that reducing
the execution time of set intersection is very important.

There has been done a lot of research with the goal of im-
proving sorted-set intersection. Many approaches focus on
speed up sequential intersection [4, 5, 9, 11, 13, 20] by using
efficient data structures or improved processing techniques.
Other approaches focus on utilizing modern hardware like
graphic processors (GPUs) [1, 2, 12, 26, 27] and multi-core
CPUs [23, 24] to utilize the parallelism offered by these pro-
cessors. However, the main focus of these approaches is only
on thread-level parallelism. Data-level parallelism is so far
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not considered although it is available via SIMD instruction
sets in almost all modern CPUs. For this reason, our goal
in this paper is to speed up the intersection of sorted sets
using SIMD capabilities.

Utilization of SIMD capabilities in algorithms is ideally
achieved through automatic vectorizing by compilers or by
inserting SIMD instructions manually. However, many com-
pilers detect vectorization opportunities only for simple loop
constructs with few or without any data dependencies. In
all other cases, hand-tuned assembly or intrinsics must be
used. Unfortunately, all sorted-set intersection algorithms
have complex data dependencies so that automatic vector-
ization cannot be applied.

In this paper, we introduce parallel sorted-set intersection
algorithms that rely on speculative execution. Our main in-
tention is to speculatively execute more than the necessary
comparisons as done by the scalar algorithms. To do this
efficiently, we use the string and text processing new instruc-
tions (STTNI) that are part of the Intel R© Streaming SIMD
Extensions 4.2 (Intel R© SSE 4.2).1 These instructions allow
a fast full comparison of either eight 16-bit values (= 64
comparisons) or sixteen 8-bit values (= 256 comparisons)
with only one instruction. Many of these comparisons are
useless and would not been exectuted by scalar algorithms.
However, since these instructions itself require only 8 cycles
to complete [14] we achieve significant speedups.

In summary, our contributions are as follows:

• We propose fast parallel sorted-set intersection algo-
rithms for 8-bit, 16-bit and 32-bit integer values based
on STTNI of Intel SSE 4.2. The algorithms use un-
compressed integer values as input and output. We
explain in detail the necessary SIMD instructions and
steps of the parallel intersection.

• We present a hierarchical data layout that is tailor-
made for a fast parallel intersection of integer values
with a precision higher than 16 bits.

• We compare our parallel algorithms with two highly
efficient scalar versions on synthetic datasets.

The scope of our paper is as follows. We focus solely
on sorted-set intersection of integer values without dupli-
cates. Usually, this is not a limitation since both of our ex-
ample scenarios—information retrieval and frequent-itemset

1Intel and Core are trademarks of Intel Corporation in the
U.S. and/or other countries. Other names and brands may
be claimed as the property of others.



mining—deal only with integer values without any dupli-
cates. Nonetheless, our parallel algorithms could be ex-
tended to allow duplicates by storing the frequencies of the
integer values. We further assume that all sets being inter-
sected are already available in main memory. This holds true
for all of our application areas since the data is either loaded
or generated in main memory during pre-processing or kept
in memory all the time, e.g., in in-memory databases.

2. BACKGROUND AND RELATED WORK
In this section, we survey related work and explain a typ-

ical scalar sorted-set intersection algorithm. In the remain-
der, we present necessary SIMD instructions used for our
parallel algorithms.

2.1 Related Work
We focus on set intersection where both sorted sets have

a similar cardinality. If the difference of the cardinality of
the two sets is very large, search techniques (e.g., binary or
interpolation search) are used to find corresponding items
in the larger set [13]. For sets with similar cardinality the
well-known merge algorithm—similar to the merge step of
merge-sort [18]—is used. Prior research provided many op-
timizations for this algorithm that can be divided into three
classes: (1) adaptive intersection, (2) hierarchical intersec-
tion, and (3) parallel intersection.

Adaptive algorithms [3, 4, 5, 9] focus on reducing the num-
ber of comparisons during the intersection; this is achieved
by combining the merge algorithm with various search tech-
niques. This works very well when applied on skewed data.
However, adaptivity sometimes introduces a large overhead
that offsets the benefit of the fewer comparisons [10, 11].
Our main idea to execute even more than the necessary com-
parisons seems contrary to the adaptive approaches. Nev-
ertheless, a combination of our approach with adaptive al-
gorithms would be interesting to reduce the number of full
comparisons.

Besides the pure merge approaches there are also hier-
archical approaches that utilize different—often tree-like—
data structures to speed up the intersection. The main ad-
vantage is a faster insertion of new integer values into the
sets. Examples for such data structures are AVL trees [7]
and treaps [6]. We will show that many of these hierarchical
approaches can be combined with our parallel algorithms.
Other approaches represent sets using two levels, an upper
and a lower level. Sanders [20] provides a two-level repre-
sentation in which an upper set contains entry points for a
number of lower sets. The goal is to use compression for the
lower-level sets and allow binary search on the upper level
set. Tsirogiannis [24] partitions a set into subsets until these
subsets consist of only uniformly distributed values. This in-
creases the effect of interpolation search within the subsets.
A small partition table is used for upper-level intersection.
This approach is orthogonal to our work; intersection of the
small subsets could be executed using our data-parallel al-
gorithms. In recent work, Ding [11] provides a two-level
approach based on hashing. The values of a set are mapped
to bitmaps tailor-made for the word-length of a processor.
The intersection is then executed by a bit-wise ANDing of
the bitmaps. The approach works very well if the cardinal-
ity of the result set is small. Otherwise, the reconstruction
of the bitmaps to actual integer values usually offsets any
benefit of the fast bitmap-merging.

int intersect(short *A, short *B,
int l_a, int l_b, short* C) {

int count = 0;
int i_a = 0, i_b = 0;

while(i_a < l_a && i_b < l_a) {
if(A[i_a] == B[i_b]) {
C[count++]=A[i_a];
i_a++;
i_b++;

}
else if (A[i_a] > B[i_b])
i_b++;

else
i_a++;

}
return count;

}

Figure 1: Code snippet for scalar sorted-set inter-
section with branches for 16-bit integer values.

Parallel set intersection algorithms [23, 24] focus on uti-
lizing multi-core processors to speed up the intersection pro-
cess. Tsirogiannis [24] proposes a set partitioning that al-
lows an efficient load balancing for multi-core processors.
Furthermore, there is a large number of algorithms tailor-
made for GPUs [1, 2, 12, 26, 27]; all these works focus on
massive thread-level parallelism and efficient data layouts
for set intersection on GPUs. In summary, all of these par-
allel algorithms focus solely on thread-level parallelism. In
this paper, we provide the first intersection algorithm that
utilizes data-level parallelism offered by modern CPUs. To
the best of our knowledge, there exists no such work so far.

Apart from the set intersection algorithms, there are sev-
eral algorithms that benefit from STTNI. Clearly, the most
obvious use-cases are string and text processing algorithms;
a large number of code samples that were optimized using
STTNI can be found in Chapter 11 of Intel’s Optimiza-
tion Reference Manual [14]. This includes amongst oth-
ers null character identification, string comparison, string
token extraction, word counting, sub-string searching, and
string-to-integer conversion. More application-specific algo-
rithms like accelerating XML parsing and XML schema val-
idation [17] are further typical candidates since they heavily
rely on string processing. However, also other algorithms
that have, at first sight, nothing in common with string
processing benefit of STTNI. Shi [22] proposes optimized
search algorithms for searching in arrays, trees, and hash-
tables; these algorithms achieve high speedups compared to
their scalar counterparts. Nevertheless, none of these works
considers to accelerate sorted-set intersection using STTNI.

2.2 Scalar sorted-set intersection
Sorted-set intersection requires two sorted sets as input

and outputs a sorted set that contains common values of
both input sets. Let A and B be two sorted-sets of length
la and lb, respectively, and C the result set. The scalar
algorithm iteratively compares two values taken from each
set; it starts with the first value of both sets. Whenever the
two compared values are equal, the value is written into the
result set and a counter—that counts the number of common
values—is incremented. Then, the next value of each set is
loaded for the next comparison. If the compared values are
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Figure 2: Scalar intersection of two sorted sets with
24 comparisons; the resulting intersection set con-
sists of 7 elements (gray shaded).

unequal, then only the next value of the sorted set with the
smaller value is loaded and compared with the current value
of the other set. The algorithm finishes when there is no
next value in one the two sets. Furthermore, indices ia and
ib are used for maintaining the position of the next value of
each set. Figure 1 shows the C-code for an implementation
of this algorithm.

The worst-case number of comparisons for intersecting
two sorted-sets of length la and lb is given by la + lb − 1;
in this case, the sets have no common value. The best-case
requires only min(la, lb) comparisons. Figure 2 illustrates
the scalar sorted-set intersection with an example. Here, 24
comparisons are necessary to find the 7 common values.

With a data-parallel version of the scalar algorithm in
mind, the following characteristics of this algorithm are im-
portant. The scalar code consists only of comparison, arith-
metic, and load/store instructions. Furthermore, there is
no defined pattern for increasing the indices ia and ib be-
cause whether the next value is loaded from set A or set B
depends on the values being intersected. Consider the ex-
ample in Figure 1. Here, the indices (0-based) are increased
for the first five comparisons as follows: (ia = 0, ib = 0),
(ia = 1, ib = 1), (ia = 3, ib = 2), (ia = 4, ib = 2), and
(ia = 4, ib = 3). This behaviour plays an important role for
a data-parallel version of the merge algorithm.

2.3 SIMD capabilities
Initially introduced with MMX for the Intel Pentium pro-

cessor, there exist a large number of SIMD instruction sets
like 3DNow, different revisions of SSE, and AVX for modern
x86 processors. Compared to traditional scalar instructions
that process only a single data element at once, a SIMD in-
struction can process k elements at once; k itself depends on
the capabilities of the instruction set as well as on the data
type. For example, most SSE instructions can process four
32-bit or eight 16-bit values at once, while AVX instructions
allow to process eight 32-bit values. SIMD instructions can
be classified into load and store, element-wise, and horizon-
tal instructions. In this paper, we require instructions of all
three classes.

Load and store instructions copy data from main memory
into the SIMD registers and vice versa. For our algorithms,
we require aligned as well as unaligned load and store in-
structions. For current processors, there is no performance
difference whether aligned or unaligned memory load/store
instructions are used; however, unaligned loads can cause
cacheline splits. Note that loading and storing of vector reg-
isters is restricted to continuous memory chunks, i.e., if four
32-bit values should be loaded into a vector register with one
instruction, all four values must reside in a continuous block
of 128 bit. Scatter and gather operations—that allow to
load/store data for each of the k elements independently—

“equal any” aggregation
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Figure 3: Parallel intersection of two vectors using
the PCMPESTRM instruction. The intermediate
result matrix holds the results of the full-comparison
and is aggregated using the “equal any” aggregation
method. The result bitmask indicates that the first,
seventh, and eighth value of vector A are also found
in vector B.

are not supported by current and near future processors.2

Element-wise instructions execute an operation element-
wise on one or more input vectors, i.e., the n-th element of
the output vector only depends on the n-th element of each
input vector. There exists a large number of element-wise
instructions including arithmetic, comparison, shift, conver-
sion, and logical instructions. For the algorithms in this
work, we only need element-wise arithmetic and conversion
instructions. More in detail, we require the conversion in-
structions PUNPCKHWD and PUNPCKLWD that take two vectors
as input and mix the eight upper (PUNPCKHWD) or eight lower
(PUNPCKLWD) 16-bit elements of both vectors and write them
into an output vector.

Horizontal instructions act across the elements of a SIMD
register. Here, the n-th element of the output vector can
possibly depend on all elements of the input vectors. In this
paper, we make extensive use of one of the four instruc-
tions of STTNI. Originally intended for string comparison,
the four instructions differ only in the output format (in-
dex or bitmask) and whether the length specification of the
processed strings is given explicitly or implicitly (using a
’0’-termination symbol). The execution procedure of all four
instructions consist of three stages: (1) full comparison of
two input vectors both consisting of either sixteen 8-bit val-
ues or eight 16-bit values. (2) aggregation of the intermedi-
ate comparison result using one of four different aggregation
functions. For our algorithms, we use the “equal any” ag-
gregation function; this function ORs the comparison results
per element for the second input vector. In other words, if
there is at least one element in the first input vector equal to
the n-th element of the second input vector, then the n-th
bit in the aggregated bitmask is set to one. (3) the final
output is returned. Two instructions of STTNI return the
aggregated bitmask while the other two instructions return
the position of the first or last “one” bit in the aggregated
bitmap. In our algorithms, we use the PCMPESTRM instruction
that requires an explicit length specification and returns an
aggregated mask. Figure 3 illustrates the intersection of two
sets—each represented as a vector with 8 elements—using
the PCMPESTRM instruction.

Besides of the PCMPESTRM instruction, we make use of the
byte-shuffle instruction PSHUFB that is part of the SSSE3

2Gather instructions have just been announced for Haswell.



instruction set and performs arbitrary in-place shuffles of
the bytes in a SIMD register. The byte permutation itself
is controlled by a shuffle control mask.

All required instructions are supported by Intel processors
starting with the Nehalem architecture [16] and forthcoming
AMD processors starting with the Bulldozer architecture [8].
More details about the used instructions are available in the
Intel Software Developer’s Manual [15].

3. PARALLEL SET INTERSECTION
In general, exploiting SIMD capabilities for sorted-set in-

tersection could be done by either executing k sorted set
intersections in parallel or speed up the execution of a sin-
gle sorted-set intersection. We will first discuss why SIMD
capabilities cannot be efficiently utilized for the first option
and will then propose our solution for the second option.

3.1 Multiple intersections
The standard approach for exploiting SIMD instructions

would be to execute k independent set intersections in par-
allel instead of a single scalar set intersection. This could be
achieved by exchanging scalar instructions with SIMD in-
structions. Scalar comparison instructions as well as scalar
arithmetic instructions could be exchanged since SSE pro-
vides SIMD counterparts for these instructions (see Sec-
tion 2.3). However, the main problem of this approach is
that available load and store instructions are restricted to
loading and storing continuous memory chunks.

In each step, the scalar merge requires to load one value
from each set; for k parallel merges this implies loading k
values from the k upper sets and loading k values from the k
lower sets. Since as mentioned before, increasing of the set’s
indices for a scalar merge depends on the values being inter-
sected, the indices of the k upper sets as well as the indices
of the k lower sets are increased independently of each other.
For this reason, it is not possible to load the k values from
k sets from a continuous chunk of memory using the afore-
mentioned load instructions. Scatter and gather instructions
would be a solution to this problem, but these instructions
are not supported by the current and next-generation of pro-
cessors. So the only way is to fill up the vector registers with
2 · k scalar load instructions, introducing a high sequential
fraction to the algorithm.

Another problem is that the sorted sets being intersected
should have similar lengths because the achievable speedup
is reduced if some of the k merges finish earlier. For these
two reasons, we focus on the second option: exploiting SIMD
instructions to speed up the intersection of two sorted sets.

3.2 Basic intersection
The parallel merge algorithm is based on speculative ex-

ecution of comparisons. While the scalar merge compares
in each iteration only the two values indexed by ia and ib
of both input sets, the main idea of the parallel merge is
to compare values that are beyond the current index values.
Usually, such an approach would not be beneficial because of
the additional overhead for the large percentage of unneces-
sary comparisons. Nevertheless, because of the fact that the
PCMPESTRM instructions allow a large number of comparisons
in almost the same amount of time of a single comparison,
we can achieve a high speedup despite the many unnecessary
comparisons.

Since all the instructions of STTNI are restricted to 8-bit

int intersect(short *A, short *B,
int l_a, int l_b, short* C) {

int count = 0;
short i_a = 0, i_b = 0;

while(i_a < l_a && i_b < l_b) {
// 1. Load the vectors
__m128i v_a = _mm_load_si128((__m128i*)&A[i_a]);
__m128i v_b = _mm_load_si128((__m128i*)&B[i_b]);

// 2. Full comparison
__m128i res_v = _mm_cmpestrm(v_b, 8, v_a, 8,

_SIDD_UWORD_OPS|_SIDD_CMP_EQUAL_ANY|_SIDD_BIT_MASK);
int r = _mm_extract_epi32(res_v, 0);
unsigned short a7 = _mm_extract_epi32(v_a, 7);
unsigned short b7 = _mm_extract_epi32(v_b, 7);
A += ( a7 <= b7 ) * 8;
B += ( a7 >= b7 ) * 8;

// 3. Write back common values
__m128i p = _mm_shuffle_epi8(v_a, sh_mask[r]);
_mm_storeu_si128((__m128i*)&C[count], p);
count += _mm_popcnt_u32(r);

}
return count;

}

Figure 4: Code snippet for parallel sorted-set inter-
section of 16-bit integer values using SIMD instruc-
tions.

and 16-bit integer values, the basic parallel sorted-set inter-
section can only process integer values of such a precision. In
the following, we focus on the parallel merge of two sets with
16-bit values; the version for 8-bit values works similarly.

Similar to the scalar version, the input of the parallel al-
gorithm are two sorted arrays A and B with lengths la and
lb, respectively. Both arrays are 16-byte aligned and, for
the ease of explanation, we assume that the length of each
vector is a multiple of 8. Furthermore, two variables ia = 0
and ib = 0 are required to indicate already processed val-
ues in the arrays A and B, respectively. Finally, the output
consisting of the common values of A and B is written back
to an array C. The number of common values is stored in
count. The major steps of the algorithm are: (1) load the
data into the vector registers, (2) do a full-comparison of
both vectors using the PCMPESTRM instruction, and (3) write
back and count the common values. We will now explain
the algorithm in more detail.

The main loop is executed as long as there are unprocessed
values in both sets (ia < la and ib < lb).

1. Load both vectors Eight consecutive values of the ar-
ray A starting at position ia are loaded into a vector
register va. Similar, the vector register vb is filled with
eight consecutive values of B starting at ib. Both loads
are executed using two aligned load instructions.

2. Fully compare both vectors The full comparison of
va and vb is executed using the PCMPESTRM instruction;
the comparison result—a bitmap consisting of 8 bits—
is stored in a variable r. Each “one” bit in r indicates
a common value in va and vb. More specifically, a bit
at position n in r is set to one if there is a value in vb
equal to the n-th value in va.

Furthermore, a scalar comparison of the respective last



full comparision

1132 91 21 22 26 32 34 35271612 18

1676 81 26 28 30 32 33 34311817 19 23

end-pair comparison
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Figure 5: Parallel linear merge of two sorted sets
with only three full comparisons and two end-pair
comparisons. These comparisons on the particular
last value of each vector (bold) are used to decide
which vectors are compared next.

values of va and vb is used to select the values of A and
B for the next full comparison. If the last value of va
is smaller than the last value of vb, then ia is increased
by 8. Otherwise, vb is increased by 8. In case of the
last values of va and vb are equal, both values ia and
ib are increased by 8. This ensures that all common
values are found once and only once.

3. Write back common values Finally, the common
values stored in va are packed together and are stored
in C. This packing is performed using the byte per-
mutation (shuffle) instruction. The required permuta-
tion mask is obtained by using the bitmask r as an
index in a permutation mask lookup-table. Finally, a
unaligned store instruction is used to write back the
packed common values. The number of common val-
ues is calculated using a population count instruction
on the bitmask r.

The C-code of the algorithm3 is shown in Figure 4 while
Figure 5 illustrates the parallel merge on the same sorted
sets as used before (c.f. Figure 2). Each set consists of
16 values. The first step is the full comparison of the first
eight values of both vectors. After this comparison, the
common values 1, 16, and 17 are found and written back
to the result vector (not shown). The comparison of the
last value of each vector, 17 for the upper vector and 19 for
the lower vector, indicates that all values smaller or equal
than 17 are already merged. However, since the values 18
and 19 from the lower set may be also in the upper set,
only the index of the upper set is increased by 8. After the
second full comparison, the value 18 is found. The last full
comparison (second 8 values of both sets) reveals the values
26, 32, and 34. After only three full comparisons and two
scalar comparisons all common values are found.

The parallel merge requires more comparisons than the
scalar merge. For the 16-bit parallel merge, the best-case
occurs if both sets are identical and the length of both sets
is a multiple of 8. Given that, the number of comparisons is
given by 8 · la because after each full comparison the algo-
rithm proceeds in both sets by 8 values. The worst-case
number of comparisons is given by 16 · la − 64. In this
case, both sets have the same cardinality but the last val-
ues of all fully compared vectors are always unequal so that
the algorithm proceeds after a full comparison only in one
set by 8 values. Under the unrealistic assumption that the
PCMPESTRM instruction can process the 64 comparisons in
the same time like a single scalar comparison instruction,
the speedup for the parallel merge would be in a range of

3The code snippet has been adapted for better readability
and differs from the source code used for the experiments.

4x to 8x. Similar considerations lead to a potential speedup
from 8x to 16x for the parallel merge of 8-bit values.

3.3 Hierarchical intersection
So far, we presented an parallel sorted-set intersection al-

gorithm for 8-bit and 16-bit integer values. Since STTNI
can only be applied on such integer values, we propose a
hierarchical intersection approach that allows processing in-
tegers of higher precision (> 16-bit). We make use of the
fact that each integer value for a given domain D could be
divided into h upper bits and 16 lower bits where h + 16 is
the precision of the integer; e.g., h = 16 for 32-bit integer
values. Using this, we can partition the set A into disjoint
subsets A1, A2, . . . , Am where each subset Ai consists of in-
teger values that share the same upper h bits. The set B is
partitioned into B1, B2, . . . , Bn in the same way. Based on
that, hierarchical intersection works as follows:

Upper-level intersection is done by merging the sub-
sets A1, A2, . . . , Am and B1, B2, . . . , Bn based on the
shared h bits of each subset. For each pair Ai and Bj

that share the same h bits, the lower-level intersection
is executed.

Lower-level intersection merges two subsets Ai and Bj

based on the lower 16-bits of each value. This is done
using our parallel 16-bit intersection algorithm.

In summary, we have a single upper-level intersection and
multiple lower-level intersections. The upper-level inter-
section could be executed based on the scalar merge (c.f.
Section 2.2) or also using an intersection based on STTNI.
However, an important observation is that in most cases
the upper-level intersection is responsible only for a small
fraction of the execution time of the complete intersection
process. In general, the fraction of upper-level and lower-
level execution time depends on the average cardinality of
the subsets. Roughly speaking, the higher the cardinality
of the subsets, the more of the execution time is spend for
the intersection of the subsets. For this reason, we use a
scalar algorithm for the upper-level intersection and our 16-
bit parallel algorithm for the lower-level intersections.

We provide two different hierarchical parallel merge algo-
rithms. The first algorithm processes uncompressed integer
values and requires a pre- and post-processing to partition
these values into subsets during processing. The second al-
gorithm uses a tailor-made data structure to avoid the over-
head of such processing during the intersection. We will
explain both algorithms for 32-bit values only; the steps are
similar for integers of higher precision.

In the first algorithm, we execute pre- and post-processing
during the intersection to avoid large intermediate results
that would be necessary if the phases are separated from
the complete intersection process. Instead, we maintain only
two buffers each with 65,536 elements. Whenever a lower-
level intersection is executed, we copy the lower 16-bit val-
ues of both subsets being intersected into the buffers. We
achieve this be using the PSHUFB instruction to move the
lower 16-bit of all values to the lower part of a SIMD reg-
ister. We copy the lower part of two such “shuffled” SIMD
registers into the respective buffer using a PUNPCKHWD and a
store instruction. After all values of both subsets are copied
into their assigned buffers, the pre-processing for this lower-
level intersection is finished and the actual parallel 16-bit



intersection is executed.4 The separation of the complete
copying of the 16-bit values and their intersection afterwards
avoids complex code that would require many branches and
would probably be slow. However, post-processing is exe-
cuted without buffering. It is used to concatenate the up-
per 16 bits with each 16-bit value of the lower-level inter-
section result. We utilize the instructions PUNPCKHWD and
PUNPCKLWD for this concatenation. The upper 16-bit are
replicated stored in the first register while the second regis-
ter contains the intersection results. After each intersection
iteration, we execute both conversion instructions followed
by two unaligned store instructions.

The second algorithm avoids the pre- and post-processing
overhead by using a tailor-made data layout for the input
sets. The main idea is to store the values of a set already
partitioned using two levels; all data of a set is stored in
a continuous memory area consisting of an array of 16-bit
values. The subsets A1, A2, . . . , Am of A are then stored
as follows: starting at the array, the shared 16 bits of the
values in A1 are stored once using a single cell. The next
cell contains the cardinality of A1. A single cell for the
cardinality is sufficient since the maximum number of values
in a subset never exceeds 65536. The next |A1| cells comprise
the lower 16-bit of the values of A1. After this, the next
subsets A2 to Am are stored in a similar way.

The two-level data layout has often lower memory require-
ments than the original representation of the uncompressed
integer values it consists of. This is because the upper bits
of all values of a subset are stored only once. Only in the
worst-case—each subset contains only one element—we have
additional overhead of 16 bit for the subset’s length field per
integer value. However, this case is very unusual for real-
istic datasets. For example, document ids in inverted in-
dexes have normally a sequential numbering. Furthermore,
already for an average cardinality of 2 the memory require-
ments are the same as for storing uncompressed 32-bit val-
ues. For higher average cardinality the memory require-
ments approach 16 bit per value.

Conversion of the two-level data layout into 32-bit values
can be done with almost no overhead during intersection
using the post-processing of the first hierarchical algorithm.
As indicated by experiments, there is only a small differ-
ence in the execution times whether the intersection result
is written back in the two-level data layout or as uncom-
pressed 32-bit integer values.

4. EXPERIMENTAL EVALUATION
This section contains the results of our experimental eval-

uation. We first give an overview of the used setup and will
then show the results of our experiments.

4.1 Setup
We implemented several algorithms using C as program-

ming language. More specifically, we implemented two
scalar versions. The first version (branch) uses branches in
the main loop for increasing the indices (c.f. Figure 1) while
the second version (branchless) is based on predication5 and

4Each 8 consecutive values in the buffers are not ordered
anymore. The full comparison still works but we have to
adapt the shuffle control masks that are required for packing
the result in each iteration of the intersection.
5Transforming branches into data dependencies to avoid
mispredicted branches.
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Figure 6: Varying the selectivity for 78,125 sorted-
set intersections on sets with 128 elements and 8-bit
integer values.

has no branches in the main loop. We optimized both ver-
sions by hand. As we will show, the usual goal to avoid
branches leads not always to the best results since under
certain circumstances (perfect branch prediction) code with
branches could be very fast. Each of the scalar versions is in-
strumented with C preprocessor directives to obtain versions
tailor-made for different integer precisions (i.e., 8-bit, 16-bit,
and 32-bit). Furthermore, we implemented four parallel al-
gorithms using STTNI. The first three algorithms—SIMD8,
SIMD16, and SIMD32—differ only in the precision of the
integers they process. All three algorithms use the same
interface as the scalar algorithms; they process and output
uncompressed integer values. Finally, the fourth parallel
version (SIMD32-H ) is based on the proposed hierarchical
data layout, which is used as input and output of the al-
gorithm. We used C-intrinsics to insert SIMD instructions.
All algorithms were compiled using Intel Parallel Composer
2011. We also tried the GCC compiler but the generated
code was in all experiments slower.

We evaluated all algorithms on a system comprised of an
Intel R© CoreTM i7-920 processor with a core frequency of
2.67GHz and 6GB of main memory. We used Linux (2.6.34)
as operating system. In all experiments, we measured the
wall-clock time for the intersection process only. All input
datasets were main memory resident. Furthermore, the out-
put is written on preallocated memory so that there is no
time required for retrieving the memory (e.g., malloc calls).

We generated synthetic datasets consisting of uniformly
distributed values. We varied the selectivity—denoted as
the fraction of the number of common values of both sets
and the cardinality of the smaller set—of the datasets by
changing the domain of the values. A greater domain leads
to a smaller selectivity and vice versa. In each experiment
we intersected in total 10 million values with another 10
million values. Since the maximum number of integers of
the 8-bit and 16-bit versions is restricted to 256 and 65,536,
respectively, we executed multiple merges for these versions;
78,125 merges of sets each with 128 elements for the 8-bit
versions and 5,000 merges of sets each with 2,000 elements
for the 16-bit versions.

4.2 Results
In the first experiment, we compared the execution time

for intersecting 8-bit and 16-bit sorted sets. For that, we
compared both scalar versions, branch and branchless, with
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Figure 8: Varying the selectivity for a single sorted-
set intersection of two sets with 10 million elements
and 32-bit integer values.

SIMD8 and SIMD16. We varied the selectivity from 50% to
100% for 8-bit intersection algorithms and from 0% to 100%
for the 16-bit algorithms.

Figure 6 illustrates the results for 8-bit intersection. Inde-
pendently of the selectivity, SIMD8 outperforms both scalar
versions; it has a nearly constant execution time of only
about 11ms because it proceeds in almost each iteration by
16 elements in one of both sets. However, as both sets fully
overlap (100% selectivity) it iteratively proceeds in each set
by 16 elements so the runtime further decreases to 7ms.
Of both scalar algorithms, branchless performs better up to
a selectivity of 90%. At this point branch gets faster be-
cause of the nearly perfect branch prediction. Nevertheless,
branchless as well as branch benefit from a increasing se-
lectivity because for each found pair the index of both sets
is increased. We achieve speedups from 2.4x to 5.3x com-
pared to the best performing of the two considered scalar
implementations at each measuring point.

We obtain similar results for the 16-bit sorted set intersec-
tion shown in Figure 7. Again, our parallel merge algorithm
is always faster than both scalar algorithms. The average
execution time of SIMD16 was 16ms and only 9ms for 100%
selectivity. Since SIMD16 proceeds in almost each itera-
tion by 8 elements, the speedups are lower than achieved by
SIMD8. Nevertheless, SIMD16 is 2.2x up to 4.8x faster than
the scalar algorithms (always considering the better runtime
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Figure 9: Varying the domain for sorted-set inter-
section of sets with 32,768 elements and 32-bit in-
teger values. The higher the domain of the integer
values is, the fewer values share the same upper 16
bits.

of both scalar algorithms). In summary, the speedups of
both parallel algorithms differ from the theoretical speedups
(c.f. Section 3.2) because of the additional overhead for the
result permutation and higher latency of the PCMPESTRM in-
struction compared to a traditional compare instruction.

In the next experiment, we compared the two scalar 32-bit
algorithms with our two parallel 32-bit algorithms, SIMD32
and SIMD32-H. We varied the selectivity from 0% to 100%.
The results—shown in Figure 8—are similar to the results of
the previous experiments. Also here, our parallel algorithms
outperform the two scalar algorithms. However, Branch has
nearly the same execution time as SIMD32 for 95% selec-
tivity and is even slightly faster at 100% selectivity. Be-
cause of the pre- and post-processing overhead of SIMD32,
the execution time of the parallel algorithms differs in av-
erage by 13ms. In other words, SIMD32-H is 1.8x faster
than SIMD32. Furthermore, SIMD32-H is only about 1.5ms
slower than SIMD16 indicating that the overhead for the
two-level data layout is negligible.

In the last experiment, we varied the domain of the in-
teger values being intersected. While in the previous ex-
periments we used a relatively small domain for sets with
a large number of elements, we will now proceed the other
way around. Figure 9 illustrates the results for the intersec-
tion of 32,768 values for a domain ranging from 64k values
up to 2 billion values. The increasing domain has nearly
no effect on the scalar intersection algorithms. The slight
increase of their execution times from 64k values to about
256k values (note the log scale) results from the higher selec-
tivity for this domain. As shown by the other experiments,
the scalar versions benefit from a higher selectivity. For a
domain larger than 256k values, the selectivity gets smaller
than 1%. The execution time of the parallel algorithms in-
creases for a growing domain because the average number of
values in a subset decreases. This again leads to a smaller
positive effect of the full comparison. Nevertheless, the ex-
ecution time deteriorates only for very large domains that
are probably not typical for realistic datasets. SIMD32 is
faster than the scalar algorithms as long there are 18 values
per subset. SIMD32-H is even better; only for subsets with
fewer than 12 values per subset it is slower than the scalar
versions.



5. CONCLUSION
In this paper, we presented parallel sorted-set intersec-

tion algorithms that are based on STTNI of Intel SSE 4.2.
Three of the algorithms use sorted sets consisting of un-
compressed integer values as input and output; they differ
only in the precision (8-bit, 16-bit, and 32-bit) of the inte-
gers they process. Since the 32-bit variant requires pre- and
post-processing of the integer values, we provide a hierarchi-
cal data layout that avoids such overhead during the inter-
section process. Our experiments indicate high speedups up
to 5.3x of our parallel sorted-set intersection algorithms over
highly efficient scalar counterparts. We believe that many
algorithms in query processing, frequent-itemset mining, or
information retrieval—in which set intersection accounts for
a large part of the overall execution time—could benefit from
our proposed approach. In future work, we want to investi-
gate the combination with adaptive intersection algorithms
and parallel compression techniques [21].
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