
Fast Splittable Pseudorandom Number Generators
Guy L. Steele Jr.

Oracle Labs
guy.steele@oracle.com

Doug Lea
SUNY Oswego

dl@cs.oswego.edu

Christine H. Flood
Red Hat Inc

chf@redhat.com

Abstract
We describe a new algorithm SPLITMIX for an object-
oriented and splittable pseudorandom number generator
(PRNG) that is quite fast: 9 64-bit arithmetic/logical opera-
tions per 64 bits generated. A conventional linear PRNG ob-
ject provides a generate method that returns one pseudoran-
dom value and updates the state of the PRNG, but a splittable
PRNG object also has a second operation, split, that replaces
the original PRNG object with two (seemingly) independent
PRNG objects, by creating and returning a new such object
and updating the state of the original object. Splittable PRNG
objects make it easy to organize the use of pseudorandom
numbers in multithreaded programs structured using fork-
join parallelism. No locking or synchronization is required
(other than the usual memory fence immediately after ob-
ject creation). Because the generate method has no loops or
conditionals, it is suitable for SIMD or GPU implementation.

We derive SPLITMIX from the DOTMIX algorithm of
Leiserson, Schardl, and Sukha by making a series of pro-
gram transformations and engineering improvements. The
end result is an object-oriented version of the purely func-
tional API used in the Haskell library for over a decade, but
SPLITMIX is faster and produces pseudorandom sequences
of higher quality; it is also far superior in quality and speed
to java.util.Random, and has been included in Java JDK8
as the class java.util.SplittableRandom.

We have tested the pseudorandom sequences produced
by SPLITMIX using two standard statistical test suites
(DieHarder and TestU01) and they appear to be adequate
for “everyday” use, such as in Monte Carlo algorithms and
randomized data structures where speed is important.
Categories and Subject Descriptors G.3 [Mathematics
of Computing]: Random number generation; D.1.3 [Soft-
ware]: Programming techniques—Concurrent programming
General Terms Algorithms, Performance
Keywords collections, determinism, Java, multithreading,
nondeterminism, object-oriented, parallel computing, pedi-
gree, pseudorandom, random number generator, recursive
splitting, Scala, spliterator, splittable data structures, streams
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’14, October 20–24, 2014, Portland, OR, USA.
Copyright c© 2014 ACM 978-1-4503-2585-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2660193.2660195

1. Introduction and Background
Many programming language environments provide a pseu-
dorandom number generator (PRNG), a deterministic algo-
rithm to generate a sequence of values that is likely to pass
certain statistical tests for “randomness.” Such an algorithm
is typically described as a finite-state machine defined by
a transition function τ , an output function µ, and an ini-
tial state (or seed) s0; the generated sequence is zj where
sj = τ(sj−1) and zj = µ(sj) for all j ≥ 1. (An alternate
formulation is sj = τ(sj−1) and zj = µ(sj−1) for all j ≥ 1,
which may be more efficient when implemented on a super-
scalar processor because it allows τ(sj−1) and µ(sj−1) to
be computed in parallel.) Because the state is finite, the se-
quence of generated states, and therefore also the sequence
of generated values, will necessarily repeat, falling into a cy-
cle (possibly after some initial subsequence that is not re-
peated, but in practice PRNG algorithms are designed so as
not to “waste state,” so that in fact any given initial state s0
will recur). The length L of the cycle is called the period of
the PRNG, and si = sj iff i ≡ j mod L.

Characteristics of PRNG algorithms and their implemen-
tations that are of practical interest include period, speed,
quality (ability to pass statistical tests), size of code, size of
data (some algorithms require large tables or arrays), ease
of jumping forward (skipping over intermediate states), par-
tionability or splittability (for use by multiple threads operat-
ing in parallel), reproducibility (the ability to run a program
twice from a specified starting state and get exactly the same
results, even if parallel computation is involved), and unpre-
dictability (how difficult it is to predict the next output given
preceding outputs). These characteristics trade off, and so
different applications typically require different algorithms.

A linear congruential generator (LCG) [13, §3.2.1] has
as its state a nonnegative integer less than some modulus M
(which is typically either a prime number or a power of 2);
the transition function is τ(s) = (a · s + c) modM and
the output function is just the identity function µ(s) = s.
The Unix library function rand48 uses this algorithm with
a = 25214903917 = 0x5DEECE66Dull, c = 11 = 0xB,
and M = 248. Ever since the original JavaTM Language
Specification [10] in 1995, the class java.util.Random

has been specified to use this same algorithm (see Figure 1).
This code is simple, concise, and adequate for its originally
intended purpose: to supply pseudorandomly generated val-
ues to be used relatively infrequently by a smallish number
of concurrent threads running within a set-top box or web

453

public class Random {

protected long seed;

public Random() {

this(System.currentTimeMillis()); }

public Random(long seed) { setSeed(seed); }

synchronized public void setSeed(long seed) {

this.seed = (seed ^ 0x5DEECE66DL)

& ((1L << 48) - 1); }

synchronized protected int next(int bits) {

seed = (seed * 0x5DEECE66DL + 0xBL)

& ((1L << 48) - 1);

return (int)(seed >>> (48 - bits)); }

public int nextInt() { return next(32); }

public int nextLong() {

return ((long)next(32) << 32) + next(32); }

public double nextDouble() {

return (((long)next(26) << 27) + next(27))

/ (double)(1L << 53); }

}

Figure 1. The essence of java.util.Random

browser. It has a number of drawbacks, however, that make
it inappropriate for use in “serious” applications: (1) Its short
period (consider that 248 nanoseconds is less than 80 hours).
(2) While the rand48 algorithm was considered to be of rel-
atively high quality when introduced in 1982 [28], more re-
cent tests [17] have uncovered significant flaws in its statis-
tical behavior. (3) While it is thread-safe, thanks to its use
of synchronization locks, it is not thread-efficient: if many
threads share a single instance of Random, then contention
for the lock may become a performance bottleneck. (4) On
the other hand, if many instances of class Random are cre-
ated, one for each thread, there is no guarantee that the val-
ues collectively generated by those many instances will be as
statistically pseudorandom as if they had been generated by
a single instance of class Random. (If 256 threads each have
a Random object with its initial seed chosen at random, and
then each thread generates 232 values, it is more likely than
not, thanks to the Birthday Paradox, that two of the gener-
ated sequences will have some overlap.)

Another kind of finite-state machine used for this purpose
is the linear feedback shift register (LFSR), in which the
state is a vector of bits contained in a shift register; the tran-
sition function shifts the register by one position, shifting in
a new bit value that is computed as a fixed linear function of
the current vector (typically the exclusive OR of specific bits
of the vector), and the output function provides the bit that
was shifted out. This arrangement provides a stream of bits,
which may then be chunked into groups of, say, 32 or 64
consecutive bits to produce a sequence of integers. In soft-
ware, it may be more convenient for code to execute multiple
steps of the LFSR algorithm in one shot to produce a multibit
output all at once. Marsaglia’s XORWOW algorithm [22] is a
hybrid that uses both an Xorshift method (which is provably
equivalent to an LFSR [4]) and an LCG with a = 1:

unsigned long xorwow() {

static unsigned long

x=123456789, y=362436069, z=521288629,

w=88675123, v=5783321, d=6615241;

unsigned long t=(x^(x>>2));

x=y; y=z; z=w; w=v; v=(v^(v<<4))^(t^(t<<1));

return (d+=362437)+v; }

The period of XORWOW is pretty good (232(2160 − 1) =
2192 − 232), and generation of one 32-bit value requires just
9 arithmetic operations: 3 shifts, 4 XORs, and 2 adds. (There
are also a number of assignment operations, which could be
optimized away in the context of a suitably unrolled loop.)
Unfortunately, while XORWOW is also fairly fast, very recent
testing [29] has also revealed statistical flaws.

There are other PRNG algorithms with much longer pe-
riod that produce sequences of much higher quality, but they
are slower. These include the Mersenne Twister [23], which
is related to LFSR algorithms in relying on bit-shifting and
bitwise operations, and MRG32k3a [9], which is related to
LCG algorithms in relying on computation of linear formu-
lae modulo prime numbers. There are also many PRNG algo-
rithms, such as those in java.security.secureRandom,
that produce pseudorandom sequences of superb quality,
suitable for use in cryptographic and security applications,
but their algorithms are substantially slower.

The algorithms we have described so far are sequential
(single-threaded), but there is a need for algorithms that are
effective in a parallel (SIMD or multi-threaded) computing
environment. One approach is to partition the cycle of an
otherwise sequential PRNG algorithm. This is simple if there
is a cheap way to “jump forward” n steps from any given
state s by using some computational shortcut to compute
τn(s). (For example, if τ(s) = (a ·s) modM then τn(s) =
(an modM) · s modM , and it may be possible to compute
(or precompute) an modM cheaply.) This approach works
well when the number of threads N to be used is known
at the start of a computation: if a PRNG has period L, then
a global initial state s0 is chosen and then the PRNG for
thread i is given initial state τ ib

L
N c(s0). The MRG32k3a

algorithm does have a good shortcut for jumping ahead (it
requires precomputation of two 3×3 matrices), and there is a
software package RngStream that uses such jumping ahead
for partitioning its cycle into streams and substreams [19].

On the other hand, some applications are organized in
such a way that new threads may be created dynamically,
where any thread may choose to spawn one or more new
threads at any time. To avoid synchronization overhead, it
is desirable for an existing thread to be able to initialize the
PRNG state for a new thread without having to communicate
with any other thread and without having to update any
shared global data structure; ideally it should need to update
only the state of its own PRNG instance. In effect, any thread
can turn one PRNG instance into two; a PRNG algorithm that
can accommodate this requirement is said to be splittable.

454

One can imagine constructing a splittable PRNG from a
partitionable PNRG as follows: when a thread is created, it
is given a tuple (s, l) to remember—this defines a portion
of the PRNG cycle of length l starting from state s—and
then uses s as the initial state for its own PRNG. (For the
initial thread, l = L, the period of the PRNG.) When an
existing thread t having tuple (s, l) spawns a new thread u,
then it cuts its allotted portion in half and gives the other
half to u: thread t computes h =

⌊
l
2

⌋
, replaces its own

tuple (s, l) with (s, h), and then gives new thread u the tuple
(τh(s), l− h). This idea could be applied to the RngStream
package: while its API allows only sequential generation of
its multiple streams, it could easily be extended to allow a
set of multiple streams to be split in half instead (this would
require the precomputation of a table of 192 pairs of 3 × 3
matrices, one for each power of 2 smaller than its period).

This works well if the tree of tasks induced by task
spawning is balanced (more precisely, if it does not get too
deep). But some applications may, depending on the data be-
ing processed, produce task trees that have long left spines
or are otherwise very deep. A strategy that repeatedly splits
a discrete resource of size L in half will run out of steam
after log2 L splits; for MRG32k3a, that’s only 192 splits.

Another idea is to take a small risk: instead of guarantee-
ing that different threads use different parts of the cycle, one
can settle for making it highly likely that different threads use
different parts of the cycle, by choosing the initial state for
the PRNG of a new thread “randomly” [6]; the pitfall is that if
cycle portions used by two threads do accidentally overlap,
then their sequences become highly correlated.

The Haskell standard library System.Random provides
an API and implementation for a splittable, pure PRNG:

data StdGen = StdGen Int32 Int32

stdNext :: StdGen -> (Int, StdGen)

stdSplit :: StdGen -> (StdGen, StdGen)

The generator state StdGen is simply a pair of integers; the
function stdNext takes a state and returns a pair of a gener-
ated value and a new state—in other words, given state s it
returns (µ(s), τ(s))—while the function stdSplit takes a
state and returns a pair of states that may thenceforward be
used independently. The API is beautiful; the implementa-
tion turns out to have a severe flaw (see Section 7).

We are interested in splittable random number generators
that are easy to use in multithreaded settings where the shape
of the task tree is unpredictable, are quite fast, and have
aggregate statistical properties of sufficiently good quality
for “everyday use,” by which we mean not only randomized
data structures but also Monte Carlo algorithms for machine
learning and scientific simulation. We want to integrate these
algorithms into the streams framework of Java JDK8, which
supports the processing of collections of data in a functional
map/reduce style. For example, we would like the expression

prng.doubles(n).parallel().map(x->x*x).sum()

to compute the sum of the squares of n pseudorandomly
chosen double values in the range [0, 1), and to do so ef-
ficiently, using parallel computational resources if possible.
We care about reproducibility but not unpredictability.

We present two parallel PRNG algorithms. The first is a
highly optimized version of the pedigree-based DOTMIX
algorithm of Leiserson, Schardl, and Sukha [20] that we
believe is interesting and useful in its own right and may
serve as an alternate jumping-off point for further research.
We present an early version of this algorithm in Scala, and
further refined versions of it in Java. The second algorithm,
SPLITMIX, was inspired by the first, but makes no use of
pedigrees, dot products, or tables of coefficients.

A specific 64-bit instantiation of this novel SPLITMIX de-
sign (a principal contribution of this paper) is presented in
Section 3, but it is far from obvious that such a simple ap-
proach to generating values and splitting objects is a good
one. Therefore we first explain in Section 2 how we derived
this design by a stepwise refinement of the DOTMIX algo-
rithm that included one or two leaps of faith requiring after-
the-fact analysis and testing; the details of this process are
the other principal contribution of this paper. This includes
an improved use of avalanche statistics to select good mix-
ing functions, and an understanding of why the avalanche
statistics cannot (or should not) be improved past a partic-
ular point; we discuss this in Section 4. We present quality
measurements of SPLITMIX in Section 5 and speed mea-
surements in Section 6, discuss related work in Section 7,
and offer conclusions and future work in Section 8.

2. Derivation of the SPLITMIX Algorithm
We were inspired by the 2012 PPoPP paper of Leiserson,
Schardl, and Sukha [20] (hereafter “LSS”). We summarize
their idea here and discuss other related work in Section 7.

Assume a fork-join framework for parallel tasks, in which
each task performs a sequence of actions. There are three
kinds of actions: generate a pseudorandom value, spawn
(that is, fork) a child task, and sync with (that is, join)
a previously spawned child task. Except for the causality
constraints implied by forking and joining, tasks execute
freely in parallel. Initially there is a single root task.

Each task has some local state, namely an integer counter
and a pointer to its parent task (the task that spawned it); the
root task has a null parent pointer. The algorithm described
by LSS takes certain steps to maintain this state at each gen-
erate, spawn, and sync action; this three-way division of la-
bor was chosen so as to minimize overhead for tasks that
do not generate random numbers. We present a simplified
reformulation of their idea here that requires state mainte-
nance only during generate and spawn actions; therefore in
the remainder of this paper we need not discuss the detailed
behavior of sync actions any further, and we speak generally
of only two kinds of action, generate and spawn.

If we identify each task other than the root with the
action that spawned it, we have a tree whose internal nodes

455

Figure 2. Tree of tasks and generated numbers

are tasks; all generate actions are leaves of this tree. (If a
spawned task happens to perform no actions, it will also be
a leaf.) Figure 2 shows such a tree. Task A is the root task; it
performs four actions generate, spawn, spawn, generate (in
that order). Task B is the first task spawned by task A, and
it performs three generate actions. Task C is the second task
spawned by task A, and it performs a spawn and a generate.
Task D is the task spawned by task C, and it performs three
generate actions. In the figure, the edges connecting each
task to its actions are numbered sequentially starting from 1.

LSS observe that every action in such a tree has a unique
pedigree, the sequence of edge labels on the path within the
tree from the root task down to the action. As examples,
the second value “74” generated by task B has pedigree
〈2, 2〉, the first value “4D” generated by task D has pedigree
〈3, 1, 1〉, and the pedigree of the last value “81” generated
by task A has pedigree 〈4〉. Their idea is that every generate
action can produce a value by hashing its pedigree. They
describe more than one way of doing this, but we focus on
their “DOTMIX” technique, which hashes a pedigree in two
steps: (1) compute the dot product of the pedigree (regarded
as a vector) with a vector of random coefficients, then (2)
apply a bijective “mixing function” µ to the result. We also
adopt their suggestion of adding a seed value σ to the dot
product before applying the mixing function.

The calculation of the dot product and the addition of σ
to the result must be done modulo a prime p. For a com-
puter with a word width of w bits, LSS choose p to be the
largest prime less than m = 2w. Assume that every element
jk of a pedigree satisfies 1 ≤ jk < p and every random
coefficient γi satisfies 1 ≤ γk < p. The sum of σ and the
dot product (modulo p) lies in the range [0, p) and so can be
treated as aw-bit binary value (because p < 2w), from which
the mixing function µ can produce a w-bit result. A generate
action having pedigree 〈j1, j2, . . . , jD〉 therefore computes
µ
((
σ +

∑D
k=1 γkjk

)
mod p

)
. LSS present a proof that if

the γi are chosen uniformly at random from the range [0, p)
then the probability that two distinct pedigrees will produce
the same dot-product value is 1/p. A specific version pre-
sented by LSS uses a fixed table of 64-bit coefficients γi
(chosen by some random or pseudorandom process) and
uses p = 264 − 59 (we shall call this prime number “Fred”).

LSS then note that while the dot-product formula effec-
tively hashes pedigrees into the range [0, p) with a small
probability of collision, nevertheless two similar pedigrees
may produce “similar” hash values, whereas we would pre-
fer them to be statistically “dissimilar”; the mixing function
is intended to address this point. LSS use a mixing func-
tion based on the RC6 block cipher [27], namely µ(z) =
f(f(f(f(z)))) where f(z) = φ((2z2 + z) mod m) and
φ(x) is the function that swaps the two halves of a w-bit
word x (for even w); if w = 64, then a standard “rotate left
32” instruction does the job. Thus f is easily calculated on
most computers using four operations (one of them an inte-
ger multiply), and so calculating µ requires 16 instructions.

LSS describe an implementation of the DOTMIX algo-
rithm as part of MIT Cilk 5.4.6, a programming language
and runtime that support fork-join parallelism, and present
and measure a sample Cilk program that uses pseudorandom
sequences generated by this algorithm. They also describe a
technique for using “scoped” pedigrees so as to allow a sub-
computation that uses pseudorandom values to be executed
more than once in such a way that the multiple runs generate
exactly the same random values, even though corresponding
actions in the subcomputations would of course have distinct
pedigrees globally. Such a facility allows for controlled and
repeatable testing of the code for such subcomputations.

Computing a dot product involves following the chain
of parent pointers from the current task to the root task
(or to the limit of the pedigree scope); the counter values
found along the way are the pedigree. LSS remark that dot
products can be computed incrementally and report that they
tried “memoizing” portions of the dot-product calculations
to allow generate operations to be performed in time O(1)
rathe than O(d) (where d is the length of the pedigree), but
did not see any speed benefit in practice [20, §8].

We derive a series of algorithms from DOTMIX by step-
wise refinement. Our final SPLITMIX algorithm is discussed
in detail in Section 2.4; before that, Sections 2.1, 2.2, and
2.3 present three intermediate points in the refinement pro-
cess (in part because these algorithms are plausible alternate
points of departure for future work).

2.1 An Implementation in Scala
We set out to implement the DOTMIX algorithm within the
framework of the Scala programming language [24], both
to obtain the stylistic benefits of the DOTMIX approach and
to see whether we could identify any useful improvements.
(Our earliest prototype was actually done within the runtime
system for Fortress [1], for which language the LSS design
seemed ideal.) Our idea was to extend the Scala App class
(which conveniently provides access to certain programming
facilities in a way that Java does not), so that a main pro-
gram need only extend our new library class ParallelApp
in order to have available (1) a parallel construct that
would evaluate two expressions in parallel, and (2) opera-
tions such as nextLong() and nextDouble() for obtaining

456

import ParallelRNG.ParallelApp

object ScalaPiCalc extends ParallelApp {

def tries(n: Int): Int = {

var count: Int = 0

for (k <- 0 until n) {

val x = nextDouble()

val y = nextDouble()

if (x*x + y*y < 1.0) count += 1

}

count

}

val iters = 1000000000

var xtime: Long = 0

for (j <- 0 to 9) {

val basetime = System.nanoTime()

val result = (tries(iters) * 4.0) / iters

xtime += (System.nanoTime() - basetime)

println("Result: " + result) }

println("Total time: " + xtime)

}

Figure 3. Monte Carlo approximation of π in Scala

def tries(n: Int): Int = {

if (n < 1000000) {

var count: Int = 0

for (k <- 0 until n) {

val x = nextDouble()

val y = nextDouble()

if (x*x + y*y < 1.0) count += 1

}

count

} else {

val h = n >>> 1

val (p, q) = parallel(tries(h),

tries(n-h))

p+q

}

}

Figure 4. Parallel-sequential approximation of π in Scala

pseudorandomly generated values. Figure 3 shows a typi-
cal simple application: Monte Carlo calculation of approx-
imate values for π by sequentially choosing random points
uniformly within a unit square and counting how many fall
within a quarter-circle of unit radius. The code also contains
timing instrumentation and reporting. Figure 4 shows an al-
ternate definition for the tries method of Figure 3 that re-
cursively splits each request into two parallel tasks until the
number of requested iterations is less than 1000000. Calling
nextDouble() generates a pseudorandom Double value,
chosen uniformly from the range [0.0, 1.0), using implicitly
maintained local task state; all that is needed to execute two
expressions p and q in parallel is to say parallel(p, q).

The code for our library is shown in Figures 5–10. We
made ten changes to the DOTMIX algorithm:

object Rand {

val signbit = 0x8000000000000000L

def unsignedGE(x: Long, y: Long) =

((x ^ signbit) >= (y ^ signbit))

def update(dotp: Long, gamma: Long) = {

val result = dotp + gamma

if (unsignedGE(result, dotp)) result

else (if (unsignedGE(result, 13L)) result

else result + gamma) - 13L }

def mix64(x: Long): Long = {

var z = x

z = (x ^ (x >>> 33)) * 0xff51afd7ed558ccdL

z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L

z ^ (z >>> 33) }

val longs = Array(/ Random 64-bit values

0x14CBB762934FA47FL, 0xA7224BC18A26FD10L,

0xF2281E2DBA6606F3L, 0xBD24B73A95FB84D9L,

... // 1024 entries in all

0x91673D71CFCAA9A1L, 0xBBD6771B9BA86215L)

}

Figure 5. Utility routines in object Rand

trait AnyTask {

val depth: Int

val gamma: Long

var dotProd: Long

def newChild[T](x: =>T): Task[T]

def next64Bits(): Long }

Figure 6. Scala task trait containing PRNG state

[1] Every task maintains a count of its actions (LSS call this
the rank); we increment this counter at the start of every
action (LSS do this incrementation at other points in the
computation, which causes sync operations to get involved).
[2] Instead of adding the seed σ after calculating the dot
product, we use σ to initialize the accumulator for the dot
product calculation; this enables inclusion of σ in common
subexpressions. From now on, when we speak of the “dot
product” we will mean a value that already incorporates σ.
[3] Rather than memoizing dot products in a cache, we apply
common-subexpression elimination and strength reduction.
Each task retains in its local state the most recent dot product
σ+
∑D
k=1 γkjk it computed; to compute the next dot product

after incrementing jD, the task need only add γD to the
previous dot product value. This improves speed greatly.
[4] When a task spawns a child task, it first computes a new
dot product exactly as if it were going to perform a generate
action. It then sets the child’s counter to 0 and its dot product
equal to its own new dot product value. A routine inductive
proof shows that when the child then proceeds to calculate a
new dot product of its own, the correct value is produced.
[5] Each task uses exactly one of the random coefficicents,
namely γD where D is the depth of the task in the tree.
Instead of repeatedly fetching γD from the table, we made
each task cache γD as part of its local state when it is created.

457

[6] The consequence of previous changes is that no action
actually uses the local counters! Therefore the counters can
be eliminated. Rather then maintaining the pedigree explic-
itly, the algorithm maintains dot products directly.
[7] At this point, the only use of the parent pointer is to
calculate the depth D of the task. We eliminate the parent
pointer and introduce a local variable in each task to track
its depth. When a task spawns a child task, it sets the child’s
depth to 1 more than its own depth.
[8] After all these changes, measurements showed that the
mixing function was now taking a substantial fraction of the
total time for a generate action. We searched for cheaper
mixing functions. LSS reported that µ(z) = f(f(f(f(z))))
is an adequate mixing function but µ(z) = f(f(z)) is not
(as determined by using the DieHarder [5] test suite to test
the resulting pseudorandom sequences). Curiously, LSS did
not report also trying µ(z) = f(f(f(z))), so we tested it
and found it adequate, using 12 instructions instead of 16.
Then we searched the literature for other bit-mixing func-
tions and found the MurmurHash3 64-bit finalizer [2], iden-
tified by Austin Appleby using a simulated-annealing algo-
rithm designed to find mixing functions with good avalanche
statistics. (We discuss this idea in detail in Section 4.) The
MurmurHash3 finalizer needs only 8 arithmetic/logical op-
erations and seems to be adequate as a mixing function in
the DOTMIX algorithm. The 14 variants identified by David
Stafford [33] also seem to work well for this purpose.
[9] We noticed an aesthetic flaw in DOTMIX: Because arith-
metic for the dot product is performed modulo p and p < m,
there are some 64-bit values that are never generated, namely
µ(z) for p ≤ z < m. For m = 264 and p = Fred, 59 of the
possible 264 64-bit values cannot occur. This is a relatively
tiny nonuniformity, unlikely to be picked up by statistical
tests, yet it bothered us. Then we realized that there were
two principal reasons for choosing p < m: (i) if p > m then
arithmetic calculations mod p, especially multiplication, are
much more difficult to implement using w-bit arithmetic;
and (ii) if p > m then not all arithmetic results can be repre-
sented in w bits. But we can overcome both of these reasons:
(i) Thanks to the strength reduction optimization, we no
longer perform any multiplications mod p, and addition mod
p is not so difficult even if p > m; and (ii) we don’t really
care about generating all p possible values—we just want dot
product values likely to be different—so if we ever calculate
a dot product that is not representable, we simply discard it
and try again. If we calculate p dot products successively,
necessarily generating all p values in the range [0, p), then
p−m values (those not less thanm) will be discarded andm
values will be accepted, and so we will have generated every
value in the range [0,m) exactly once. Therefore our Scala
implementation performs its dot-product arithmetic modulo
George = 264 + 13.1 Moreover, if we ensure that no γi is
smaller than p − m (which is almost surely true anyway if
1 At least one of us likes to call two primes “magical twins” if there is no
other prime number between them but there is a power of 2 between them.

the γ values are chosen randomly) then it is never necessary
to “try again” more than once, so we need only a conditional,
not a loop, in the code that computes new dot products. We
believe that this use of an unrepresentable prime modulus in
a PRNG is a theoretical novelty.
[10] We found a simpler way to provide the “scoped pedi-
gree” functionality described by LSS: a construct to spawn
a new task such that the user, rather than the spawning task,
provides the initial value for the dot product. The Scala con-
struct withNewRNG(seed) { body } executes the body in
a new task whose dot product has been initialized to seed
and then immediately does a join with that new task. Unlike
the LSS scoped pedigree approach, withNewRNG does not
allow any given task to access more than one generator at a
time, but an advantage is that there is no need for user code
to explicitly manipulate data structures describing the scope.
We believe that this technique is also novel.

In Figure 5, the method unsignedGE compares Long

values as if they were bit representations of unsigned 64-bit
values (an extremely clever compiler would compile this to a
single unsigned-compare machine instruction). The method
update uses arithmetic modulo George to add gamma to
dotp once, or twice if necessary, to produce a new value
representable in 64 bits. The method mix64 implements the
MurmurHash3 64-bit finalizer function [2]. The array longs
is a table (shown here only in part) of 1024 “truly random”
values obtained from HotBits [35].

Figure 6 declares a Scala trait AnyTask, which abstractly
defines the local state of a task (fields depth, gamma, and
dotProd) and methods for calculating the next dot product,
spawning a child task, and generating 64 pseudorandom bits.

Figures 7 and 8 contain necessary plumbing to extend
Scala’s existing task-pool framework so that every worker
thread will keep track of which task it is currently running.
The last two methods of the Par object in Figure 8 define
the parallel and withNewRNG constructs. Each is defined
using parametric types, so that the result type of parallel
is a tuple of the types of the two argument expressions, and
the result type of withNewRNG is the type of its body.

Figure 9 declares a type-parametric Scala class Task[T]
(a task that computes a result of type T) that extends the
existing Scala class RecursiveTask[T] as well as the
trait AnyTask declared in Figure 8. The method compute

is invoked by the Scala task-pool infrastructure when the
task is executed by a worker thread; it computes the body

of the task after using Par.setCurrentTask to save the
current task in the local state of the thread. The method
runUsingForkJoinThread is called by the Par.parallel
method declared in Figure 8 to cause this task to be exe-
cuted by some worker thread for the task pool. The method
next64Bits is used to compute 64 new pseudorandom
bits; it simply computes the next dot product and gives
the result to method Rand.mix64 of Figure 5. The method
nextDotProd computes a new dot product from its local
dotProd and gamma state variables by using the method

458

import scala.concurrent.forkjoin._

import scala.concurrent.forkjoin.ForkJoinPool._

class TaskForkJoinWorkerThread(group: ForkJoinPool)

extends ForkJoinWorkerThread(group: ForkJoinPool) { var task: AnyTask = null }

class TaskForkJoinPool(parallelism: Int, factory: TaskForkJoinWorkerThreadFactory)

extends ForkJoinPool(parallelism: Int, factory: ForkJoinWorkerThreadFactory) {}

class TaskForkJoinWorkerThreadFactory

extends ForkJoinWorkerThreadFactory {

def newThread(group: ForkJoinPool) = new TaskForkJoinWorkerThread(group) }

Figure 7. Scala threads and thread pools extended to hold tasks that contain PRNG state

object Par {

def nprocs =

Runtime.getRuntime().availableProcessors()

val taskPool: TaskForkJoinPool =

new TaskForkJoinPool(nprocs,

new TaskForkJoinWorkerThreadFactory())

def getCurrentTask(): AnyTask = {

Thread.currentThread() match {

case cur: TaskForkJoinWorkerThread =>

cur.task

case _ => throw new ClassCastException } }

def setCurrentTask(t: AnyTask) = {

Thread.currentThread() match {

case cur: TaskForkJoinWorkerThread =>

cur.task = t

case _ => } }

def parallel[T,U](f: =>T, g: =>U): (T,U) = {

val t: Task[T] =

Thread.currentThread() match {

case cur: TaskForkJoinWorkerThread =>

cur.task.newChild(f)

case _ => new Task(f, 0, 0L, 0L) }

t.runUsingForkJoinThread()

val v: U = g

(t.join(), v) }

def withNewRNG[T](seed: Long)(f: =>T): T = {

val newThread =

new Task[T](f, 1, Rand.longs(1), seed)

newThread.runUsingForkJoinThread()

newThread.join() }

}

Figure 8. Scala PRNG task utility routines

Rand.update of Figure 5; it stores the result back in
dotProd and then returns it. The method newChild makes
a new child task, using a depth one greater than its own, the
gamma value from the Rand.longs table corresponding to
that new depth, and a newly computed dot product. Problem:
what to do if the depth exceeds the length of the table? In
this implementation, we just let it wrap around modulo the
length of the table, which in principle disrupts the proof that
collisions will be unlikely, but in practice may be acceptable,
especially if the table is fairly large (1024 should be plenty
for applications that do relatively balanced task splitting).

import scala.concurrent.forkjoin.RecursiveTask

class Task[T](body: =>T,

val depth: Int,

val gamma: Long,

var dotProd: Long)

extends RecursiveTask[T] with AnyTask {

def compute(): T = {

Par.setCurrentTask(this)

body }

def runUsingForkJoinThread() = {

if (Thread.currentThread

.isInstanceOf[ForkJoinWorkerThread])

this.fork()

else Par.taskPool.execute(this) }

override def next64Bits(): Long =

Rand.mix64(nextDotProd())

override def nextDotProd(): Long = {

dotProd = Rand.update(dotProd, gamma)

dotProd }

override def newChild[T](x: =>T): Task[T] = {

val d = (depth + 1) % Rand.longs.length

new Task(x, d, Rand.longs(d), nextDotProd())

}

}

Figure 9. New task type for maintaining PRNG state

Figure 10 declares a Scala class ParallelApp that ex-
tends the existing Scala class App. Instances of App simply
execute their bodies; ParallelApp arranges to make a few
extra facilities available during such execution. The methods
parallel and withNewRNG simply forward their arguments
to the corresponding methods of object Par in Figure 8. The
method nextLong() uses Par.getCurrentTask() to re-
trieve the current task from the current worker thread and
calls its next64Bits method; the methods nextInt()and
nextDouble() make use of nextLong(). Method main is
the interface that causes the body of an instance of App to be
run; the override in class ParallelApp causes a new ran-
dom number generator task to be established first. Method
initialSeed chooses the initial seed for this root task; it
attempts to use environmental information so as to make it
likely that distinct processes will compute distinct values for
this initialization value. (The details of this rather difficult
process do not concern us here.)

459

class ParallelApp extends App {

def parallel[T,U](x: => T, y: => U): (T,U) =

Par.parallel(x, y)

def withNewRNG[T](seed: Long)(f: => T) =

Par.withNewRNG(seed)(f)

def nextLong(): Long =

Par.getCurrentTask()

.asInstanceOf[AnyTask].next64Bits()

def nextInt(): Int = nextLong().toInt

val DOUBLE_ULP: Double = (1.0 / (1L << 53))

def nextDouble(): Double =

(nextLong() >>> 11) * DOUBLE_ULP

override def main(args: Array[String]) =

withNewRNG(initialSeed())(super.main(args))

def initialSeed(): Long = ...

}

Figure 10. Class for declaring parallel Scala applications

2.2 A 64-bit Implementation in Java
Next we constructed a version of the algorithm suitable for
the JavaTM programming language environment [11]. The
code for this class, Splittable64, is shown in Figures 11
and 12, We made six changes relative to the Scala version:
[1] A drawback of tying the PRNG state to tasks is that pro-
grams that use parallel tasks must pay the overhead of main-
taining the PRNG state even in parts of the program that are
not generating pseudorandom values. Also, we hoped to de-
velop an algorithm that might supersede the existing java.

util.Random facility. With the elimination of parent point-
ers and explicit pedigrees, there is no real need to keep the
task structure involved if we are willing to pass around ex-
plicit references to PRNG objects, as is already done in Java
with java.util.Random. Therefore our Java implementa-
tion is object-oriented rather than task-oriented.
[2] We then realized that if the spawn operation became a
method called split, PRNG objects could act as collections
in the JDK8 library framework, and a PRNG object could eas-
ily produce a spliterator [25] capable of delivering a stream
(of pseudorandom values) that could provide methods such
as map and reduce, and interact with streams produced by
other sorts of collections such as lists and hashmaps.
[3] We eliminated the use of unsigned compare operations
by adopting a change of representation: we regard the dot
product (but not the random coefficient) as being offset in its
nominal value by 0x8000000000000000. This allows us to
replace calls to the unsigned comparison unsignedGE with
uses of the Java signed comparison operator >=. (Java JDK8
includes a library of unsigned comparison operations, but we
do not yet know whether, or how soon, compilers will inline
these as single unsigned-compare machine instructions.)
[4] A drawback of our Scala implementation is that the table
of random coefficients has fixed size. We decided to use
pseudorandom coefficients, and to generate them on the fly
using a copy of the DOTMIX algorithm that always uses
pedigrees of length 1, and therefore needs only one “random

coefficient” γγ . This gets rid of the big table. (We must still
take care to ensure that such generated coefficients are not
smaller than 13, so that the update method that performs
arithmetic mod George will not require a loop.)
[5] At this point, speed measurements showed that the
update method was a large fraction of the time for a gen-
erate action. We further restricted the range of pseudoran-
domly generated coefficients so that they are substantially
smaller than 264: instead of using arithmetic mod George,
this calculation is performed modulo Percy = 256 − 5 to
produce a 56-bit value that is then mixed by a separate mix-
ing method mix56. Adding 13 to this result produces a co-
efficient that is still much smaller than 264 but not smaller
than 13. The point of using a small coefficient is that the ad-
dition in the first line of method update will overflow only
rarely and therefore the conditional expression nearly always
takes the first choice, avoiding further arithmetic. Moreover,
it makes that conditional test highly predictable, further in-
creasing speed on processors that do branch prediction.
[6] Like java.util.Random, Splittable64 provides two
public constructors. One takes a seed argument, and the
other takes no argument and provides a pseudorandomly
generated seed value. For the purpose of generating such
default seeds, a third copy of the algorithm is used, again
using arithmetic mod George.

Figure 11 declares a Java class Splittable64. It uses an
AtomicLong value called defaultGen for generating de-
fault seeds for the parameterless constructor. The update

and mix64 methods are identical in behavior to the Scala
versions in Figure 5, except that the Java version of update
assumes the offset representation for argument s and there-
fore uses signed comparisons. We have given nextDotProd

the new name nextRaw64, but its purpose is the same: to
produce 64 “raw” bits for input to the mixing function. The
(private) two-argument constructor takes the usual seed ar-
gument and also a seed for generating γ coefficients; the con-
structor adds γγ to this second seed (modulo Percy), applies
mix56 to the result, then adds 13 to produce the γ coefficient
for the new PRNG object. It also saves the updated γ seed in
its nextSplit field for use by its split method. Method
nextDefaultSeed similarly updates the defaultGen seed
(modulo George), using an atomic compareAndSet opera-
tion, then applies mix64 and returns that result.

Figure 12 shows the public methods of Splittable64.
The constructors are straightforward; each calls the pri-
vate constructor with appropriate arguments. The split

method calls nextRaw64 to produce a new dot product,
then creates a new SplittableRandom object with that
value and the saved value in nextSplit. The methods
nextLong, nextInt, and nextDouble are similar to their
Scala counterparts in Figure 10. Finally, the method longs

returns a stream of pseudorandom values of the specified
length; it does this by calling the Java JDK8 library method
StreamSupport.longStream and giving it a spliterator
(an instance of class RandomLongs) as its first argument.

460

public class Splittable64 {

private static final long

GAMMA_PRIME = (1L << 56) - 5, // "Percy"

GAMMA_GAMMA = 0x00281E2DBA6606F3L,

DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;

private static final double DOUBLE_ULP =

1.0 / (1L << 53);

private static final AtomicLong defaultGen =

new AtomicLong(initialSeed());

private long seed;

private final long gamma, nextSplit;

private static long update(long s, long g) {

// Add g to s modulo George.

long p = s + g;

return (p >= s) ? p

: (p >= 0x800000000000000DL) ? p - 13L

: (p - 13L) + g; }

private static long mix64(long z) {

z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;

z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;

return z ^ (z >>> 33); }

private static long mix56(long z) {

z = ((z ^ (z >>> 33)) * 0xff51afd7ed558ccdL)

& 0x00FFFFFFFFFFFFFFL;

z = ((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L)

& 0x00FFFFFFFFFFFFFFL;

return z ^ (z >>> 33); }

private long nextRaw64() {

return (seed = update(seed, gamma)); }

private Splittable64(long seed, long s) {

// We require 0 <= s < Percy

this.seed = seed;

s += GAMMA_GAMMA;

if (s >= GAMMA_PRIME) s -= GAMMA_PRIME;

this.gamma = mix56(s) + 13;

this.nextSplit = s; }

private static long nextDefaultSeed() {

long p, q;

do { p = defaultGen.get();

q = update(p, DEFAULT_SEED_GAMMA);

} while (!defaultGen.compareAndSet(p, q));

return mix64(q); }

// Public methods go here

}

Figure 11. Class Splittable64 and its private methods

The method longs consists of fairly standard “boiler-
plate” code for creating a new spliterator-based stream [25]
of pseudorandomly chosen long values that can poten-
tially be processed in parallel; similarly the method ints

produces a stream of pseudorandomly chosen int values,
and doubles produces a stream of pseudorandomly chosen
double values. As a simple example, if prng refers to an
instance of SplittableRandom, then the expression

prng.doubles(n).map(x->x*x).sum()

public Splittable64(long seed) {

this(seed, 0); }

public Splittable64() {

this(nextDefaultSeed(), GAMMA_GAMMA); }

public Splittable64 split() {

return new Splittable64(nextRaw64(),

nextSplit); }

public long nextLong() {

return mix64(nextRaw64()); }

public int nextInt() {

return (int)nextLong(); }

public double nextDouble() {

return (nextLong() >>> 11) * DOUBLE_ULP; }

public LongStream longs(long size) {

if (size < 0L)

throw new IllegalArgumentException();

return StreamSupport.longStream

(new RandomLongs(this, 0L, size),

false); }

// The next two methods are just like "longs"

public IntStream ints(long size) { ... }

public DoubleStream doubles(...) { ... }

Figure 12. Public methods of class Splittable64

will compute the sum of the squares of n pseudorandomly
chosen double values in the range [0, 1), and the expression

prng.doubles(n).parallel().map(x->x*x).sum()

will do so using parallel threads if available. The instance
of RandomLongs created by the longs method can supply
(to a given consumer of long values) a sequence of pseudo-
randomly chosen long values.

For completeness, we exhibit in Figure 13 a slightly sim-
plified version of the code for the spliterator RandomLongs;
its job is to apply a given consumer of long values to a
sequence of pseudorandomly chosen long values (methods
tryAdvance and forEachRemaining). The RandomLongs
spliterator, like any other spliterator, must also be prepared to
(try to) split itself into two such streams (method trySplit)
that can then be processed in parallel; when it does so, it also
splits the underlying instance of SplittableRandom so that
each substream will have its own PRNG rather than trying to
share the same one. As a result, if the two streams are then
processed in parallel, they do not contend for the use of a
single PRNG object; each has its own, and they may be used
independently. This eliminates the need for any locking or
other synchronization in the parallel execution of stream ex-
pressions that involve SplittableRandom objects. This is
a hallmark of the spliterator paradigm: for effective paral-
lel processing, objects are designed not to be shared among
tasks, but split across tasks. (The actual details of parallel
execution—thread management and so on—are handled by
the Java library code that implements streams and need not
concern us here.)

461

package java.util;

import java.util.function.LongConsumer;

import java.util.stream.StreamSupport;

import java.util.stream.LongStream;

static final class RandomLongs

implements Spliterator.OfLong {

final SplittableRandom prng;

long index; final long fence;

RandomLongs(SplittableRandom prng,

long index, long fence) {

this.prng = prng; this.index = index;

this.fence = fence; }

public RandomLongs trySplit() {

long i = index, m = (i + fence) >>> 1;

return (m <= i) ? null :

new RandomLongs(prng.split(), i,

index = m); }

public long estimateSize() {

return (fence - index); }

public int characteristics() {

return (Spliterator.SIZED |

Spliterator.SUBSIZED |

Spliterator.NONNULL |

Spliterator.IMMUTABLE); }

public boolean tryAdvance(LongConsumer c) {

if (c == null)

throw new NullPointerException();

long i = index, f = fence;

if (i < f) { c.accept(prng.nextLong());

index = i + 1; return true; }

return false; }

public void

forEachRemaining(LongConsumer c) {

if (c == null)

throw new NullPointerException();

long i = index, f = fence;

if (i < f) { index = f;

do { c.accept(prng.nextLong());

} while (++i < f); } }

}

Figure 13. Spliterator for generating pseudorandom 64-bit
long values (slightly simplified from actual JDK8 code)

We also remark on a subtle aspect of the semantic con-
tract for the split method: We do not guarantee that the set
of pseudorandom values produced by a pair of PRNG objects,
one split from the other, will be exactly the same set of val-
ues that would have been produced by a single unsplit PRNG
object; we promise only that the two sets will have similar
desirable statistical properties (thanks to the LSS proof about
the probability of dot-product collisions, backed up by em-
pirical testing). On the other hand, we have this guarantee
of reproducibility: if two PRNG objects are created with the
same initial state, and then the same series of method calls
is performed on those two PRNG objects, and an identical

series of method calls is performed on every pair of corre-
sponding PRNG objects recursively produced by calls to the
split method, then exactly the same pseudorandom values
will be produced.

2.3 A 128-bit Implementation in Java
The Splittable64 algorithm has at least two remaining
drawbacks. First, the period for any single PRNG object is
equal to the number of distinct values it can produce (264),
and therefore adjacent values are never, ever the same—
indeed, if you generate up to 264 values successively, there
will be no duplicates—so the behavior is not quite the same
as “truly random.” (On the other hand, many applications use
only a portion of each generated 64-bit value—in particular,
the generation of a 64-bit floating-point value uses only 53
bits—and so this drawback is often not serious in practice.)
Second, the fact that we reduced the range of random coeffi-
cients from [13, 264) to [13, 256+13) (in order to gain some
speed) undesirably increases the probability of dot-product
collisions. One way out is to increase the dot-product size
from 64 bits to 128 bits; then we can afford to decrease the
γ coefficient size from 128 bits to, say, 120 bits and still
have plenty of headroom on the probability of dot-product
collisions. The idea is straightforward, but the details are a
bit messy because Java does not have a primitive 128-bit in-
teger type. This, of course, provides ample opportunity for
additional engineering cleverness.

The 128-bit dot-product arithmetic is performed modulo
Arthur = 2128 + 51. The main new idea here is to choose
128-bit γ values that have 114 random bits represented in a
very specific way: as two 64-bit words, with the high-order
word having a value in the range [0, 254) and the low-order
word having a value in the range [51, 260 + 51).

To generate 114 random bits, we use a generator of 57-bit
results by using arithmetic modulo Ginny = 257 − 13 and a
mixing function mix57, then use two successive such values
to construct one γ value.

Figure 14 declares a Java class Splittable128, simi-
lar in spirit and overall organization to Splittable64. The
value GAMMA_PRIME is now Ginny rather than Percy. While
we could have chosen to use 128-bit arithmetic for generat-
ing default seeds, there really is not much point since their
generation is serialized by the atomic synchronization and
therefore it is highly unlikely that more than 264 or even
257 will be needed, so in order to share code we just use
arithmetic modulo Ginny for that as well. Therefore arith-
metic modulo George is not used at all. The field seed is
replaced by fields seedHi and seedLo; similarly the field
gamma is replaced by fields gammaHi and gammaLo. Method
mix64 is as in Figure 11. The method nextRaw64 performs
arithmetic modulo Arthur. The point of our choice of γ val-
ues is that the sum exceeds Arthur only very rarely (about
one time in a thousand), and therefore method seedFixup

(which handles this overflow case) is very rarely called. Fur-
thermore, the fact that at least 3, and very probably 4, of

462

import java.util.concurrent.atomic.AtomicLong;

public class Splittable128 {

private static final long

GAMMA_PRIME = (1L << 57) - 13, // "Ginny"

GAMMA_GAMMA = 0x00281E2DBA6606F3L,

DEFAULT_SEED_GAMMA = 0x0124B73A95FB84D9L;

private static final double DOUBLE_ULP =

1.0 / (1L << 53);

private static final AtomicLong defaultGen =

new AtomicLong(initialSeed());

private long seedHi, seedLo;

private final long gammaHi, gammaLo;

private final long nextSplit;

private static long mix64(long z) { ... }

private static long mix57(long z) {

z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;

z &= 0x01FFFFFFFFFFFFFFL;

z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;

z &= 0x01FFFFFFFFFFFFFFL;

return z ^ (z >>> 33); }

private long nextRaw64() {

// Add gamma to seed modulo Arthur.

long s = seedLo, h = seedHi, gh = gammaHi;

seedLo = s + gammaLo;

if (seedLo < s) ++gh; // Rare

seedHi = h + gh;

if (seedHi < h) seedFixup(); // Very rare

return (seedHi ^ seedLo); }

private void seedFixup() {

if (seedLo >= (0x8000000000000000L + 51)) {

seedLo -= 51;

} else if (seedHi != 0x8000000000000000L) {

--seedHi; seedLo -= 51;

} else {

long s = seedLo - 51L;

seedLo = s + gammaLo;

if (seedLo < s) ++seedHi;

seedHi += (gammaHi - 1); } }

private Splittable128(

long seedHi, long seedLo, long s) {

// We require 0 <= s < Ginny

this.seedHi = seedHi; this.seedLo = seedLo;

s += GAMMA_GAMMA;

if (s >= GAMMA_PRIME) s -= GAMMA_PRIME;

long b = mix57(s);

this.gammaHi = b >>> 3;

long extraBits = (b << 61) >>> 4;

s += GAMMA_GAMMA;

if (s >= GAMMA_PRIME) s -= GAMMA_PRIME;

this.gammaLo = (extraBits | mix57(s)) + 51;

nextSplit = s; }

// Other methods go here

}

Figure 14. Class Splittable128 and its private methods

private static long nextDefaultSeed() {

long p, q;

do { p = defaultGen.get();

q = p + GAMMA_GAMMA;

if (q >= GAMMA_PRIME) q -= GAMMA_PRIME;

} while (!defaultGen.compareAndSet(p, q));

return mix57(q); }

public Splittable128(long seedLo) {

this(0, seedLo, 0); }

public Splittable128(long hi, long lo) {

this(hi, lo, 0); }

public Splittable128() {

this(nextDefaultSeed(), 0, GAMMA_GAMMA); }

public Splittable128 split() {

nextRaw64();

return new Splittable128(

seedHi, seedLo, nextSplit); }

// Methods nextLong, nextInt, nextDouble,

// longs, ints, and doubles are the same

// as in the 64-bit Java implementation.

Figure 15. Other methods of class Splittable128

the high-order bits of gammaLo are 0-bits means that the
incrementation of gh in method nextRaw64 (reflecting a
carry from the low half to the high half) is rare (about one
time in 16), which makes the incrementation rare and the
conditional governing it highly predictable. Note that the
method nextRaw64 updates a 128-bit seed, but then re-
turns a 64-bit value by returning the bitwise XOR of the
two halves of the seed. The rationale for this is that be-
cause mix64 has good first-order avalanche statistics, mix64
of this XOR will also have good first-order avalanche statis-
tics (though not second-order). The two-argument construc-
tor Splittable128 is analogous to the two-argument con-
structor Splittable64 in Figure 11 but performs calcula-
tions modulo Ginny to generate two 57-bit values and then
uses them to construct one γ value as described above.

Figure 15 shows method nextDefaultSeed and the
public methods of Splittable128. The constructors are
straightforward; each calls the private constructor with ap-
propriate arguments. Note that a two-argument public con-
structor is provided to allow the user to specify a 128-bit seed
if desired. The split method calls nextRaw64 to produce
a new dot product (discarding the 64 bits it returns), then
creates a new SplittableRandom object with the newly
updated 128-bit seed value in seedHi and seedLo and the
saved nextSplit value (we think this implementation semi-
elegant in its semi-simplicity).

We explored the alternative of using 127-bit arithmetic
(modulo Molly = 2127 + 29), with a dot-product represen-
tation that does not use the high-order bit of the low-order
word, and γ values with 117 random bits (54 in the high-
order word and 63 in the low-order word). Carry propagation
from the low-order half to the high-order half can be per-
formed without branch instructions by adding the two low-

463

order 63-bit halves, then shifting their 64-bit sum rightward
63 positions to produce the necessary carry bit. In our exper-
iments this failed to produce a speed improvement.

Of course, if this algorithm were to be coded directly in
assembly language, one might code a 128-bit integer addi-
tion as a 64-bit integer add instruction followed by a 64-
bit integer add-with-carry instruction, avoiding the need for
these tricks. Nevertheless, method nextRaw64 is an inter-
esting example of a situation where code can be made sub-
stantially and usefully faster not by rewriting the code but by
adjusting the data that is supplied.

2.4 The SPLITMIX Algorithm
One doubt remained about Splittable128: while the prob-
ability of a dot-product collision is small, the consequences
are extremely undesirable: if two PRNG objects happen to
produce the same dot-product value and also have the same
γ coefficient, then from that point they will produce dupli-
cate streams of values—and if new PRNG objects are then
produced by balanced recursive splitting to some uniform
depth, all the PRNG objects will have the same γ coefficient.

But what if every PRNG object could have a different γ
coefficient? It would be as if the length of every pedigree
were equal to the total number of PRNG objects, and each
object corresponds to one element of the pedigree (and in-
crements only that element). Even if two PRNG objects hap-
pened to produce the same dot-product value (and therefore
emit the same pseudorandom value), the next values they
generated would be different, and so the problem of dupli-
cate subsequences would be avoided. This situation can be
accomplished with the algorithms we have already presented
by doing a long, linear chain of splits rather than a binary
(or n-ary) tree of splits. Unfortunately, that can take a long
time, and may not match the structure of the user code. In a
parallel computation, it’s difficult to ensure that all γ values
are different without using a shared data structure that may
require synchronized access—just what we hope to avoid.

But then we realized that perhaps it’s good enough for
different PRNG objects to have distinct γ values with high
probability, and this can be achieved if they are chosen
pseudorandomly. Furthermore, our intuition was that it’s
okay in practice for there to be occasional (that is, rare)
collisions of γ values, because two PRNG object with the
same γ value are likely to have distinct seed values, and
in fact seed values that are distant from each other within
the periodic cycle of seed values generated by that γ value.
(We must, of course, take the Birthday Paradox into account
when calculating how rare is rare enough.)

Now, the principal reason for doing arithmetic modulo
a prime number was to support the string LSS proof that
dot-product collisions are rare. If we are no longer worried
about dot-product collisions (thanks to the high probability
that γ values are different), then maybe arithmetic modulo a
power of 2 suffices (a weaker version of the LSS proof still
applies, but with a bound on the probability of dot-product

collision that is about two orders of magnitude larger than for
the prime-modulus case). Using arithmetic modulo a power
of 2 makes it unnecessary to restrict γ values to a range such
as [13, 264), because the speed tricks for doing arithmetic
modulo a prime number are no longer relevant.

All these considerations led us to the SPLITMIX strategy:
to create a new PRNG, simply use an existing PRNG instance
to generate a new seed and a new γ value pseudorandomly.
In practice, we tweak this idea slightly. In the next section
we present the specific 64-bit implementation of this strategy
that has been incorporated into Java JDK8.

3. The Class SplittableRandom
Figure 16 declares a Java class SplittableRandom that
uses 64-bit arithmetic to generate a pseudorandom sequence
of 64-bit values (from which 32-bit int or 64-bit double
values may then be derived). It has two 64-bit fields seed

and gamma; for any given instance of SplittableRandom,
the seed value is mutable and the gamma value is unchang-
ing. To ensure that every instance has period 264, it is neces-
sary to require that the gamma value always be odd; thus each
instance actually has 127 bits of state, not 128. The private
constructor is trivial, taking two arguments and using them
to initialize the seed and gamma fields.

The method nextSeed simply adds gamma into seed and
returns the result. (How it could be any simpler?)

The methods mix64, mix32, mix64variant13, and
mixGamma “mix” (that is, “scramble and blend”) the bits
of a 64-bit argument to produce a result. Each of the first
three computes a bijective function on 64-bit values; mix32
furthermore discards 32 bits to produce a 32-bit result. The
method mix32 is a simply a version of mix64 optimized
for the case where only the high-order 32 bits of the re-
sult will be used (there is no need to use an XOR to up-
date the low-order bits, only to discard them). The method
mix64variant13 is David Stafford’s Mix13 variant of the
MurmurHash3 finalizer [33].

The value DOUBLE_ULP is the positive difference between
1.0 and the smallest double value larger than 1.0; it is
used for deriving a double value from a 64-bit long value.

A predefined gamma value is needed for initializing “root”
instances of SplittableRandom (that is, instances not pro-
duced by splitting an already existing instance). We chose
the odd integer closest to 264/φ, where φ = (1 +

√
5)/2 is

the golden ratio, and call it GOLDEN_GAMMA.
A globally shared, atomically accessed seed value is also

needed for creating root instances; we call it defaultGen.
It is initialized by procedure initialSeed.

Figure 17 contains declarations of public methods for
class SplittableRandom. The two constructors are simple:
if a seed is provided, it is used along with GOLDEN_GAMMA,
but if a seed is not provided, then the shared defaultGen

variable is updated once but used to provide two distinct
values that are mixed by methods mix64 and mixGamma to
produce seed and gamma values for the new instance.

464

package java.util;

import java.util.concurrent.atomic.AtomicLong;

import java.util.stream.LongStream;

import java.util.stream.IntStream;

import java.util.stream.DoubleStream;

public final class SplittableRandom {

private long seed;

private final long gamma; // An odd integer

private SplittableRandom(long seed,

long gamma) {

// Note that "gamma" should always be odd.

this.seed = seed; this.gamma = gamma; }

private long nextSeed() {

return (seed += gamma); }

private static long mix64(long z) {

z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;

z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;

return z ^ (z >>> 33); }

private static int mix32(long z) {

z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;

z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;

return (int)(z >>> 32); }

private static long mix64variant13(long z) {

z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;

z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;

return z ^ (z >>> 31); }

private static long mixGamma(long z) {

z = mix64variant13(z) | 1L;

int n = Long.bitCount(z ^ (z >>> 1));

if (n >= 24) z ^= 0xaaaaaaaaaaaaaaaaL;

return z; } // This result is always odd.

private static final double

DOUBLE_ULP = 1.0 / (1L << 53);

private static final long

GOLDEN_GAMMA = 0x9e3779b97f4a7c15L; // odd

private static final AtomicLong defaultGen =

new AtomicLong(initialSeed());

// Public methods go here

}

Figure 16. Private methods of class SplittableRandom

The pseudorandom generation of values is then straight-
forward. To generate a new 64-bit long value, simply com-
pute the next seed and feed it to mix64; to generate a new 32-
bit int value, feed the next seed to mix32. To generate a new
double value, generate a 64-bit long value, discard 11 bits,
and multiply the remaining 53 bits by DOUBLE_ULP, thus
producing a value chosen uniformly from the range [0, 1).

The split method is equally straightforward; in effect,
it creates a new instance of SplittableRandom by simply
choosing its seed and gamma values “randomly”; to be spe-
cific, it generates two new seed values and mixes them using
methods mix64 and mixGamma.

Not shown in Figure 17 but implemented in Java JDK8
are versions of methods longs, ints, and doubles that

public SplittableRandom(long seed) { // Okay

this(seed, GOLDEN_GAMMA); }

public SplittableRandom() { // Preferred

long s = defaultGen.getAndAdd(

2 * GOLDEN_GAMMA);

this.seed = mix64(s);

this.gamma = mixGamma(s + GOLDEN_GAMMA); }

public long nextLong() {

return mix64(nextSeed()); }

public int nextInt() {

return mix32(nextSeed()); }

public double nextDouble() {

return (nextLong() >>> 11) * DOUBLE_ULP; }

public SplittableRandom split() {

return new SplittableRandom(

mix64(nextSeed()),

mixGamma(nextSeed())); }

public LongStream longs(long size) { ... }

public IntStream ints(long size) { ... }

public DoubleStream doubles(...) { ... }

// Other convenience methods as well

Figure 17. Public methods of class SplittableRandom
take no argument and produce an indefinitely long stream
rather than a stream of a prespecified length, as well as a
variety of convenience methods that allow the user to spec-
ify ranges from which pseudorandom values should be uni-
formly chosen. For example, prng.nextInt(0, 6) returns
a value chosen uniformly from the set {0, 1, 2, 3, 4, 5}, and
prng.ints(10000, 0, 6) returns a stream of 10000 values
chosen uniformly and independently from that same set.

While we have chosen not to provide a method for “jump-
ing ahead” [16] in a sequence, to do so would be easy:

public void jump(long n) {

seed += (gamma * n); }

and for negative n this also jumps backward.
The mixing function mix64 is easily inverted:

private static long unmix64(long z) {

z = (z ^ (z >>> 33)) * 0x9cb4b2f8129337dbL;

z = (z ^ (z >>> 33)) * 0x4f74430c22a54005L;

return z ^ (z >>> 33); }

because
0xff51afd7ed558ccdL * 0x4f74430c22a54005L == 1

and
0xc4ceb9fe1a85ec53L * 0x9cb4b2f8129337dbL == 1

(using long arithmetic, that is, modulo 264); such modular
inverses are easy to compute. Note also that the transfor-
mation z = z ^ (z >>> 33) is self-inverse. Therefore,
for any 64-bit value q, unmix64(mix64(q)) == q and
mix64(unmix64(q)) == q. If p and q are values produced
by consecutive calls to the nextLong method of a specific
instance of SplittableRandom (with no intervening calls
to other methods such as split), then the current value of

465

seed for that instance must be unmix64(q), and the gamma
value for that instance must be unmix64(q)-unmix64(p).
From these values, all future behavior of the instance can be
predicted. Therefore SplittableRandom and other mem-
bers of the SPLITMIX family of PRNG algorithms should not
be used for applications (such as security and cryptography)
where unpredictability is an important characteristic.

The method mixGamma takes an input, mixes its bits us-
ing mix64variant13, and then forces the low bit to be 1. At
first we thought that would suffice, but then we tested PRNG
objects with “sparse” γ values whose representations have
either very few 1-bits or very few 0-bits, and found that such
cases produce pseudorandom sequences that DieHarder re-
gards as “weak” just a little more often than usual. A little
thought shows that γ values of the form 000 . . . 0011 . . . 111
and 111 . . . 1100 . . . 000 could also perform poorly; our in-
formal explanation is as follows. Any γ value would be
fine if the mixing function were perfect; but for a less-than-
perfect mixing function, the more bits change from one seed
to the next, the more effective is avalanching in producing
apparently random sequences—so we can “help” the mix-
ing function by ensuring that the nextSeed method changes
many bits in the seed. Long runs of 0-bits or of 1-bits in
the γ value do not cause bits of the seed to flip; an approxi-
mate proxy for how many bits of the seed will flip might be
the number of bit pairs of the form 01 or 10 in the candi-
date γ value z. Therefore we require that the number of such
pairs, as computed by Long.bitCount(z ^ (z >>> 1)),
exceed 24; if it does not, then the candidate z is replaced by
the XOR of z and 0xaaaaaaaaaaaaaaaaL, a constant cho-
sen so that (a) the low bit of z remains 1, and (b) every bit
pair of the form 00 or 11 becomes either 01 or 10, and like-
wise every bit pair of the form 01 or 10 becomes either 00 or
11, so the new value necessarily has more than 24 bit pairs
whose bits differ. Testing shows that this trick appears to be
effective. The threshold value 24 was chosen somewhat ar-
bitrarily as being large enough to ensure good bit-flipping
in successive seeds but small enough that the correction is
required relatively rarely, for

(∑23
k=0

(
63
k

))
/263 ≈ 2.15%

of all candidates. (Our first implementation simply rejected
such candidates using a do–while loop; we changed it to
the XOR method purely to avoid using a loop. While the loop
would perform a second iteration only rarely, we prefer loop-
less algorithms for parallel implementation on SIMD or GPU
archtectures. For the same reason we prefer to avoid condi-
tionals, but this case can be handled well using a conditional
move instruction.) At most four distinct 64-bit inputs to the
method mixGamma will be mapped to the same final γ value.

If the calls to methods nextSeed and mix64 are inlined,
then the body of the method nextLong is straight-line code
consisting of a read of gamma, a read and a write of seed, and
9 64-bit arithmetic/logical operations (2 multiplies, 1 add,
3 shifts, and 3 XOR operations). Likewise, aside from the
allocation of a new SplittableRandom object, the work
performed by method split is straight-line code if the if

statement in method mixGamma is compiled using a condi-
tional move instruction. Suppose, then, that one has a SIMD
architecture with n-way parallelism (n might be 4 for Intel
SSE, 32 for a modern GPU, or 65536 for an old-fashioned
Connection Machine CM-2 [34]). A special SIMD version of
the split method can start with one PRNG object, put its
seed and gamma values into the first elements of two arrays
of length n, and then use dlog2 ne doubling steps to perform
the split computation on each seed/gamma pair already in
the arrays, thus doubling the number of such pairs in the ar-
rays. This initialization can be done just once and the result-
ing seed/gamma pairs used many times. After that, a SIMD
version of method nextLong can process all n seed/gamma
pairs in parallel using width-n SIMD instructions on the two
arrays. (Alternatively, one can give each thread a copy of the
same PRNG state, then have thread k jump forward 2k states
and then perform a split operation to obtain its own PRNG;
this works because the jump operation is also amenable to
SIMD implementation.)

4. Some Remarks about Avalanche Statistics
The idea behind the avalanche effect is that a good bit-
mixing function will have the property that changing a sin-
gle bit of the input will likely cause many (about half) of
the output bits to change. Feistel [8] first used the term
“avalanche,” and Webster and Tavares [36] formulated the
Strict Avalanche Criterion: whenever a single input bit is
flipped, each of the output bits should flip with probability
(approximately) 1

2 , averaged over all possible inputs. Mea-
surement of this criterion can be approximated by testing
only a fraction of all possible inputs.

Appleby used this criterion as the “energy function” in a
simulated annealing process to explore a specific space of
potential 8-operation bit-mixing functions (both 32-bit and
64-bit versions). The results are known as the MurmurHash3
finalizers [2]. Stafford remarked that a non-random set of
inputs might make a better training set, did his own exten-
sive simulated-annealing experiments, and reported a set of
fourteen 64-bit variants that have better avalanche statistics
than the MurmurHash3 64-bit finalizer. Neither Appleby nor
Stafford described the precise energy function used to drive
the simulated annealing process. However, Stafford reported
both maximum error and mean error from the avalanche ma-
trix for each of his variants, where “error” is presumably de-
viation from the “perfect” probability of 1

2 .
We have conducted our own searches for good 64-bit bit-

mixing functions. We tested each candidate µ using a set
of 64-bit input values chosen at random (and using sev-
eral different PRNG algorithms for this purpose, including
SPLITMIX and java.util.Random). From this set of N
input values, the 64 × 64 avalanche matrix A was con-
structed as a histogram: for each input value v and for every
0 ≤ i < 64 and 0 ≤ j < 64, aij is incremented if and only
if (µ(v)⊕µ(v⊕2i))∧2j is nonzero, where⊕ is bitwise XOR
and ∧ is bitwise AND on binary integers. The absolute value

466

long[][] A = new long[64][64];

for (long n = 0; n < N; n++) {

long v = rng.nextLong(), w = mix64(v);

for (int i = 0; i < 64; i++) {

long x = w ^ m.mix(v ^ (1 << i));

for (int j = 0; j < 64; j++) {

if (((x >>> j) & 1) != 0) A[i][j] += 1;

} } }

double sumsq = 0.0;

for (int i = 0; i < 64; i++) {

for (int j = 0; j < 64; j++) {

double v = a[j][k] - N / 2.0;

sumsq += v*v; } }

double result = sumsq / ((N / 4.0) * 4096.0);

Figure 18. Calculating sum-of-squares avalanche statistic

of the difference of each histogram entry and N
2 , normalized

by dividing by N , represents avalanche “error” (deviation
from the desired 50% probability of flipping).

A compromise for minimizing both maximum and mean
is to minimize the root-mean-square (equivalently, the sum-
of-squares). For our simulated-annealing searches, we let a
state be a tuple of multipliers and shift distances; we let the
neighbors of a state be a copy with either (a) just one bit of
one multiplier flipped, or (b) just one shift distance increased
or decreased by 1; and we used the sum-of-squares of the
avalanche matrix entries as the energy function. This proved
effective up to a certain point, beyond which additional com-
putational effort resulted in no further improvement—we
were unable to drive the energy any closer to zero.

A little thought reveals why. The avalanche histogram is
a set of 64×64 = 4096 variables, each of which is, in effect,
the sum of N values selected from the set {0, 1}. If the mix-
ing function is “good” (that is, behaving as if each output bit
were “perfectly random”) then each variable would be the
sum of n “coin flips”—in other words, a random variable
chosen from a binomial distribution. For large N , this bi-
nomial distribution can be approximated as a normal (Gaus-
sian) distribution with mean N

2 and variance N
4 . The sum-of-

squares of those 4096 variables is therefore (approximately)
a chi-squared distribution with 4096 degrees of freedom.
The Java code in Figure 18 performs this calculation, nor-
malizing with respect to both N and the number of matrix
entries 4096 so that the result has expected mean 1. The en-
ergies of the mixing functions that we bottomed out on were
right around that expected value for the mean every time;
we also measured this avalanche statistic for MurmurHash3
(with N = 106) and got 1.0502 on one run, and had similar
results for the Stafford variants. So there is every reason to
believe that if we had found a mixing function with a much
lower energy than that, it would be worse, in that its behav-
ior would differ in a statistically noticeable way from truly
random behavior. We conclude that the MurmurHash3 and
Stafford mixing functions are quite good by this measure,
and one can do perhaps only a tiny bit better.

5. Measurements of Quality

We used the DieHarder test suite version 3.31.1 [5] to test
the algorithm used in class SplittableRandom. For this
purpose, we recoded the algorithms into C so that they could
be linked directly with DieHarder, rather than using the file
I/O interface (which is considerably slower). DieHarder uses
32-bit inputs, so the 64-bit outputs from our algorithms are
broken into two halves, supplying first the low-order half,
then the high-order half, to the single input stream of 32-bit
values. We used only the switches -a (selecting all tests) and
-g n (to select the generator algorithm). DieHarder reports
any p-value outside the range [10−6, 1− 10−6] as indicating
that the tested generator has “ failed.” DieHarder also flags
all p-values outside the range [5× 10−3, 1− 5× 10−3];
such values, if they are not clear failures, are reported as
“weak.” For each generator variant we ran DieHarder 7 times
and we report the total number of weak and failed val-
ues over all 7 runs, omitting results for tests opso, oqso,
dna, and sums, each of which the DieHarder software itself
describes as “Suspect” or “Do Not Use”; thus each run of
DieHarder performs 110 distinct tests, so 7 runs collectively
perform 770 tests). (LSS used Dieharder version 2.28.1 [31],
so the number—and quality—of tests shown here is slightly
different from what they report.)

We also used the BigCrush test of TestU01 [18, 32], again
recoding into C for direct linking. TestU01 expects to test
64-bit double values, so we use 53 out of every 64 bits gen-
erated by our algorithm to generate a double value as for
our method nextDouble. TestU01 regards any p-value out-
side the range [10−10, 1− 10−10] as indicating “clear fail-
ure” [18] of the tested generator. The TestU01 software flags
all p-values outside the range [10−3, 1− 10−3]; such values,
if they are not clear failures, are regarded as “suspect.” For
each generator variant we ran BigCrush 3 times and we re-
port the total number of suspect p-values and clear failures
over all 3 runs; each run of BigCrush performs 160 distinct
tests, so 3 runs collectively perform 480 tests. With 480 tests
at two-sided p = 0.001, we expect even a perfect generator
to exhibit 0.96 “suspect” values on average.

We tested sequential use of the generate operation for a
single PRNG object using 16 different γ values, 8 of which
have few 01 or 10 bit pairs and 8 of which have many.
For comparison, we also used DieHarder to test 9 of the
“standard” algorithms supplied with DieHarder, including
the venerable Mersenne Twister [23]. Summary results are
shown in Table 1. These results show “poor” γ values having
slightly more “weak” results than others, but not consistently
so; the average is only slightly higher. We believe that more
investigation is required. The average number of “weak”
scores over all 16 gamma values tested is 15.3, which is close
to the number of “weak” scores for such excellent algorithms
as R_mersenne_twister and AES_OFB.

To test the behavior of split PRNG objects, we used three
strategies: (a) Form a balanced binary tree of splits to create

467

DieHarder TestU01
weak failed suspect failure

γ value (of 770) (of 480)
0x0000000000000001L 19 0 0 0
0x0000000000000003L 18 0 2 0
0x0000000000000005L 12 0 1 0

“p
oo

r” 0x0000000000000009L 19 0 0 0
0x0000010000000001L 14 0 0 0
0xffffffffffffffffL 12 1 0 0
0x0000000000ffffffL 15 0 2 0
0xffffff0000000001L 15 0 2 0
0x0000000000555555L 11 0 1 0
0x1111111111110001L 17 0 1 0

“o
ka

y”

0x7777777777770001L 15 1 1 0
0x7f7f7f7f33333333L 12 0 3 0
0x5555550000000001L 16 0 2 0
0xc45a11730cc8ffe3L 16 0 2 0

ra
nd

om

0x2b13b77d0b289bbdL 15 0 1 0
0x40ead42ca1cd0131L 19 0 0 0

AES_OFB 18 0 —
R_knuth_taocp 13 0 —

R_marsaglia_multic. 13 28 —
R_mersenne_twister 15 0 —

R_super_duper 16 19 —
R_wichmann_hill 19 0 —
Threefish_OFB 24 0 —

kiss 17 0 —
superkiss 13 14 —

Table 1. Test results for γ values used sequentially

2k PRNG objects, then round-robin interleave their streams;
(b) start with one object, use it to generate one number, then
replace it with a split-off object; (c) start with one object,
split off a second object, then use the first object to generate
one number, then replace the first object with the second.
The results are shown in Table 2.

For comparison, we did three runs of TestU01 BigCrush
on java.util.Random; 19 tests produced clear failure on
all three runs. These included 9 Birthday Spacings tests,
8 ClosePairs tests, a WeightDistrib test, and a CouponCol-
lector test. This confirms L’Ecuyer’s observation that java.
util.Random tends to fail Birthday Spacings tests [17].

In early experiments, we tested algorithms ParallelApp,
Splittable64, and Splittable128 (Sections 2.1–2.3)
using DieHarder, with results similar to those in Table 1.
We have not yet tried TestU01 on these algorithms.

6. Measurements of Speed
To evaluate the performance consequences of introducing
class SplittableRandom for Java JDK8, we compared it
against two existing alternatives in the Java core library.
The class java.util.Random uses the UNIX rand48 algo-
rithm and is thread-safe, serializing generation from a com-
mon shared generator when accessed by multiple threads.
Class java.util.concurrent.ThreadLocalRandom, in-

DieHarder TestU01
weak failed suspect failure

number of PRNGs (of 770) (of 480)
2 17 0 0 0
4 9 0 2 0

binary 8 20 0 0 0
tree 16 14 0 0 0

of 32 13 0 1 0
splits 64 19 0 3 0

128 18 0 1 0
256 15 0 1 0

chained generate then split 17 0 1 0
splits split then generate 20 1 1 0

Table 2. Test results for split PRNG objects used in parallel

troduced in JDK7, also uses rand48, but lazily creates a new
generator per thread using Java’s ThreadLocal facilities.

Comparisons are shown for two representative computer
systems, with recent 64-bit processors, both with 32 effec-
tive cores spread over multiple sockets (four Intel i7 X7560
chips vs. two AMD 6278 chips; the Intel system is hyper-
threaded to allow 64 hardware threads, but experiments used
a maximum of 32 threads). Both run Linux 2.6.39 kernels.
Measurements of ThreadLocalRandom (“TLR7”) used
JDK7; measurements of java.util.Random (“JUR8”) and
SplittableRandom (“SR8”) used OpenJDK JDK8 early
access build 103. All entries represent the median of five
runs using loops with 226 iterations, following a warmup
period of 15 shorter runs.

Table 3 compares sequential performance for a simple
loop that sums nextLong, nextDouble, or nextInt results.
Throughput for SplittableRandom is faster (by factors
ranging from 1.22 to 8.29) than either alternative, except for
being 15%–20% slower than ThreadLocalRandom when
generating 32-bit values (nextInt), the only measured case
for which the use of cheaper (32-bit) arithmetic instructions
in the rand48 algorithm leads to a performance advantage.

Figure 19 compares parallel performance using the Java
JDK8 Stream library to compute sums; for example, to
compute the sum of n values of type long from a pseudo-
random number generator prng, we used this expression:

prng.longs(n).parallel().sum()

The Stream library subdivides expressions like this into
multithreaded subcomputations using the ForkJoin frame-
work. In the case of SplittableRandom, each subdi-
vision is associated with a split-off generator, while for
java.util.Random, which has no split method, all
threads use the same generator. Such a stream expression
can also be computed sequentially by omitting the call
to the parallel method: prng.longs(n).sum(). Using
SplittableRandom produces performance that scales ap-
proximately linearly with the number of threads with a slope
of roughly 5

8 (approximately 17× on the AMD machine and
22× on the Intel machine when using 32 threads).

468

Millions of generated values per second Speedup of SR8 over the others

AMD 6278 Intel X7560 AMD 6378 Intel X7560
JUR8 TLR7 SR8 JUR8 TLR7 SR8 JUR8 TLR7 JUR8 TLR7

Long 29.8 143.8 247.1 33.2 175.9 274.1 ×8.29 ×1.71 ×8.25 ×1.55
Double 28.8 149.2 189.5 33.1 176.4 215.7 ×6.57 ×1.27 ×6.51 ×1.22
Int 57.5 302.7 248.4 65.3 288.2 250.2 ×4.32 ×0.82 ×3.83 ×0.86

Table 3. Sequential throughput (using a sequential loop that sums generated pseudorandom values)

int
long
double

m
illi

on
s

of
 a

dd
iti

on
s

pe
r s

ec
on

d

0

2000

4000

number of threads
0 4 8 12 16 20 24 28 32

SplittableRandom on AMD 6278

int
long
double

m
illi

on
s

of
 a

dd
iti

on
s

pe
r s

ec
on

d

0

2000

4000

number of threads
0 4 8 12 16 20 24 28 32

SplittableRandom on Intel i7

int
long
double

m
illi

on
s

of
 a

dd
iti

on
s

pe
r s

ec
on

d

0

50

number of threads
0 4 8 12 16 20 24 28 32

java.util.Random on AMD 6278

int
long
double

m
illi

on
s

of
 a

dd
iti

on
s

pe
r s

ec
on

d

0

50

number of threads
0 4 8 12 16 20 24 28 32

java.util.Random on Intel i7

Figure 19. Parallel stream throughput (1 to 32 threads, millions of generated values per second, median of three runs)

On the other hand, when using java.util.Random,
throughput drops precipitously (by a factor of 4 or more)
when going from 1 thread to 2 threads, and adding more
threads beyond that only makes things worse. Because a
single synchronized generator is being shared among all
threads, we would not expect any speedup on the generation
of pseudorandom numbers; we might have hoped that other
parts of the application might enjoy some parallel speedup.
But the measurements tell a different story; while we have
not done a detailed performance analysis, it appears that
contention among threads for the shared generator (possibly
compounded by poor memory system behavior as ownership
of the generator state is transferred among threads) swamps
any gains from parallel execution. The obvious way to mit-
igate synchronization overhead is for each thread to have
its own PRNG state rather than trying to share state, while
still maintaining good statistical quality—which java.util
.Random was never designed to do.

Figure 20 shows measurements of parallel scaling of a
Monte Carlo algorithm using SplittableRandom.

We also measured the performance difference between a
purely sequential version of our benchmarks and the parallel
version using just one thread. Performance is roughly the
same: for the calculation of π, the sequential version was 1%
slower on AMD 6278 and 1% faster on Intel X7560 when
using SplittableRandom. We observed a reversed effect
when using java.util.Random: the sequential version was
2% faster on AMD 6278 and 2% slower on Intel X7560.
For stream summation, the two versions sometimes differed
in execution time by as much as 16%, but we also observed
similar (unexplained) run-to-run variation when comparing
runs of each version separately.

LSS do not report much about absolute performance of
DOTMIX, but they do remark that, for one benchmark, using
DOTMIX was about 2.3 times as slow as using Mersenne
Twister [20, §6]. Sean Luke reports that his optimized Java
implementation of Mersenne Twister [21] is about 1

3 faster
than using java.util.Random, and our Table 3 indicates
that using SplittableRandom is about 4 to 8 times as
fast as using java.util.Random. These data imply that

469

Intel i7
AMD 6278

sp
ee

du
p

re
la

tiv
e

to
 th

e
da

ta
 p

oi
nt

 fo
r 1

 th
re

ad

0

4

8

12

16

20

24

28

32

number of threads
0 4 8 12 16 20 24 28 32

Monte Carlo calculation of π using SplittableRandom

Figure 20. Parallel scaling for calculation of π
SplittableRandom is roughly 6 to 12 times as fast as
DOTMIX. Given the need for DOTMIX to chase pointers
among stack frames and to perform multiplications modulo
a prime number, this estimate seems plausible.

7. Other Related Work
L’Ecuyer [15, Figure 3] describes a way to create a PRNG of
good quality and very long period by combining two or more
multiplicative linear congruential generators, and remarks
that the period of the combined generator can be “split”
(partitioned) into separate sections easily because each of
the underlying generators can be so partitioned.

Park and Miller [26], surveying the situation in 1988,
demonstrated that many PRNG algorithms then in use were
of terrible quality, and recommended a specific prime-
modulus multiplicative linear-congruential (“Lehmer”) gen-
erator zn+1 = 16807zn mod (231 − 1), and challenged
future PRNG designers to do at least as well. They noted
that the multiplier 16807, while not necessarily the absolute
best choice, was quite good and furthermore small enough
to permit certain implementation tricks to improve speed.

Burton and Page [6] describe partitioning the period of a
sequential PRNG in three ways: alternation (elsewhere called
“leapfrogging” or “lagging”), halving (“jumping ahead” by
a fixed amount, typically to cut the stream in half), and
jumping to a random point in the cycle. In effect, our split
method takes this third approach after randomly choosing
among a large number of possible cycles.

In the mid-1990s, Augustsson [3] implemented L’Ecuyer’s
algorithm in purely functional form as part of the Haskell
standard library System.Random; the code now in that li-
brary, dated 2001, contains a kernel (Figure 21) with two
functions stdNext and stdSplit. The implementation of
stdNext is a faithful rendition of L’Ecuyer’s algorithm [15,
Figure 3], but the stdSplit method does not split the pe-
riod in the manner suggested by L’Ecuyer; instead, it uses

stdNext :: StdGen -> (Int, StdGen)

stdNext (StdGen s1 s2) =

(fromIntegral z’, StdGen s1’’ s2’’) where

z’ = if z < 1 then z + 2147483562 else z

z = s1’’ - s2’’

k = s1 ‘quot‘ 53668

s1’ = 40014 * (s1 - k * 53668) - k * 12211

s1’’ = if s1’ < 0 then s1’ + 2147483563 else s1’

k’ = s2 ‘quot‘ 52774

s2’ = 40692 * (s2 - k’ * 52774) - k’ * 3791

s2’’ = if s2’ < 0 then s2’ + 2147483399 else s2’

stdSplit :: StdGen -> (StdGen, StdGen)

stdSplit std@(StdGen s1 s2) = (left, right) where

-- no statistical foundation for this!

left = StdGen new_s1 t2

right = StdGen t1 new_s2

new_s1 | s1 == 2147483562 = 1

| otherwise = s1 + 1

new_s2 | s2 == 1 = 2147483398

| otherwise = s2 - 1

StdGen t1 t2 = snd (next std)

Figure 21. Haskell library System.Random kernel (2001)

an ad hoc method that, by its own admission, has “no statis-
tical foundation,” but is not that different in structure from
SPLITMIX except that it fails to try to compute “random”
values for initializing the new StdGen objects.

Hellekalek [12] pointed out the difficulty of finding good-
quality PRNG algorithms for parallel use, and that splitting
via “leapfrogging” can produce unexpected surprises.

L’Ecuyer [17] describes severe failures of the algorithm
used by java.util.Random (as well as the PRNG facilities
of Visual Basic and Excel as of 2001 and the “Lehmer
16807” generator recommended by Park and Miller [26])
to pass a “birthday spacings” test. He also comments, “In
the Java class java.util.Random, RNG streams can be
declared and constructed dynamically, without limit on their
number. However, no precaution seems to have been taken
regarding the independence of these streams.”

L’Ecuyer et al. [19] describe an object-oriented C++
PRNG package RngStream that supports repeatedly splitting
its very long period (approximately 2191) into streams and
substreams. (We discuss this package at length in Section 1.)

Salmon et al. [30] describe a parallel PRNG algorithm
with period 2128 that furthermore relies on a key that allows
selection of one of 264 independent streams. They remark
that their paper “revisits the underutilized design approach
of using a trivial f and building complexity into the output
function”; their f corresponds to our nextSeed method and
their output function to our bit-mixing function, so in that re-
spect we follow in their footsteps. They suggest that f might
be as simple as f(x) = x+ 1, and so refer to their methods
as “counter-based”; they rely on powerful (perhaps crypto-
graphically strong) output functions. Our approach differs in
that we are willing to choose f more carefully in order to
reduce the cost of the output (bit-mixing) function. Salmon
et al. also make use of the golden ratio and Weyl sequences

470

to generate “round keys” for AES encryption (though, curi-
ously, they use 64 bits of the golden ratio for the high half of
the initial round key and 64 bits of

√
3− 1 for the low half).

Claessen and Pałka [7] remark on an application that
exposes a severe defect of the stdSplit function in the
Haskell standard library System.Random, then describe a
superior implementation of the same purely functional API
that is similar in spirit to LSS: it generates random values by
encoding the path in the split tree as a sequence of numbers,
and then applies a cryptographically strong hash function.
Their path encoding and hash function are designed to al-
low successive pseudorandom values to be computed incre-
mentally in constant time, independent of the path length.
We have not yet made comparative measurements, but it ap-
pears that their approach produces pseudorandom streams
of higher quality, while our approach is likely much faster.

8. Conclusions and Future Work
Inspired by Leiserson, Schardl, and Sukha, we have traced
a winding development path that led us to the SplitMix

family of algorithms for parallel generation of sets and se-
quences of pseudorandom values. They should not be used
for cryptographic or security applications, because they are
too predictable (the mixing functions are easily inverted,
and two successive outputs suffice to reconstruct the internal
state), but because they pass standard statistical test suites
such as DieHarder and TestU01, they appear to be suitable
for “everyday” use such as in Monte Carlo algorithms. One
version seems especially suitable for use as a replacement
for java.util.Random, because it produces sequences of
higher quality, is faster in sequential use, is easily paral-
lelized for use in JDK8 stream expressions, and is amenable
to efficient implementation on SIMD and GPU architectures.

Each SplittableRandom object produces a stream of
pseudorandom values of period 264; this period is relatively
short, but if values were generated sequentially at a rate of
one per nanosecond, it would take over five centuries to cycle
through the period once. In practice, one would generate
such a large quantity of pseudorandom values in parallel,
using splitting, which gives each thread (or core) a different
γ value and therefore a different permutation of the 264

values. Since almost 263 distinct γ values may be used, the
state space of a SplittableRandom object has almost 2127

states. (Salmon et al. [30] make this same point, and declare:
“A PRNG with a period of 219937 is not substantially superior
to a family of 264 PRNGs, each with a period of 2130.”) If
this is insufficient for certain applications, a version using
arithmetic of higher precision (128 bits or more) may suffice.
However, a specific attraction of SplittableRandom is that
it has the relatively small “likelihood of accidental overlap”
of a PRNG with 2127 states but the computational speed of a
64-bit algorithm. Code size and data size are quite small.

In the future we would like to subject these algorithms
to even more rigorous testing. It may also be that even
more effective mixing functions will be discovered. Finally,

we hope that theoreticians will be able to illuminate the
strengths and weaknesses of this family of algorithms, and
to that end we offer the following observations. In an al-
ternate version of the code for SplittableRandom (Figure
16), we used mix64 rather than mix64variant13 in method
mixGamma. In the end we chose not to share code and use
mix64variant13, not because of any hard evidence or solid
theory, but simply because of an intuition (or engineering su-
perstition?) that, all else being equal, it is best to avoid op-
portunities for accidental correlation. On the other hand, we
chose to use GOLDEN_GAMMA in two places, and one would
think the same intuition might lead us to use a different
value (perhaps the odd integer closest to 264/δS , where δS =
1 +
√
2 is the silver ratio?). And even our choice of the odd

integer closest to 264/φ was based only on the intuition that
it might be a good idea to keep γ values “well spread out”
and the fact that prefixes of the Weyl sequence generated by
1/φ are known to be “well spread out” [14, exercise 6.4-9].
Finally, guided by intuition and informal argument, we made
a somewhat arbitrary decision to suppress certain γ values
in the method mixGamma—and yet we are haunted by the
memory of the Enigma cipher machines, which were care-
fully designed so that “bad” encryptions could never occur
by guaranteeing that no letter would ever map to itself, and
so the word “LONDON” would never be encrypted as the
word “LONDON”, yet that avoidance of “bad” encryptions
was the Achilles’ heel that allowed the codebreaking ma-
chinery (the “cryptologic bombes” designed by Alan Tur-
ing and Gordon Welchman) to be so effective. By analogy,
we worry that our effort to avoid “bad” random sequences
that we believe would occur only rarely has in fact just in-
troduced an unnecessary and undesirable bias. True random-
ness requires not that “miracles” or “disasters” be absent, but
that they be present in due proportion—and human intuition
is notoriously poor at judging this proportion. In the future,
all of the choices outlined in this paragraph should be ques-
tioned and tested against better theory than we have so far
mustered. It would be a delightful outcome if, in the end,
the best way to split off a new PRNG is indeed simply to
“pick one at random.”

Acknowledgments
We thank Claire Alvis for implementing our first prototype
for Fortress, Martin Buchholz for suggesting that we test
sparse γ values. and Brian Goetz, Paul Sandoz, Peter Levart,
Kasper Neilsen, Mike Duigou, and Aleksey Shipilev for
discussion of suitability of these algorithms for Java JDK8.

References
[1] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-

Willem Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam
Tobin-Hochstadt. The Fortress Language Specification Ver-
sion 1.0, March 2008.

[2] Austin Appleby. Murmurhash3, April 3, 2011. Project wiki
entry. http://code.google.com/p/smhasher/wiki/

MurmurHash3 Accessed Sept. 10, 2013.

471

[3] Lennart Augustsson. Personal communication, Aug. 30, 2013.

[4] Richard P. Brent. Note on Marsaglia’s Xorshift random num-
ber generators. Journal of Statistical Software, 11(4):1–5,
Aug. 2004.

[5] Robert G. Brown, Dirk Eddelbuettel, and David Bauer.
Dieharder: A random number test suite, version 3.31.1,
2003–2006. http://www.phy.duke.edu/~rgb/General/
dieharder.php Accessed Sept. 10, 2013.

[6] F. Warren Burton and Rex L. Page. Distributed random num-
ber generation. J. Functional Programming, 2(2):203–212,
April 1992.

[7] Koen Claessen and Michał Pałka. Splittable pseudorandom
number generators using cryptographic hashing. In Proc.
ACM SIGPLAN Haskell Symp., pages 47–58, 2013.

[8] Horst Feistel. Cryptography and computer privacy. Scientific
American, 228(5):15–23, May 1973.

[9] Gregory W. Fischer, Ziv Carmon, Dan Ariely, Gal Zauberman,
and Pierre L’Ecuyer. Good parameters and implementations
for combined multiple recursive random number generators.
Operations Research, 47(1):159–164, Jan. 1999.

[10] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification (first edition). Addison-Wesley, 1996.

[11] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex
Buckley. The Java Language Specification, Java SE 7 Edition.
Addison-Wesley, Upper Saddle River, New Jersey, 2013.

[12] P. Hellekalek. Don’t trust parallel Monte Carlo! In Proc.
Twelfth Workshop on Parallel and Distributed Simulation
(PADS 98), pages 82–89. IEEE, 1998.

[13] Donald E. Knuth. Seminumerical Algorithms (third edition),
volume 2 of The Art of Computer Programming. Addison-
Wesley, Reading, Massachusetts, third edition, 1998.

[14] Donald E. Knuth. Sorting and Searching (second edition),
volume 3 of The Art of Computer Programming. Addison-
Wesley, Reading, Massachusetts, second edition, 1998.

[15] Pierre L’Ecuyer. Efficient and portable combined random
number generators. Comm. ACM, 31(6):742–751, June 1988.

[16] Pierre L’Ecuyer. Uniform random number generators. In
Proc. 30th Winter Simulation Conf., WSC ’98, pages 97–104.
IEEE Computer Society Press, 1998.

[17] Pierre L’Ecuyer. Software for uniform random number gen-
eration: Distinguishing the good and the bad. In Proc. 33nd
Winter Simulation Conf., WSC ’01, pages 95–105, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

[18] Pierre L’Ecuyer and Richard Simard. TestU01: A C library for
empirical testing of random number generators. ACM Trans.
Math. Softw., 33(4), August 2007.

[19] Pierre L’Ecuyer, Richard Simard, E. Jack Chen, and W. David
Kelton. An object-oriented random-number package with
many long streams and substreams. Operations Research,
50(6):1073–1075, Nov. 2002.

[20] Charles E. Leiserson, Tao B. Schardl, and Jim Sukha. De-
terministic parallel random-number generation for dynamic-
multithreading platforms. In Proc. 17th ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming, pages 193–
204, New York, 2012. ACM.

[21] Sean Luke. Documentation for the Mersenne Twister in
Java, October 2004. http://www.cs.gmu.edu/~sean/

research/mersenne Accessed March 11, 2014.

[22] George Marsaglia. Xorshift RNGs. Journal of Statistical
Software, 8(14):1–6, Jul. 2003.

[23] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister:
A 623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Trans. Model. Comput. Simul.,
8(1):3–30, January 1998.

[24] Martin Odersky. The Scala Language Specification, Version
2.7. EPFL Lausanne, Switzerland, 2009.

[25] Oracle. Interface spliterator<t>. Documentation
for JavaTM Platform Standard Ed. 8 DRAFT ea-b106.
http://download.java.net/jdk8/docs/api/java/

util/Spliterator.html Accessed Sept. 13, 2013.

[26] Stephen K. Park and Keith W. Miller. Random number gener-
ators: Good ones are hard to find. Comm. ACM, 31(10):1192–
1201, October 1988.

[27] Ronald L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin.
The RC6 block cipher, version 1.1, August 20, 1998. Unpub-
lished paper. http://people.csail.mit.edu/rivest/

pubs/RRSY98.pdf.

[28] C. S. Roberts. Implementing and testing new versions of a
good, 48-bit, pseudo-random number generator. Bell System
Technical Journal, 61(8):2053–2063, Oct. 1982.

[29] Mutsuo Saito and Makoto Matsumoto. A deviation of CU-
RAND: Standard pseudorandom number generator in CUDA
for GPGPU, Feb. 2012. Slides presented at the Tenth Intl.
Conf. Monte Carlo and Quasi-Monte Carlo Methods in Scien-
tific Computing. http://www.mcqmc2012.unsw.edu.au/

slides/MCQMC2012_Matsumoto.pdf.

[30] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E.
Shaw. Parallel random numbers: As easy as 1, 2, 3. In
Proc. 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 16:1–
16:12. ACM, 2011.

[31] Tao B. Schardl. Personal communication, Aug. 13, 2012.

[32] Richard Simard. TestU01 version 1.2.3, August 2009. Website
at http://www.iro.umontreal.ca/~simardr/testu01/
tu01.html.

[33] David Stafford. Better bit mixing: Improving on Murmur-
Hash3’s 64-bit finalizer, September 28, 2011. Blog
“Twiddling the Bits.” http://zimbry.blogspot.com/

2011/09/better-bit-mixing-improving-on.html

Accessed Sept. 10, 2013.

[34] Thinking Machines Corporation. CM-2 Technical Summary.
Technical Report HA87-4, Cambridge, Massachusetts, April
1987. https://archive.org/details/06Kahle001885.

[35] John Walker. HotBits: Genuine random num-
bers, generated by radioactive decay. Website at
http://www.fourmilab.ch/hotbits/.

[36] A. F. Webster and Stafford E. Tavares. On the design of
S-boxes. In Advances in Cryptology (CRYPTO ’85), August
18-22, 1985, Proceedings, volume 218 of Lecture Notes in
Computer Science, pages 523–534. Springer, 1985.

472

