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—— Abstract

A retrieval data structure for a static function f : S — {0,1}" supports queries that return
f(x) for any = € S. Retrieval data structures can be used to implement a static approximate
membership query data structure (AMQ), i.e., a Bloom filter alternative, with false positive rate 27".
The information-theoretic lower bound for both tasks is r|S| bits. While succinct theoretical
constructions using (1 + o(1))r|S| bits were known, these could not achieve very small overheads in
practice because they have an unfavorable space—time tradeoff hidden in the asymptotic costs or
because small overheads would only be reached for physically impossible input sizes. With bumped
ribbon retrieval (BuRR), we present the first practical succinct retrieval data structure. In an
extensive experimental evaluation BuRR achieves space overheads well below 1% while being faster
than most previously used retrieval data structures (typically with space overheads at least an order
of magnitude larger) and faster than classical Bloom filters (with space overhead > 44 %). This
efficiency, including favorable constants, stems from a combination of simplicity, word parallelism,
and high locality.

We additionally describe homogeneous ribbon filter AMQ@s, which are even simpler and faster at
the price of slightly larger space overhead.
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1 Introduction

A retrieval data structure (sometimes called “static function”) represents a function f: S —
{0,1}" for a set S C U of n keys from a universe & and r € N. A query for x € S must
return f(x), but a query for x € U \ S may return any value from {0,1}".

The information-theoretic lower bound for the space needed by such a data structure is
nr bits in the general case.! This significantly undercuts the Q((log [U| + r)n) bits? needed
by a dictionary, which must return “None” for = € U \ S. The intuition is that dictionaries
have to store f C U x {0,1}" as a set of key-value pairs while retrieval data structures,
surprisingly, need not store the keys. We say a retrieval data structure using s bits has
(space) overhead > — 1.

The starting point for our contribution is a compact retrieval data structure from [21], i.e.
one with overhead O(1). After minor improvements, we first obtain standard ribbon retrieval.
All theoretical analysis assumes computation on a word RAM with word size Q(logn) and
that hash functions behave like random functions.? The ribbon width w is a parameter that
also plays a role in following variants.

» Theorem 1 (similar to [21]). For anye > 0, an r-bit standard ribbon retrieval data structure

lofn has construction time O(n/e?), query time O(r/c) and overhead

with ribbon width w =

O(e).

We then combine standard ribbon retrieval with the idea of bumping, i.e., a convenient subset
S’ C S of keys is handled in the first layer of the data structure and the small rest is bumped
to recursively constructed subsequent layers. The resulting bumped ribbon retrieval (BuRR)
data structure has much smaller overhead for any given ribbon width w.

» Theorem 2. An r-bit BuRR data structure with ribbon width w = O(logn) and r = O(w)

has expected construction time O(nw), space overhead (’)(lfi;“), and query time O(1 + lgg’n).

In particular, BuRR can be configured to be succinct, i.e., can be configured to have
an overhead of o(1) while retaining constant access time for small r. Construction time is
slightly superlinear. Note that succinct retrieval data structures were known before, even
with asymptotically optimal construction and query times of O(n) and O(1), respectively
[46, 4]. Seeing the advantages of BuRR requires a closer look. Details are given in Section 5,
but the gist can be seen from Table 1: Among the previous succinct retrieval data structures
(overheads set in bold font), only [19] can achieve small overhead in a tunable way, i.e.,
independently of n using an appropriate tuning parameter C' = w(logn). However, this
approach suffers from comparatively high constructions times. [46] and [4] are not tunable
and only barely succinct with significant overhead in practice. A quick calculation to illustrate:
Neglecting the factors hidden by O-notation, the overheads are 616" and 1051201§i ~ which
is at least 75% and 7% for r = 8 and any n < 2%4. A similar es@tion for BuRR with
w = O(log n) suggests an overhead of lffoz??: ~ 0.1% already for = 8 and n = 224. Moreover,
by tuning the ribbon width w, a wide range of trade-offs between small overhead and fast
running times can be achieved.

Overall, we believe that asymptotic analyses struggle to tell the full story due to the

extremely slow decay of some “o(1)” terms. We therefore accompany the theoretical account

L If f has low entropy then compressed static functions [32, 4, 29] can do better and even machine learning
techniques might help, see e.g. [18].

2 This lower bound holds when [U| = Q(n'*9) for § > 0. The general bound is log (‘Z;l”) + nr bits.
3 This is a standard assumption in many papers and can also be justified by standard constructions [18].
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Year teonstruct tquery ml:)ligizzgve shard size Solver
[38] 2001 O(nlogk) O(logk)t 1 - peeling
[46] 2009 O(n) 0(1) o( (:gg 1;’)%72) Viogn lookup table
[10] 2013 O(n) (1) 0.2218 - peeling
[ 2018 Om)  O(1)  o(kEgeEn) o(EgeEn) -
[44] 2014 O(n) o) Q(1/r) o(1) sorting/sharding
[28] 2016 O(nC?) O(1)  0.024+ O(*E™) C structured Gauss
—  [2]] 2019 O(n/e?)  O(r/e) € - Gauss
[21] 2019 O(n/e) O(r) ) n® Gauss
[19] 2019 O(nC?) O(r) (9(10%) C structured Gauss
[51] 2021 O(nk) O(k) (1+ok(L))e™™ - peeling
BuRR O(nw) O+ logn) (1:’5,;”) - on-the-fly Gauss
— with w = O(logn): O(nlogn)  O(r) (I:Igolgzg") - on-the-fly Gauss

1 Expected query time. Worst case query time is O(D).
Table 1 Performance of various 7-bit retrieval data structures with r = O(logn). Bold overhead
indicates that the data structure is (or can be configured to be) succinct. The parameters k € N and
€ > 0 are constants with respect to n. The parameter C' € N is typically n® for constant « € (0, 1).

with experiments comparing BuRR to other efficient (compact or succinct) retrieval data
structures. We do this in the use case of data structures for approximate membership and
also invite competitors not based on retrieval into the ring such as (blocked) Bloom filters
and Cuckoo filters.

Data structures for approximate membership. Retrieval data structures are an im-
portant basic tool for building compressed data structures. Perhaps the most widely used
application is associating an r-bit fingerprint with each key from a set S C U, which allows
implementing an approximate membership query data structure (AMQ, aka Bloom filter
replacement or simply filter) that supports membership queries for S with false positive rate
@ =27". A membership query for a key x € Y will simply compare the fingerprint of = with
the result returned by the retrieval data structure for . The values will be the same if z € S.
Otherwise, they are the same only with probability 27".

In addition to the AMQs following from standard ribbon retrieval and BuRR, we also
present homogeneous ribbon filters, which are not directly based on retrieval.

» Theorem 3. Let r € N and € € (0,1]. There is w € N with Tz w) = O(1/¢e) such
that the homogeneous ribbon filter with ribbon width w has false positive rate ¢ ~ 27" and
space overhead O(e). On a word RAM with word size > w expected construction time is
O(n/e) and query time is O(r).

Experiments. Figure 1 shows some of the results explained in detail later in the paper. In
the depicted parallel setting, ribbon-based AMQs (blue) are the fastest static AMQs when an
overhead less than = 44% is desired (where “fastest” considers a somewhat arbitrary weighting
of construction and query times). The advantage is less pronounced in the sequential setting.

Why care about space? Especially in AMQ applications, retrieval data structures occupy
a considerable fraction of RAM in large server farms continuously drawing many megawatts
of power. Even small reductions (say 10 %) in their space consumption thus translate into
considerable cost savings. Whether or not these space savings should be pursued at the
price of increased access costs depends on the number of queries per second. The lower the
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Figure 1 Performance—overhead trade-off for measured false-positive rate in 0.003-0.01 (i.e.,
r & 8), for different AMQs and inputs. Ribbon-based data structures are in blue. For each category
of approaches, only variants are shown that are not Pareto-dominated by variants in the same
category. Sequential benchmarks use a single filter of size n while the parallel benchmark uses 1280
filters of size n and utilizes 64 cores. Logarithmic vertical axis above 1200 ns.

access frequency, the more worthwhile it is to occasionally spend increased access costs for a
permanently lowered memory budget. Since the false-positive rate also has an associated
cost (e.g. additional accesses to disk or flash) it is also subject to tuning. The entire set of
Pareto-optimal variants with respect to tradeoffs between space, access time, and FP rate
is relevant for applications. For instance, sophisticated implementations of LSM-trees use
multiple variants of AMQs at once based on known access frequencies [15]. Similar ideas
have been used in compressed data bases [43].

Outline. The paper is organized as follows (section numbers in parentheses). After important
preliminaries (2), we explain our data structures and algorithms in broad strokes (3) and
summarize our experimental findings (4). We then fill in the details. We summarize related
work (5), including that from Table 1. In theory-oriented sections (6-10) we first analyze
general aspects of the “ribbon” approach (6 and 7) and then prove theorems on standard
ribbon (8), homogeneous ribbon (9) and BuRR (10). Algorithm engineers will be interested
in a discussion of the design decisions that have to be made when implementing BuRR (11)
and a precise description of the many experiments we made (12).

2 Linear Algebra Based Retrieval Data Structures and SGAUSS

A simple, elegant and highly successful approach for compact and succinct retrieval uses
linear algebra over the finite field Zy = {0, 1} [17, 28, 1, 46, 13, 10, 19, 21]. Refer to Section 5
for a discussion of alternative and complementary techniques.

The train of thought is this: A natural idea would be to have a hash function point
to a location where the key’s information is stored while the key itself need not be stored.
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This fails because of hash collisions. We therefore allow the information for each key to be
dispersed over several locations. Formally we store a table Z € {0,1}™*" with m > n entries
of r bits each and to define f(z) as the bit-wise xor of a set of table entries whose positions
h(z) C [m] are determined by a hash function h.* This can be viewed as the matrix product
h(z)Z where h(z) € {0,1}™ is the characteristic (row)-vector of h(z). For given h, the main
task in building the data structure is to find the right table entries such that h(z)Z = f(z)
holds for every key x. This is equivalent to solving a system of linear equations AZ = b
where A = (h(z))zes € {0,1}"*™ and b = (f(z))zes € {0,1}"*". Note that rows in the
constraint matrix A correspond to keys in the input set S. In the following, we will thus
switch between the terms “row” and “key” depending on which one is more natural in the
given context.

An encouraging observation is that even for m = n, the system AZ = b is solvable with
constant probability if the rows of A are chosen uniformly at random [14, 46]. With linear
query time and cubic construction time, we can thus achieve optimal space consumption.
For a practically useful approach, however, we want the 1-entries in E(m) to be sparse and
highly localized to allow cache-efficient queries in (near) constant time and we want a (near)
linear time algorithm for solving AZ = b. This is possible if m > n.

A particularly promising approach in this regard is SGAUSS from [21] that chooses the
1-entries within a narrow range. Specifically, it chooses w random bits ¢(x) € {0,1}" and
a random starting position s(z) € [m —w — 1], i.e., h(z) = 05®~Le(z)om—s@-w+l  For
m = (1 4 &)n some value w = O(log(n)/e) suffices to make the system AZ = b solvable
with high probability. We call w the ribbon width because after sorting the rows of A by
s(x) we obtain a matrix which is not technically a band matrix, but which likely has all
1-entries within a narrow ribbon close to the diagonal. The solution Z can then be found
in time O(n/e?) using Gaussian elimination [21] and bit-parallel row operations; see also
Figure 2 (a).

3 Ribbon Retrieval and Ribbon Filters

We advance the linear algebra approach to the point where space overhead is almost eliminated
while keeping or improving the running times of previous constructions.

Ribbon solving. Our first contribution is a simple algorithm we could not resist to also
call ribbon as in Rapid Incremental Boolean Banding ON the fly. It maintains a system
of linear equations in row echelon form as shown in Figure 2 (b). It does so on-the-fly, i.e.
while equations arrive one by one in arbitrary order. For each index i of a column there
may be at most one equation that has its leftmost one in column i. When an equation with
row vector a arrives and its slot is already taken by a row a’, then ribbon performs the row
operation a < a ® a’, which eliminates the 1 in position 7, and continues with the modified
row. An invariant is that rows have all their nonzeroes in a range of size w, which allows to
process rows with a small number of bit-parallel word operations. This insertion process is
incremental in that insertions do not modify existing rows. This improves performance and
allows to cheaply roll back the most recent insertions which will be exploited below. It is a
non-trivial insight that the order in which equations are added does not significantly affect
the expected number of row operations.

4 In this paper, [k] can stand for {0,...,k — 1} or {1,...,k} (depending on the context), and a..b stands
for {a,...,b}.
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Figure 2 (a) Typical shape of the random matrix A with rows (h(z)).cs sorted by starting

positions. The shaded “ribbon” region contains random bits. Gaussian elimination never causes any
fill-in outside of the ribbon.
(b) Shape of the linear system M in row echelon form maintained using Boolean banding on the fly.
In gray we visualize the insertion of a key @ where (i) h(z) has its left-most 1 in position s(z) = 2,
(ii) after xoring the second row of M to h(x), the left-most 1 is in position 5 and (iii) xoring the fifth
row as well, the left-most 1 is in position 6. The resulting row fills the previously empty sixth row of
M and f(x) @ ba @ bs is added as right hand side.

When all rows processed we perform back-substitution to compute the solution matrix Z.
At least for small r, interleaved representation of Z works well, where blocks of size w X r
of Z are stored column-wise. A query for  can then retrieve one bit of f(x) at a time by
applying a population count instruction to pieces of rows retrieved from at most two of
these blocks. This is particularly advantageous for negative queries to AMQs (i.e. queries of
elements not in the set), where only two bits need to be retrieved on average. More details
are given in Section 6.

3.1 Standard Ribbon

When employing no further tricks, we obtain standard ribbon retrieval, which is essentially
the same data structure as in [21] except with a different solver that is faster by noticeable
constant factors. A problem is that w has to become impractically large when n is large
and ¢ is small. For example, in our experiments the smallest overhead we could achieve for
n = 10° and (already quite expensive) w = 128 is around 3.3 % (for construction success rate
50%). To some degree this can be mitigated by sharding techniques [50], but in this paper
we pursue a more ambitious route.

3.2 Bumped Ribbon Retrieval

Our main contribution is bumped ribbon retrieval (BuRR), which reduces the required ribbon
width to a constant that only depends on the targeted space efficiency. BuRR is based on
two ideas.

Bumping. The ribbon solving approach manages to insert most rows (representing most
keys of S) even when w is small. Thus, by eliminating those rows/keys that cause a linear
dependency, we obtain a compact retrieval data structure for a large subset of S. The
remaining keys are bumped, meaning they are handled by a fallback data structure which,
by recursion, can be a BuRR data structure again. We show that only (9(”1"%) keys need
to be bumped in expectation. Thus, after a constant number of layers (we use 4), a less
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ambitious retrieval data structure can be used to handle the few remaining keys without
bumping.

The main challenge is that we need additional metadata to encode which keys are bumped.
The basic bumped retrieval approach is adopted from the updateable retrieval data structure
filtered retrieval (FiRe) [11]. To shrink the input size by a moderate constant factor, FiRe
needs a constant number of bits per key (around 4). This leads to very high space overhead
for small 7. A crucial observation for BuRR is that bumping can be done with coarser than
per-key granularity. We will bump keys based on their starting position and say position i is
bumped to indicate that all keys with s(z) = i are bumped. Bumping by position is sufficient
because linear dependencies in A are largely unrelated to the actual bit patterns c(z) but
mostly caused by fluctuations in the number of keys mapped to different parts of the matrix A.
By selectively bumping ranges of positions in overloaded parts of the system, we can obtain a
solvable system. Furthermore, our analysis shows that we can drastically limit the spectrum
of possible bumping ranges, see below.

Overloading. Besides metadata, space overhead results from the m — n + ny; excess slots of
the table where ny, is the number of bumped keys. Trying out possible values of € = *=% > (
one sees that the overhead due to excess slots is always Q(1/w) and will thus dominate the
overhead due to metadata. However, we show that by choosing e < 0 (of order —e = (’)(10%)),
i.e., by overloading the table, we can almost completely eliminate excess table slots so that
the minuscule amount of metadata becomes the dominant remaining overhead. There are
many ways to decide and encode which keys are bumped. Here, we outline a simple variant
that achieves very good performance in practice and is a generalization of the theoretically
analyzed approach. We expand on the much larger design space of BuRR in Section 11.

Deciding what to bump. We subdivide the possible starting positions into buckets of
width b = (’)(w2 /log w) and allow to bump a single initial range of each bucket. The keys
(or more precisely pairs of hashes and the value to be retrieved) are sorted according to the
bucket addressed by the starting position s(z). We use a fast in-place integer sorter for this
purpose [2]. Then buckets are processed one after the other from left to right. Within a
bucket, however, keys are inserted into the row echelon form from right to left. The reason
for this is that insertions of the previous bucket may have “spilled over” causing additional
load on the left of the bucket — an issue we wish to confront as late as possible. See also
Figure 3.

If all keys of a bucket can be successfully inserted, no keys of the bucket are bumped.
Otherwise, suppose the first failed insertion for a bucket [i,i + b) concerns a key where
s(x) =i+ k is the k-th position of the bucket. We could decide to bump all keys z’ of the
bucket with s(z’) < i+ k, which would require storing the threshold k using O(logw) bits
and which would yield an overhead of O(log®(w)/w?) due to metadata. Instead, to reduce
this overhead to O(log(w)/w?), we only allow a constant number of threshold values. This
means that we find the smallest threshold value ¢ with ¢ > k representable by metadata and
bump all keys 2’ with s(z’) <1+ t. This requires rolling back the insertions of keys z’ with
s(z’) € [k, t] by clearing the most recently populated rows from the row echelon form. One
good compromise between space and speed stores 2 bits per bucket encoding the threshold
values {0, ¢, u, b}, for suitable £ and u. The special case £ = u = gw is used in our analysis.
Another slightly more compact variant “17-bit” stores one bit encoding threshold values
from the set {0,t}, for a suitable ¢, and additionally stores a hash table of exceptions for
thresholds > t.

Running times. With these ingredients we obtain Theorem 2 stated on page 2. It implies
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w — 1 positions
bucket 1 bucket 2 after last bucket

rows in
bucket 1

rows in
bucket 2

rows sorted by starting position row echelon form

Figure 3 Illustration of BuRR construction with n = 11 keys, m = 2b+w —1 = 15 table positions,
ribbon width w = 4 and bucket size b = 6. Keys of the first bucket were successfully inserted into
row echelon form with two insertions “overflowing” into the second bucket. Insertions of the second
bucket’s rows will be attempted next, in the indicated order.

constant query time® if 7w = O(logn) and linear construction time if w € O(1). For
wider ribbons, construction time is slightly superlinear. However, in practice this does not
necessarily mean that BuRR is slower than other approaches with asymptotically better
bounds as the factor w involves operations with very high locality. An analysis in the external
memory model reveals that BuRR construction is possible with a single scan of the input
and integer sorting of n objects of size O(logn) bits, see Section 11.3.

3.3 Homogeneous Ribbon Filter

For the application of ribbon to AMQs, we can also compute a uniformly random solution of
the homogeneous equation system AZ = 0, i.e., we compute a retrieval data structure that
will retrieve 0" for all keys of S but is unlikely to produce 0" for other inputs. Since AZ =0
is always solvable, there is no need for bumping. The crux is that the false positive rate
is no longer 27" but higher. In Section 9 we show that with table size m = (1 + ¢)n and
€= Q(W) the difference is negligible, thereby showing Theorem 3. Homogeneous
ribbon AMQs are simpler and faster than BuRR but have higher space overhead. Our
experiments indicate that together, BuRR and homogeneous ribbon AMQs cover a large
part of the best tradeoffs for static AMQs.

3.4 Analysis outline

To get an intuition for the relevant linear systems, it is useful to consider two simplifications.
First, assume that E(a:) contains a block of w uniformly random real numbers from [0, 1]
rather than w random bits. Secondly, assume that we sort the rows by starting position and
use Gaussian elimination rather than ribbon to produce a row echelon form. In Figure 4 (a)
we illustrate for such a matrix with x-marks where the pivots would be placed and in yellow
the entries that are eliminated (with one row operation each); both with probability 1, i.e.
barring coincidences where a row operation eliminates more than one entry. The x-marks

5 Tt should be noted that the proof invokes a lookup table in one case to speed up the computation
of a matrix vector product. In Section 5, we argue that lookup tables should be avoided in practice.
Technically, our implementation therefore has a query time of O(r).
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trace a diagonal through the matrix except that the green column and the red row are skipped
because the end of the (gray) area of nonzeroes is reached. “Column failures” correspond to
free variables and therefore unused space. “Row failures” correspond to linearly dependent
equations and therefore failed insertions. This view remains largely intact when handling
Boolean equations in arbitrary order except that the ribbon diagonal, which we introduce as
an analogue to the trace of pivot positions, has a more abstract meaning and probabilistically
suffers from row and column failures depending on its distance to the ribbon border.

(a), (b)

Figure 4 (a) The simplified ribbon diagonal (made up of x-marks) passing through A.
(b) The idea of BuRR: When starting with an “overloaded” linear system and removing sets of rows
strategically, we can often ensure that the ribbon diagonal does not collide with the ribbon border
(except possibly in the beginning and the end).

The idea of standard ribbon is to give the gray ribbon area an expected slope of less
than 1 such that row failures are unlikely. BuRR, as illustrated in Figure 4 (b) largely
avoids both failure types by using a slope bigger than 1 but removing ranges of rows in
strategic positions. Homogeneous ribbon filters, despite being the simplest approach, have
the most subtle analysis as both failure types are allowed to occur. While row failures cannot
cause outright construction failure, they are linked to a compromised false positive rate in a
non-trivial way. Our proofs involve mostly simple techniques as would be used in the analysis
of linear probing, which is unsurprising given that [21] has already established a connection
to Robin Hood hashing. We also profit from queuing theory via results we import from [21].

3.5 Further results

We have several further results around variants of BuRR that we summarize here.

Perhaps most interesting is bump-once ribbon retrieval (Bu'RR), which improves the
worst-case query time by guaranteeing that each key can be retrieved from one out of two
layers — its primary layer or the next one. The primary layer of the keys is now distributed
over all layers (except for the last). When building a layer, the keys bumped from the
previous layer are inserted into the row echelon form first. The layer sizes have to be chosen
in such a way that no bumping is needed for these keys with high probability. Only then are
the keys with the current layer as their primary layer inserted — now allowing bumping. See
Section 11.4 for details.

For building large retrieval data structures, parallel construction is important. Doing
this directly is difficult for ribbon retrieval since there is no efficient way to parallelize
back-substitutions. However, we can partition the equation system into parts that can
be solved independently by bumping w consecutive positions. Note that this can be done
transparently to the query algorithm by using the bumping mechanism that is present anyway.
See Section 11.3 for details.
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r =1logy(1/p) Fastest Filter

16 Bloom [7]
Blocked Bloom [47]

14
Xor [31]

12 Xor+ [31]

10 Xor Fuse [20]

] 2-Block [19]

6 Bu'RR
BuRR

4 BuRR, sparse

% space
100 50 30 16 8 4 2 1 05 02 01 .05 .025 overhead

Figure 5 Fastest AMQ category for different choices of overhead and false-positive rate ¢ =
27". Shaded regions indicates a dependency on the input type. Ranking metric: construction
time per key plus time for three queries, of which one is positive, one negative, and one mixed
(50 % chance of either).

For large r, we accelerate queries by working with sparse bit patterns that set only a
small fraction of the w bits in the window used for BuRR. In some sense, we are covering
here the middle ground between ribbon and spatial coupling [51]. Experiments indicate that
setting 8 out of 64 bits indeed speeds up queries for r € {8,16} at the price of increased
(but still small) overhead. Analysis and further exploration of this middle ground may be an
interesting area for future work.

4 Summary of Experimental Findings

We performed extensive experiments to evaluate our ribbon-based data structures and
competitors. We summarize our findings here with details provided in Section 12. Two
preliminary remarks are in order: Firstly, since every retrieval data structure can be used as
a filter but not vice versa, our experiments are for filters, which admits a larger number of
competitors. Secondly, to reduce complexity (for now), our speed ranking considers the sum

of construction time per key and three query times.%

Ribbon yields the fastest static AMQs for overhead < 44%. Consider Figure 1 on
page 4, where we show the tradeoff between space overhead and computation cost for a range
of AMQs for false positive rate ¢ ~ 278 (i.e., = 8 for BuRR) and large inputs.” In the
parallel workload on the right all cores access many AMQs randomly.

Only three AMQs have Pareto-optimal configurations for this case: BuRR for space
overhead below 5% (actually achieving between 1.4 % and 0.2 % for a narrow time range of
830-890 ns), homogeneous ribbon for space overhead below 44 % (actually achieving between
20% and 10 % for a narrow time range 580-660ns), and blocked Bloom filters [17] with time

5 Queries measured in three settings: Positive keys, negative keys and a mixed data set (50 % chance of
being positive). The latter is not an average of the first two due to branch mispredictions.

7 Small deviations of parameters are necessary because not all filters support arbitrary parameter choices.
Also note that different filters have different functionality: (Blocked) Bloom allows dynamic insertion,
Cuckoo, Morton and Quotient additionally allow deletion and counting. Xor [10, 20, 31], Coupled [51],
LMSS [38] and all ribbon variants are static retrieval data structures.
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around 400 ns at the price of space overhead of around 50 %. All other tried AMQs are
dominated by homogeneous ribbon and BuRR. Somewhat surprisingly, this even includes
plain Bloom filters [7] which are slow because they incur several cache faults for each insertion
and positive query. Since plain Bloom filters are extensively used in practice (often in cases
where a static interface suffices), we conclude that homogeneous ribbon and BuRR are fast
enough for a wide range of applications, opening the way for substantial space savings in
those settings. BuRR is at least twice as fast as all tried retrieval data structures.® The
filter data structures that support counting and deletion (Cuckoo filters [25] and the related
Morton filters [11] as well as the quotient filters QF [10] and CQF [5]) are slower than the
best static AMQs.

The situation changes slightly when going to a sequential workload with large inputs as
shown on the left of Figure 1.Blocked Bloom and BuRR are still the best filters for large and
small overhead, respectively. But now homogeneous ribbon and (variants of) the hypergraph

peeling based Xor filters [31, 20] share the middle-ground of the Pareto curve between them.

Also, plain Bloom filters are almost dominated by Xor filters with half the overhead. The
reason is that modern CPUs can handle several main memory accesses in parallel. This is
very helpful for Bloom and Xor, whose queries do little else than computing the logical (x)or
of a small number of randomly chosen memory cells. Nevertheless, the faster variants of
BuRR are only moderately slower than Bloom and Xor filters while having at least an order
of magnitude smaller overheads.

Further Results. Other claims supported by our data are:
Good ribbon widths are w = 32 and w = 64. Ribbon widths as small as w = 16 can

achieve small overhead but at least on 64-bit processors, w € {32,64} seems most sensible.

The case w = 32 is only 15-20 % faster than w = 64 while the latter has about four times
less overhead. Thus the case w = 64 seems the most favorable one. This confirms that
the linear dependence of the construction time on w is to some extent hidden behind the
cache faults which are similar for both values of w (this is in line with our analysis in the
external memory model).

Bu'RR is slower than BuRR by about 20 %, which may be a reasonable price for
better worst-case query time in some real-time applications.’

The 11-bit variant of BuRR is smaller but slower than the variant with 2-bit
metadata per bucket, as expected, though not by a large margin.

Smaller inputs and smaller r change little. For inputs that fit into cache, the
Pareto curve is still dominated by blocked Bloom, homogeneous ribbon, and BuRR, but
the performance penalty for achieving low overhead increases. For r = 1 we have data
for additional competitors. GOV [29], which relies on structured Gaussian elimination,

is several times slower than BuRR and exhibits an unfavorable time—overhead tradeoff.

2-block [19] uses two small dense blocks of nonzeroes and can achieve very small overhead
at the cost of prohibitively expensive construction.

For large r, Xor filters and Cuckoo filters come into play. Figure 5 shows the
fastest AMQ depending on overhead and false positive rate ¢ = 27" up to r = 16. While
blocked Bloom, homogeneous ribbon, and BuRR cover most of the area, they lose ground
for large r because their running time depends on r. Here Xor filters and Cuckoo filters
make an appearance.

8 FiRe [44] is likely to be faster but has two orders of magnitude higher overhead; see Section 12 for more
details.
9 Part of the performance difference might be due to implementation details; see Section 11.4.
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Bloom filters and Ribbon filters are fast for negative queries where, on average,
only two bits need to be retrieved to prove that a key is not in the set. This improves
the relative standing of plain Bloom filters on large and parallel workloads with mostly
negative queries.

Xor filters [31] and Coupled [51] have fast queries since they can exploit parallelism
in memory accesses. They suffer, however, from slow construction on large sequential
inputs due to poor locality, and exhibit poor query performance when accessed from many
threads in parallel. For small n, large r, and overhead between 8 % and 20 %, Coupled
becomes the fastest AMQ.

5 Related Results and Techniques

We now take the time to review some related work on retrieval including all approaches listed
in Table 1.

Related Problems. An important application of retrieval besides AMQs is encoding perfect
hash functions (PHF), i.e. an injective function p : S — [(1+¢)|S]] for given S C U. Objectives
for p are compact encoding, fast evaluation and small €. Consider a result from cuckoo
hashing [26, 27, 37], namely that given four hash functions hq, he, hs, hy : S — [1.024|5]]
there exists, with high probability, a choice function f : S — [4] such that x — hy ) (x)
is injective. A 2-bit retrieval data structure for f therefore gives rise to a perfect hash
function [10], see also [13]. Retrieval data structures can also be used to directly store
compact names of objects, e.g., in column-oriented databases [14]. This takes more space
than perfect hashing but allows to encode the ordering of the keys into the names.

In retrieval for AMQs and PHFs the stored values f(z) € {0,1}" are uniformly random.
However, some authors consider applications where f(z) has a skewed distribution and the
overhead of the retrieval data structure is measured with respect to the 0-th order empirical
entropy of f [32, 4, 29]. Note that once we can do 1-bit retrieval with low overhead, we
can use that to store data with prefix-free variable-bit-length encoding (e.g. Huffman or
Golomb codes). We can store the k-th bit of f(x) as data to be retrieved for the input
tuple (z, k). This can be further improved by storing R 1-bit retrieval data structures where
R =maxcs |f(z)| [32, 4, 29]. By interleaving these data structures, one can make queries
almost as fast as in the case of fixed r.

More Linear Algebra based approaches. It has long been known that some matrices
with random entries are likely to have full rank, even when sparse [14] and density thresholds
for random k-XORSAT formulas to be solvable — either at all [24, 16] or with a linear time
peeling algorithm [42, 33] — have been determined.

Building on such knowledge, a solution to the retrieval problem was identified by Botelho,
Pagh and Ziviani [9, 8, 10] in the context of perfect hashing. In our terminology, their rows
ﬁ(x) contain 3 random 1-entries per key which makes AZ = b solvable with peeling, provided
m > 1.22n.

Several works develop the idea from [10]. In [28, 29] only m > 1.089n is needed in
principle (or m > 1.0238n for |h(z)| = 4) but a Gaussian solver has to be used. More recently
in the spatial coupling approach [51] h(z) has k random 1-entries within a small window,
achieving space overhead ~ e* while still allowing a peeling solver. With some squinting,
a class of linear erasure correcting codes from [38] can be interpreted as a retrieval data
structure of a similar vein, where |h(z)| € {5,...,k} is random with expectation O(log k).

Two recent approaches also based on sparse matrix solving are [19, 21] where h(z) contains
two blocks or one block of random bits. Our ribbon approach builds on the latter.
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We end this section with a discussion of seemingly promising techniques and give reasons
why we choose not to use them in this paper. Some more details on methods used in the
experiments are also discussed in Section 12.

Shards. A widely used technique in hashing-based data structures is to use a splitting
hash function to first divide the input set into many much smaller sets (shards, buckets,
chunks, bins,...) that can then be handled separately [29, 3, 19, 21, 1, 46]. This incurs only
linear time overhead during preprocessing and constant time overhead during a query, and
allows to limit the impact of superlinear cost of further processing to the size of the shard.
Even to ribbon, this could be used in multiple ways. For example, by statically splitting the
table into pieces of size n® for standard ribbon, one can achieve space overhead € + O(n™¢),
preprocessing time O(n/e), and query time O(r) [21]. This is, however, underwhelming
on reflection. Before arriving at the current form of BuRR, we designed several variants
based on sharding but never achieved better overhead than Q(1/w). The current overhead of
O(log w/ w2) comes from using the splitting technique in a “soft” way — keys are assigned to
buckets for the purpose of defining bumping information but the ribbon solver may implicitly
allocate them to subsequent buckets.

Table lookup. The first asymptotically efficient succinct retrieval data structure we are
aware of [16] uses two levels of sharding to obtain very small shards of size O (\/@)
with small asymptotic overhead. It then uses dense random matrices per shard to ob-
tain per-shard retrieval data structures. This can be done in constant time per shard by
tabulating the solutions of all possible matrices. This leads to a multiplicative overhead
of (’)(log logn/ \/@) Belazzougui and Venturini [4] use slightly larger shards of size
O((1 + loglog(n)/r)loglog(n)/logn). Using carefully designed random lookup tables they
show that linear construction time, constant lookup time, and overhead O((log logn)?/ log n)
is possible. We discussed on page 2 why we suspect large overhead for [16] and [4] in practice.

In general, lookup tables are often problematic for compressed data structures in practice
— they cause additional space overhead and cache faults. Even if the table is small and fits
into cache, this may yield efficient benchmarks but can still cause cache faults in practical
workloads where the data structure is only a small part in a large software system with a
large working set.

Cascaded bumping. Hash tables consisting of multiple shrinking levels are also used in
multilevel adaptive hashing [12] and filter hashing [26]. While similar to BuRR in this sense,
they do not maintain bumping information. This is fine for storing key-value pairs because
all levels can be searched for a requested key. But it is unclear how the idea would work in
the context of retrieval, i.e. without storing keys.

6 Ribbon Insertions

In this section we enhance the SGAUSS construction for retrieval from [21] with a new solver
called Rapid Incremental Boolean Banding ON the fly (Ribbon), which is the basis of all
ribbon variants considered later.

The SGAUSS construction. For a parameter w € N that we call the ribbon width, the
vector h(z) € {0,1}™ is given by a random starting position s(z) € [m —w —1] and a random
coefficient vector c(x) € {0,1}% as h(z) = 0°@)~1¢(2)0m—5(*)=w+1 Note that even though

-

m-bit vectors like h(x) are used to simplify mathematical discussion, such vectors can be
represented using log(m) + w bits. The matrix A with rows (h(z)),ecs sorted by s(z) has all
of its l-entries in a “ribbon” of width w that randomly passes through the matrix from the

top left to the bottom right, as in Figure 2 (a). The authors show:

13
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» Theorem 4 ([21, Thm 2]). For any constant 0 < & < 3 and 2 =1 — ¢ there is a suitable

-

choice for w = @(lofn) such that with high probability the linear system (h(z)-Z = f())zes

=

is solvable for any r € N and any f : S — {0,1}". Moreover, after sorting (h(x))zes by s(z),
Gaussian elimination can compute a solution Z in expected time O(n/e?).

Boolean banding on the fly. For ribbon retrieval we use the same hash function h as in
SGAUSS except that we force coefficient vectors ¢(z) to start with 1, which slightly improves
presentation and prevents construction failures caused by single keys with ¢(z) = 0¥. The
main difference lies in how we solve the linear system. The insertion phase maintains a
system M of linear equations in row echelon form using on-the-fly Gaussian elimination [6].
This system is of the form shown in Figure 2 (b) and has m rows that we also call slots.
The i-th slot contains a w-bit vector ¢; € {0,1}* and b; € {0,1}". Logically, the i-th slot is
either empty (c; = 0") or specifies a linear equation c¢; - Z}; ;4. = b; where ¢; starts with a
1. With Zj; ;1) € {0,1}"*" we refer to rows 4,...,i+w — 1 of Z € {0,1}""*". We ensure
Ci * Zjiigw) 18 well-defined even when 7 +w — 1 > m with the invariant that c¢; never selects
“out of bounds” rows of Z.

We consider the equations ﬁ(m) - Z = f(x) for € S one by one, in arbitrary order, and
try to integrate each into M using Algorithm 1, which we explain now.

Algorithm 1: Adding a key’s equation to the linear system M.

1 (i,¢,b) <= (s(x), c(x), f(2))

2 loop

3 if M.c[i] =0 then // slot i of M is empty
4 (M.c[i], M.b[i]) < (c,b)

5 L return SUCCESS

6 (¢,b) « (c® M.c[i],b® M.b[i])

7 if ¢ =0 then

8 if b =0 then return REDUNDANT

9 L else return FAILURE

10 j < findFirstSet(c) // a.k.a. BitScanForward
11 141+

12 c4+-c>>7j// logical shift last toward first

A key’s equation may be modified several times before it can be added to M, but a loop
invariant is that its form is

¢+ Zjjitw) = b for some i € [m], c € 10{0,1}*"1, b€ {0,1}". (1)

The initial equation h(z) - Z = f(z) of key x € S has this form with i = s(z), ¢ = ¢(z) and

b= f(x).

Case 1: In the simplest case, slot i of M is empty and we can store Equation (1) in it.

Case 2: Otherwise slot i of M is occupied by an equation ¢; - Z; j1..) = b;. We perform a
row operation to obtain the new equation

¢ Zjjiqwy =b with ¢ =c@¢; and ' = b P b, (2)

which, in the presence of the equation in slot ¢ of M, puts the same constraint on Z as
Equation (1). Both ¢ and ¢; start with 1, so ¢ starts with 0. We consider the following
sub-cases.
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Case 2.1: ¢/ = 0% and b = 0". The equation is void and can be ignored. This happens
when the original equation of x is implied by equations previously added to M.

Case 2.2: ¢ = 0% and V' # 0". The equation is unsatisfiable. This happens when the
key’s original equation is inconsistent with equations previously added to M.

Case 2.3: ¢ starts with j > 0 zeroes followed by a 1. Then Equation (2) can be rewritten
as " - Zpyr i) = U where i =i+ j and ¢ is obtained from ¢’ by discarding the j
leading zeroes of ¢ and appending j trailing zeroes.'’

Termination is guaranteed since 4 increases with each loop iteration.

“On-the-fly” and “incremental.”” The insertion phase of Ribbon is on-the-fly [0], i.e.

maintains a row echelon form as keys arrive. This allows us to determine the longest prefix
(z1,...,2,) of asequence S = (x1,x2,x3,...) of keys for which construction succeeds: Simply
insert keys until the first failure. We say the insertion phase is incremental since an insertion
may lead to a new row in M but does not modify existing rows. This allows us to easily

undo the most recent successful insertions by clearing the slots of M that were filled last.

These properties are not shared by SGAUSS and will be exploited by BuRR in Section 10.

Efficiency. Running times of SGAUSS and Ribbon are tied in O-notation. However, Ribbon
improves upon SGAUSS in constant factors for the following reasons:
Ribbon need not pre-sort the keys by s(z).

During construction, SGAUSS explicitly maintains for each row the index of the left-most 1.

Ribbon represents these implicitly, saving significant amounts memory.

SGAUSS performs some number D of elimination steps, which, depending on some bit,
turn out to be xor-operations or no-ops. Ribbon on the other hand performs roughly D/2
bit shifts and D/2 (unconditional) xor operations. Though the details are complicated,
intuition on branching complexity seems to favor Ribbon.

7 Analysis of Ribbon Insertions

Given a set S of n keys we wish to analyze the process of inserting these keys into the
system M using Algorithm 1. In particular, we are interested in the number of successful
and failed insertions, the set of occupied slots in M and the total running time. Recall
that A € {0,1}"*™ contains the rows h(z) for # € S sorted by s(z), see Figure 2 (a). Our
analysis considers the ribbon diagonal, which is a line passing through A. We begin with an
instructive simplification.

7.1 A Warm Up: The Simplified Ribbon Diagonal

We make the following two assumptions:

(M1) Keys are inserted in the order they appear in A (sorted by s(x)). This ensures that the
insertion of each key x € S fails or succeeds within the first w steps because no 1-entries
can exist in M beyond column s(z) +w — 1.

(M2) Inserting = € S fills the first free slot i € [s(z), s(x) + w — 1] unless all of these slots
are occupied, in which case the insertion fails. This ignores the role of ¢(x).

Figure 4 visualizes the process with an x in position (j,) if the insertion of the j-th key fills

slot i of M. These points approximately trace a diagonal line from top left to bottom right

and we call it the simplified ribbon diagonal dsimp. We make the following observations:

10Note that in the bit-shift of Algorithm 1 the roles of “leading” and “trailing” may seem reversed because
the least-significant “first” bit of a word is conventionally thought of as the “right-most” bit.
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(01) If dsimp were to cross the bottom border of the ribbon, it skips a column (shown in
green). Column 3 is skipped if and only if slot ¢ of M remains empty.

(02) If d were to cross the right border of the ribbon, it skips a row (shown in red). Row j
is skipped if and only if the j-th key is not inserted successfully.

(03) The area enclosed between d and the left border of the ribbon (shown in yellow) is an
upper bound on the number of row operations performed during successful insertions.

7.2 The Ribbon Diagonal

A formal analysis can salvage much of the intuition from the simplified model. First, we
show that (M1), though not (M2), can be made without loss of generality. For an adjusted
definition of the ribbon diagonal, we then prove probabilistic versions of (01), (02) and (03).
The following notation will be useful.

S;i={x e S|s(x) <i}ands; =|S, for i € [m].

S’ C S is the set of keys not inserted successfully. Moreover, S; = S; N S” and s, = |5]|.

r;, for ¢ € [m], is the rank of the first ¢ columns of A.

Py is the set of slots of M that end up being filled.

On (M1): The order of keys is irrelevant. Since M arises from A by row operations, which
do not affect ranks of sets of columns, we conclude that r; is the rank of the first i columns
of M, regardless of the order in which keys are handled. From the form of M (see Figure 2
(b)) it is clear that ¢ € Py; < r; = r;—1 + 1. Therefore, the set Py, and thus the number
n — | Py | = |S’] of failed insertions is also invariant.

Assuming all insertions are successful, the number of row operations performed for key z
is at most the distance of s(z) to the slot i(z) € Py that is filled. An invariant upper bound
A on the number of row operations, which are the dominating contribution to construction
time, is then

A=) (i(z) —s) = Y i— > s(a). (3)

zes i€ Py €S

Except for the time related to failed insertions, which we have to bound separately, we can
derive everything we want from S and the invariants Py, |S’|. We can therefore assume
(M1).

Definition and properties of d. Given (M1), we formally define the ribbon diagonal d as
the following set of matrix positions in A.

d={(di,i) | i € [m]} where d; = r; + sj_, 1.

It is useful to imagine the “default case” to be r; = r;_1 + 1 and s, = s;_;. We then have
d; = d;_1 + 1 and the ribbon diagonal indeed moves diagonally down and to the right. An
empty slot i ¢ Py correspond to a right-shift (due to r; = r;,_1) and a failed insertion of a
key with s(x) =4 —w + 1 correspond to a down-shift (due to sj_, ., > s;_,,).

Let us first check that d is actually within the ribbon. More precisely:

» Lemma 5. For any i € [m], d; is not below the bottom ribbon border s; and at most one
position above the top ribbon border s;_,, + 1.
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Proof. The first claim holds because
di =i+ 8i_yyq <ri+8;=|Pun[li]|+s;<s;

where the last step uses that each key in S; can fail to be inserted or fill a slot in M, but not
both. The latter is true because

di = |Po N1 4 851 = (Sicwt1 = Simwpp1) + Sicwi1 = Sicwtl = Sicw-

where the first “>” uses that the first s;_,, 1 rows cause $;_,+1 — S;—w—i-l slots with index
at most ¢ to be filled. <

The first part of Lemma 5 ensures that the height h; := s; — d; of the ribbon diagonal
above the bottom ribbon border is non-negative. It plays a central role in the precise
versions of (01) to (03) we prove next. The main adjustment we have to make is that d
is probabilistically repelled when close to the ribbon border, while dgimp only responds to
outright collisions.

» Lemma 6 (Precise version of (01)). We have Pr[i ¢ Py | hi—1 = k] < 27% for any k € No.

Proof. A useful alternative way to think about Algorithm 1 uses language from linear
probing: A key x probes slots s(z),s(z) + 1,...,s(x) + w — 1 one by one. When probing
an empty slot, x is inserted into that slot with probability %, otherwise it keeps probing.!!
Now consider slot i. Of the s;_; keys with starting position at most ¢ — 1, precisely r;_1
are successfully inserted to slots in [1,7 — 1] and s}_,, insertions fail without probing slot
i. Therefore s;_1 — s;_,, — ri—1 = 8;—1 — d;—1 = h;_1 keys probe slot 7. So conditioned on

hi_1 = k, slot i remains empty with probability at most 27*. |

» Lemma 7 (Precise version of (02)). Let = be a key with s(x) = i.

(a) Let i € [i,i + w] be the column of A where the ribbon diagonal passes the row of x.
Assume i’ — i =w — k, i.e. i’ is k positions left of the right ribbon border. Conditioned
on this, Prfz € S'] <27k,

(b) A simple variant of this claim is: If h; < w — k for some k € N then Pr[z € S'] < 27k,

Proof. (a) Let i = s(x). We may assume that x is the last key with starting position 4
as this can only increase Pr[x € S’]. This means x corresponds to row s; and hence
diy» > s;. Of the s; — 1 keys that are handled before x, exactly r;_; are inserted before
slot ¢ and at least s;_; were not inserted successfully. The number of slots in [i,m] that
are occupied when z is handled is therefore at most

si—l—rin—s8_ 1 <dp—1=ri1—8_ ="y +8y w1 —1—1i1—8_4
Sri’_ri—l_léi/_i:w_k'
This means at least k slots within [i,7 + w — 1] are empty. The probability that x cannot

be inserted despite probing these k slots is 27%.
(b) The assumption gives an alternative way to derive the same intermediate step:

Si—l—ri,1—$271SSi—Ti—S;7w+1:Si—di:hig’w—k. <

' This uses that for any key = and i € [s(x) + 1, s(z) + w — 1] the random coefficient a; that z has for slot
4 remains fully random until slot ¢ is reached, since the bits that are added to a; during row operations
are uncorrelated with a;.

17



18

Fast Succinct Retrieval and Approximate Membership using Ribbon

» Lemma 8 (Precise version of (03)). Let op, be the number of row operations performed
during successful insertions. We have op < n(w — 1) (trivially) as well as op, < Zie[m] hi.

Proof. First assume that all insertions succeed and consider Equation (3). Since i(x)—s(x) <
w — 1 holds for all x € S the trivial bound op, <A < n(w — 1) follows. Now consider the
right hand side of Equation (3). The sum }__s(s(z) — 1) can be interpreted as the area in
A (i.e. the number of matrix positions) left of the ribbon. Moreover we have

Sli-1)=> [Punfi+lm]=> n-r=Y n—d.
i€[m]

1€ Py 1€[m)] 1€[m]

which is the area below the ribbon diagonal. This makes A the area enclosed between the
ribbon diagonal and the lower ribbon border. A column-wise computation of this area yields
op; <A = Zie[m] h; as desired.

Contrary to our initial assumption, there may be keys that fail to be inserted. But our
bounds remain valid in the presence of such keys: The number op, only counts operations
made for successfully inserted keys and hence does not change. Our bounds n(w — 1) and
Zie[m} h; are easily seen to increase by w — 1 and w, respectively, for each additional “failing”
key we take into account. |

7.3 Chernoff Bounds
The following lemma will play a role in Sections 9 and 10.

> Lemma 9. Let (X;)jen) be ii.d. indicator random variables, X := } ;. X; and
pwi=EX.
(a) For d € [0,1] we have Pr[|X — u| > du] < 2exp(—582p/3).
2
(b) There;m'sts C > 0 such that for any w € N and p < Czlggw we have Pr[|X —pu| > €] =
O(w™).

Proof. (a) This combines standard Chernoff bounds on the probability of {X > (14 d)u}
and {X < (1 —d)p} as found for instance in [11, Chapter 4].
(b) We set 6 = g and apply (a). This gives

2 ogw —
Pr{|X — | > %] < 2exp(—6°1/3) = 2exp(— 1) < 2exp(—5%Y) = 2w /3,

Choosing C' = 1920 achieves the desired bound.'? <

8 Analysis of Standard Ribbon Retrieval

By standard ribbon we mean the original design from [21], except that we use our improved
solver. We sketch an implementation in Algorithm 2 and recall the broad strokes of the
analysis from [21] which will help us to analyze homogeneous ribbon filters in Section 9.

Given n € N keys we allocate a system M of size m = n/(1 —¢) +w — 1 and try to insert
all keys using Algorithm 1. If any insertion fails, the entire construction is restarted with
new hash functions. Otherwise, we obtain a solution Z to M in the back substitution phase.
The rows of Z are obtained from bottom to top. If slot ¢ of M contains an equation then
this equation uniquely determines row i of Z in terms of later rows of Z. If slot i of M is
empty, then row i of Z can be initialized arbitrarily.

12We do not attempt to optimise C' here. In practice much smaller values of C are sufficient, see Section 12
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Algorithm 2: The construction algorithm of standard ribbon.
Input: f:S — {0,1}" for some S C U of size n.
Parameters: w € N, £ > 0.

1 m<+n/(l—e¢)+w—1; allocate system M of size m

2 pick hash functions s : U — [m —w+ 1], ¢: U — {0,1}¥
3 for x € S do

4 ret < insert(x) // using Algorithm 1

5 if ret = FAILURE then

6 L restart

7 7+ QM

8 for i = m down to 1 do

©

L Z; + M.cli] - Z; iyw-1 // back substitution

10 return (s,¢,Z)

The expected “slope” of the ribbon is 1 — ¢, giving us reason to hope that the ribbon
diagonal will stick to the left ribbon border making failures unlikely.

» Lemma 10. The heights h; :== s; — d; for i € [m] satisfy:
(a) E[h;] < O(1/e)
(b) Yk € N: Pr[h; > k] = exp(—Q(ek)).

Proof idea from [21]. By definition of h;, d; and r; we have

hi—hi1 = (si—si—1) = (ri = 7i-1) = (Si_wy1 — Si—w)

< (si—si-1) = (ri —=7riz1) = (5i — 8i—1) — Licpy,-

The number s; — s;_1 of keys with starting position ¢ has distribution Bin(n, m%w-&-l) which
is approximately Po(1 — ¢). By Lemma 6 we have Pr[i ¢ Py;] < 27"-1. Roughly speaking
this means that Pr[1,cp,, # 1] is negligible as soon as h;_1 rises to a value large enough to
threaten the upper bounds we intend to prove. A coupling argument then allows us to upper
bound h; in terms of a so-called M/D/1 queue. In every time step Po(1 —€) customers arrive
and 1 customer can be serviced. The stated bounds on (a) expectation and (b) tails of h;
stem from the literature on such queues.

We remark that the term sj_,,  , —sj_,,
translates to customers abandoning the queue after waiting for w time steps without being
serviced. <

that we ignored relates to failed insertions. It

By choosing w = Q(lo%) it follows from Lemma 10 (b) that h; < w/2 for all i € [m)]
whp. Lemma 7 (b) then ensures that all keys can be inserted successfully whp. Combining
Lemma 8 with Lemma 10 (a) shows that the expected number of row operations during
construction is O(n/e). This proves Theorem 1.

9 Analysis of Homogeneous Ribbon Filters

In this section we give a precise description and analysis of homogeneous ribbon filters, which
are even simpler than filters based on standard ribbon but unsuitable for retrieval.

Recall the approach for constructing a filter by picking hash functions h:U — {0,1}™,
f:U — {0,1}" and finding Z € {0,1}™*" such that all z € S satisfy h(z) - Z = f(z), while
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most € U \ S do not. We now dispose of the fingerprint function f, effectively setting
f(xz) =0 for all z € Y. A filter is then given by a solution Z to the homogeneous system
(h(z)-Z = 0")zes. The FP rate for Z is ¢z = Pro~pgla-Z = 0"] where H is the distribution
of h(x) for z € Y. An immediate issue with the idea is that Z = 0™*" is a valid solution but
gives pz = 1. We therefore pick Z uniformly at random from all solutions. If h has the form
h(z) = 05@~1e(z)0m=s@~w+l from standard ribbon retrieval, we call the resulting filter
a homogeneous ribbon filter. The full construction is shown in Algorithm 3. Two notable
simplifications compared to Algorithm 2 are that no function f is needed and that a restart
is never required. Note, however, that free variables must now be sampled uniformly at
random'? during back substitution.

Algorithm 3: The construction algorithm of homogeneous ribbon filters.
Input: S C U of size n.
Parameters: » € Nyw € Nje > 0.
m <+ n/(1—¢)+w— 1; allocate system M of size m
pick hash functions s : U — [m —w+ 1], ¢: U — {0,1}¥
sort S approximately by s(x) (see Lemma 11)
for x € S do
L insert(r) // using Algorithm 1 with f=0. Cannot fail!

Z « Qmxr
for i = m down to 1 do
if M.c[i{] =0 then // slot unused?
‘ sample Z; ~ U({0,1}") // randomly initialize free variable
10 else
11 L Zi + M.cli] - Z;. iyw—1 // back substitution

(S B I VN

© w N o

12 return (s, ¢, 2)

The overall FP rate is ¢ = E[@z] where Z depends on the randomness in (h(z))zes and
the free variables. A complication is that ¢ = 27" no longer holds, instead there is a gap
@ —27" > 0. We show that this gap is negligible under two conditions. Firstly, the filter must
be underloaded, with e ~ ™~ > 0, which leads to a memory overhead of O(e). Secondly, the
ribbon width w must satisfy w = Q(r/e). The good news is that there is no dependence of
w on n (such as w = Q(lo%) required in standard ribbon) and that no sharding or bumping

is required. More precisely, we prove Theorem 3, restated here for convenience.

» Theorem 3. Let r € N and ¢ € (0,3]. There is w € N with ——%—— = O(1/¢) such

) max(r,logw) =
that the homogeneous ribbon filter with ribbon width w has false positive rate ¢ ~ 27" and
space overhead O(g). On a word RAM with word size > w expected construction time is
O(n/e) and query time is O(r).

max(r,loglogn) )

Note that when targeting w = ©(log n) we can achieve an overhead of e = O( Togn

13 Our implementation uses trivial pseudo-random assignments instead: a free variable in row i is assigned
pi mod 2" for some fixed large odd number p.
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9.1 Proof of Theorem 3

The easier part is to prove the running time bounds. The query time of O(r) is, in fact,
obvious. For the construction time, we reuse results for standard ribbon. Though insertions
cannot fail, the set of redundant keys, i.e. keys for which Algorithm 1 returns “REDUNDANT”
rather than “SUCCESS” now demands attention.

» Lemma 11. Consider the setting of Theorem 3.
(a) The fraction of keys that lead to redundant insertions is exp(—Q(cw)).
(b) The expected number of row additions during construction is O(n/e).

Proof. (a) Any key x € S with a starting position i = s(z) for which h; < w/2 is, by
Lemma 7 (b), inserted successfully with probability at least 1 — 2~*/2. By Lemma 10
the expected fraction of positions to which this argument does not apply is exp(—Q(sw)).
From this it is not hard to see that the expected fraction of keys to which this argument
does not apply is also exp(—Q(ew)). The fraction of keys not inserted successfully is
therefore O(27%/2) 4 exp(—Q(cw)) = exp(—Q(cw)).

(b) Combining Lemma 8 with Lemma 10 (a) shows that the expected number of row opera-
tions during successful insertions is O(n/e). Redundant keys are somewhat annoying
to deal with. They are the reason we partially sort the key set in Algorithm 3. If keys
are sorted into buckets of b consecutive starting positions each and buckets handled
from left to right, then no attempted insertion can take longer than b 4+ w steps. Thus,
b < exp(Q(ew)) ensures that redundant insertions contribute O(n) to expected total
running time. <

To get a grip on the false positive rate, we start with the following simple observation.

» Lemma 12. Let p be the probability that for y € U\ S the vector l_i(y) is in the span of
(h(x))zes- The false positive rate of the homogeneous ribbon filter is

p=p+(1-p27"

Proof. First assume there exists §’ C S with A(y) = 3 h(x) which happens with

probability p. In that case

) 2= (3 h@) 2= (i) 2) =0

zeS’ zeS’

zeS’

and y is a false positive. Otherwise, i.e. with probability 1 —p, an attempt to add f_i(y) -Z =0
to M after all equations for S were added would have resulted in a (non-redundant) insertion
in some row 4. During back substitution, only one choice for the i-th row of Z satisfies
h(y) - Z = 0. Since the i-th row was initialized randomly we have Pr[i(y) - Z = 0| h(y) ¢

—

span((h(z))zes)] = 27" <
We now derive an asymptotic bound on p in terms of large w and small €.

» Lemma 13. There exists a constant C' such that whenever C’lo% < e < 5 we have
p = exp(—Q(ew)).

Proof. We may imagine that S C U and y € U \ S are obtained from a set ST C U of size
n+ 1 by picking y € ST at random and setting S = ST\ {y}. Then p is simply the expected
fraction of keys in ST that are contained in some dependent set, i.e. in some S’ C ST with
D ozes h(z) = 0™. Clearly, z is contained in a dependent set if and only if it is contained in
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a minimal dependent set. Such a set S’ always “touches” a consecutive set of positions, i.e.
pos(S’) := U,eg [s(x), s(x) +w — 1] is an interval.

We call an interval I C [m] long if |I| > w? and short otherwise. We call it overloaded if
S;:={z € ST | s(x) € I} has size |S7| > |I| - (1 — €/2). Finally, we call a position i € [m)]
bad if one of the following is the case:

(b1) i is contained in a long overloaded interval.

(b2) i € pos(S’) for a minimal dependent set S’ with long non-overloaded interval pos(S’).
(b3) i € pos(S’) for a minimal dependent set S’ with short interval pos(S’).

We shall now establish the following

Claim: Vi € [m] : Pr[i is bad] = exp(—Q(cw)).

For each i € [m] the contributions from each of the badness conditions (bl,b2,b3) can
be bounded separately. In all cases we use our assumption ¢ > C 10%. It ensures that
exp(—Q(ew)) is at most exp(—Q(logw)) = w1 and can “absorb” factors of w in the sense
that by adapting the constant hidden in Q we have wexp(—Q(ew)) = exp(—Q(ew)).

(b1) Let I C [m] be any interval and X1, ..., X, ;1 indicate which of the keys in ST have a

starting position within /. For n > w and X := Zje[n+1] X; we have

J— EX] < (n+ D)|I] ~ n|I|
' " m-—w+1 m-—w+1

= (1-¢)|Il.

Using a Chernoff bound (Lemma 9 (a)), the probability for I to be overloaded is (for
n > w)

PrX > (1—/2)[I]] S Pr{X > (1+ ¢/2) (1 o)lI]] £ exp(=2Uz2lly (a)
~N Y——
5 >u
The probability for ¢ € [m] to be contained in a long overloaded interval is bounded by
the sum of Equation (4) over all lengths |I| > w? and all |I| offsets that I can have
relative to i. The result is of order exp(—Q(e?w?)) and hence small enough.

(b2) Consider a long interval I that is not overloaded, i.e. |I| > w? and |S7| < (1 —¢/2)|I].
There are at most 2/°7| sets S’ of keys with pos(S’) = I and each is a dependent set
with probability 271/l because each of the |I| positions of I that S’ touches imposes
one parity condition.

A union bound on the probability for I to support at least one dependent set is therefore
211 2l511 = 2= 511 = exp(—Q(e|I])).

Similar as in (b1) for ¢ € [m] we can sum this probability over all admissible lengths
|I| > w? and all offsets that ¢ can have in I to bound the probability that i is bad due
to (b2).

(b3) Let Siea € ST be the set of redundant keys. By Lemma 11 we have E[|S,eq|] =

n - exp(—Q(cw)).
Now if 4 is bad due to (b3) then ¢ € pos(S’) for some minimal dependent set S’
with short pos(S”). At least one key from S’ is redundant (regardless of the insertion
order). In particular, i is within short distance (< w?) of the starting position of a
redundant key z. Therefore at most |Syeq| - 2w? positions are bad due to (b3), which is
an exp(—§(ew))-fraction of all positions as desired.

Simple tail bounds on the number of keys with the same starting position suffice to show the

following variant of the claim:

Claim’: Vx € S : Pr[s(z) is bad] = exp(—Q(csw)).
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Now assume that the key y € ST we singled out is contained in a minimal dependent set S’.
It follows that all of pos(S’) would be bad. Indeed, either pos(S’) is a short interval (— b3)
or it is long. If it is long, then it is overloaded (— bl) or not overloaded (— b2). In any case
s(y) € pos(S’) would be bad.

Therefore, the probability p for y € ST to be contained in a dependent set is at most the
probability for s(y) to be bad. This is upper-bounded by exp(—(cw)) using Claim’ <

We are now ready to prove Theorem 3.

Proof of Theorem 3. We already dealt with running times in Lemma 11.
The constraint ———rtom = O(1/e) leaves us room to assume ew > Cr and ew > C'logw

for a constant C of our choosing. Concerning the false positive rate we obtain

Lem 13 1 - 9
p < exp(—ew) <exp(—2log(w) —r) < —ye " <27
and hence ¢ bem 12, 4 (1-p)27 " <p+277"<e®27" 427" =(1+%)27".

which is close to 27" as desired. Concerning the space overhead, recall its definition as SZ2F —1

where SPACE is the space usage of the filter and OPT = — log, ()n is the information-theoretic
lower bound for filters that achieve false positive rate . We have:

OPT = —log,(p)n > — 10g2(1'2"f2 yn = (r —logy(1+€*))n > (r—e*)n

and SPACE = rm = r(m —w + 1) + O(rw) = = + O(wr)
SPACE r 1

hich yield = wy < -
which yields —20= = G o= TO0) S iraa =

+0(%) <1+ 3¢,

where the last step uses ¢ < % <

10 Analysis of Bumped Ribbon Retrieval (BuRR)

We now single out one variant of BuRR and analyze it fully, thereby proving Theorem 2,
restated here for convenience. The analysis could undoubtably be extended to cover other
variants of BuRR (see Section 11), but in the interest of a cleaner presentation we will not
do so.

» Theorem 2. An r-bit BuRR data structure with ribbon width w = O(logn) and r = O(w)

has expected construction time O(nw), space overhead (9(1;’312“), and query time O(1 + {722).

Recall the idea illustrated in Figure 4 (b): We use m < n, making the data structure
overloaded. This ensures that the ribbon diagonal d rarely hits the bottom ribbon border and
(01)/Lemma 6 suggests that almost all slots in M can be utilized. An immediate problem
is that d would necessarily hit the right ribbon border in at least n — m places, causing at
least n — m insertions to fail. We deal with this by removing contiguous ranges of keys in
strategic positions such that without the corresponding rows, d never hits the right ribbon
border. A small amount of “metadata” indicates the ranges of removed keys. These keys are
bumped to a fallback retrieval data structure. Many variants of this approach are possible,
see Section 11.
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Algorithm 4: The construction algorithm of BuRR as analyzed in Section 10.

Input: f:S5 — {0,1}" for some S C U of size n.

Parameters: w € N.

m <+ n/(1+ %) + w — 1; allocate system M of size m

=

2 pick hash functions s : U — [m —w+1], c: U — {0,1}*

3 b+ %, #buckets < m%“”'l // bucket size & number of buckets
4 for j € [#buckets] do // partition

5 | Bj«{reS|[sx)/b] =7}

6 Hj « {z € Bj|s(x)—(j—1)b< 2w} // head

7 | T;=B;\ H; // tail

8 Sburnped — g

©

for j € [#buckets] do

10 // insertAl1(X): attempt Algorithm 1 for all x € X, roll back on
failure

11 if insertAll(T}) then

12 if insertAll(H;) then

13 ‘ metal[j] < BUMPNOTHING

14 else

15 L Sbumped <~ Sbumped U Hj

16 meta[j] < BUMPHEAD

17 else

18 Sbumped — Sbumped U Bj

19 metalj] < BUMPALL

20 Z « 0™M*"

21 for i = m down to 1 do

22 L Z;i + M.cli] - Z;. i1w-1 // back substitution

23 Dpumped ¢ construct(Sbumped) // recursive, unless base case reached
24 return D = (s, ¢, Z, meta, Dyymped)

10.1 Proof of Theorem 2

Consider Algorithm 4. In what follows, C refers to a constant from Lemma 9. For n keys,

M is given m =n/(1 + %) +w — 1 rows'*. The m — w + 1 possible starting positions

are partitioned into buckets of size b = C{‘(’);w. The first %w slots of a bucket are called its

head, and the larger rest is called its tail. Keys implicitly belong to (the head or tail of) a
bucket according to their starting position. For each bucket the algorithm has three choices:

1. No keys belonging to the bucket are bumped.

2. The keys belonging to the head of the bucket are bumped.

3. All keys of the bucket are bumped.

These choices are made greedily as follows. Buckets are handled from left to right. For each
bucket, we first try to insert all keys belonging to the bucket’s tail. If at least one insertion
fails, then the successful insertions are undone and the entire bucket is bumped, i.e. Option 3

We ignore rounding issues for a clearer presentation and assume that w is large. This causes a certain
disconnect to practical application where concrete values like w = 32 are used.
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is used. Otherwise, we also try to insert the keys belonging to the bucket’s head. If at least
one insertion fails, all insertions of head keys are undone and we choose Option 2, otherwise,
we choose Option 1. The main ingredient in the analysis of this algorithm is the following
lemma, proved later in this section.

» Lemma 14. The expected fraction of empty slots in M is O(w™3).

If the fraction of empty slots is significantly higher than expected, we simply restart the
construction with new hash functions until satisfactory (this is not reflected in Algorithm 4).
After back substitution, we obtain a solution vector of mr bits. Additionally, we need to
store the choices we made, which takes [log, 3] = 2 bits of metadata per bucket. Given that
|Py| =m - (1 — O(w™3)) keys are taken care of, this suggests a space overhead of

2m 1+2L
gzw_lgmr—’_ b_lg T2 -1
OPT | Pas| - 1-0(w™3)

(1+ 3)(1+ 0@ ™) = 1= O(%) + 0w ™) = O(45%) + O(w™) = O(%5).
The last step uses the assumption » = O(w). The trivial bound in Lemma 8 implies that
O(bw) row operations are performed during the successful insertions in a bucket. There
can be at most one failed insertion for each bucket which takes O(b) row operations since
insertions cannot extend past the next (still empty) bucket. Since w = O(logn) bits fit into
a word of a word RAM, these row operations take O(% - (bw + b)) = O(nw) time in total.
A query of a non-bumped key involves computing the product of the w-bit vector ¢(z) and
a block Z(z) of w x r bits from the solution matrix Z € {0,1}™*". The wr bit operations can
be carried out in O(1 4+ &) steps on a word RAM with word size Q2(logn). A complication

logn
is that if w,r € w(1) No(logn) then we are forced us to handle several rows of Z(z) in

parallel (xor-ing a ¢(z)-controlled selection) or several columns of Z(x) in parallel (bitwise
AND with ¢(z) and popcount). Numbers “much bigger than 1 and much smaller than logn”
are a somewhat academic concern, so we believe an academic resolution (not reflected in
our implementation'®) is sufficient: We resort to the standard techniques of tabulating the
results of a suitable set of vector matrix products. Back substitution has the same complexity

as n queries and therefore takes O(n(1 + 1375)) = O(nw) time.

To complete the construction, we still have to deal with the n — |Py| = n — m(1 —
O(w™3)) = (’)("l(’%) bumped keys. A query can easily identify from the metadata whether
a key is bumped, so all we need is another retrieval data structure that is consulted in this
case. We can recursively use bumped ribbon retrieval again. However, to avoid compromising
worst-case query time we only do this for four levels. Let S®) be the set of keys bumped
four times. We have |[S(*)| = O(nloﬁ%) = O(nlgﬁ—);") and we can afford to store S™) using a

retrieval data structure with constant overhead, linear construction time and O(1) worst-case
query time, e.g., using minimum perfect hash functions [10].1¢

10.2 Proof of Lemma 14

We give an induction-like argument showing that “most” buckets satisfy two properties:
(P1) All slots of the bucket are filled.

15 Though AVX512 instructions such as VPOPCNTDQ may benefit a corresponding niche.
16 Qur implementation is optimized for w = Q(logn) and can simply use ribbon retrieval with an
appropriate € > 0.
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P2) The height h; := s; — d; of the ribbon diagonal over the lower ribbon border at the
( g g
last position ¢ of the bucket satisfies h; > %.17

> Claim 15. If (P2) holds for a bucket By then (P1) and (P2) hold for the following
bucket B; with probability 1 —w=3.

Proof. Let ig and i; be the last positions of buckets By and By, respectively. By (P2) for

By we have h;, > %

Case 1: h;, < gw. We claim that with probability 1 — O(w™?) all keys belonging to B
(head and tail) can be inserted and (P1) and (P2) are fulfilled afterwards. The situation
is illustrated in Figure 6 on the left.

The dashed black lines show the expected trajectories of the ribbon borders for bucket
Bj. The lower expected border travels in a straight line from (s;,,4) to the point that is
b = i1 —ig positions to the right and E[{z € S | s(z) € B1}|] = =570 = (1+%)b =
b+ g positions below. The actual position of the border randomly fluctuates around the
expectation. At each point the (vertical) deviation exceeds § with probability at most
O(w™?) by Lemma 9 (b). A union bound shows that it is at most % everywhere in the
bucket and thus within the region shaded red with probability at least 1 — O(w=3). The
region shaded yellow represents a “safety distance” of another g that we wish to keep
from the ribbon border. Finally, the blue line is a perfect diagonal starting from (d;,, %),
which we claim the ribbon diagonal also follows. Due to s;, —d;, = h;, > 7 the diagonal
does not intersect the lower yellow region. To see that it does not intersect the right
yellow region, note that is passes through position (s;,, %0 + hi,) which, by this case’s
assumption is at least %w positions left of the right ribbon border. This is sufficient to
compensate for the width of the red region (fw), the width of the yellow region (fw) as
well as the difference in slope due to overloading which accounts for a relative vertical
shift of another %w.

Now our arguments nicely interlock to show that the ribbon diagonal {(d;,i) | i € By}
follows this designated path: As long as d stays away from the yellow region, it remains
§ Dositions away from the lower and right ribbon borders so each slot remains empty
with probability at most 2=%/8 by Lemma 6 and each insertion fails with probability at
most 2-%/8 by Lemma 7. Conversely, as long as no insertion fails and no slot remains
empty, d proceeds along a diagonal path.

Two small caveats concern the area outside of the rectangle. We do not know the right
ribbon border above row s;,; however, those rows correspond to keys from the previous
bucket and would have been bumped if their insertions failed. We also do not know the
lower border to the right of i;; however here Lemma 7 (b) helps: We may use that the
vertical distance of the ribbon diagonal to the top ribbon border is at most ¢ to conclude
that the keys with the last w — 1 starting positions are also inserted successfully with
probability 2-%/8.

This establishes (P1) with probability 1 — O(w™3). Then (P2) follows easily: The

extreme case is when both hy, = ¢ and [{z € S | s(x) € B1}| = b take the minimum

permitted values. In that case we have h;, = 7, so in general h;, > 7 follows.
Case 2: h;, > gw. We claim that all keys belonging to the tail of By can be inserted and
that afterwards (P1) and (P2) are fulfilled with probability 1 — O(w™3). In case the

keys in the head of B; can also be successfully inserted this cannot hurt (P1) or (P2)

7 The key set underlying the definitions of s; and d; excludes the bumped keys.
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Figure 6 Situation in Cases 1 (left) of 2 (right) of the proof of Claim 15.

because the number of filled slots and the height could only increase due to the additional
keys.'®

The situation is illustrated in Figure 6 on the right. We only consider the keys in the tail
of By which starts at position i, + 1 where i{, = iop + Sw. Note that for i € [ig, (] the
ribbon diagonal (d;,4) follows an ideal diagonal trajectory with probability 1 — O (2~2(®))
since keys from By are successfully inserted and the distance to the bottom border is at
least %w. This implies that all slots in the head of By are filled by keys from By and
hi = hi, — Sw. Since h;, € [3w,w] we have hiy € [+w, Sw], which allows us to reason
as in Case 1 to show that all slots in the tail of bucket B; are filled and h;, > % with
probability 1 — O(w™3). <

Handling failures and the first bucket. The following claim is needed to deal with the rare
cases where Claim 15 does not apply.

> Claim 16. Assume Bj is either the first bucket, or preceeded by a bucket By for which
(P2) does not hold. Then with probability 1 — O(w~3) all keys of By (head and tail) are
successfully inserted.

Proof. The ribbon diagonal d starts at a height h;, < %, which is lower than desired, and
might hit the lower ribbon border within B;. However, d avoids the right ribbon border,
because (recycling ideas from Case 1 of Claim 15) d would have to pierce the diagonal starting
at the desired height 7 first and would afterwards stay on that diagonal with probability
1 — O(w=3). This allows for some slots in Bj to remain empty but implies all keys are
successfully inserted with probability 1 — O(w™3). <

We now classify the buckets. Consider a bucket B;. Note that either Claim 15 or Claim 16
is applicable. If the corresponding event with probability 1 — O(w™3) fails to occur or if By

contains less than b keys (this happens with probability O(w~?)), then By is a bad bucket.

Otherwise, if Claim 15 applies, then B is a good bucket and if Claim 16 applies then B
is a recovery bucket. A recovery sequence is a maximal contiguous sequence of recovery
buckets. Since such a sequence cannot be preceded by a good bucket, the number of recovery
sequences is at most the number of bad buckets plus 1 (the first bucket is always a recovery

18 Note that our analysis suggests that B is already full after the tail-keys are inserted, which means that
the head keys can only be inserted if they all “overflow” into the next bucket.
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bucket or bad). Only bad buckets contain fewer than b keys, so a recovery sequence of k
buckets contains at least kb keys, all of which are inserted successfully by Claim 16. At
most w — 1 of these insertions fill slots after the sequence so there are at most w — 1 empty
slots within a recovery sequence. With = denoting the number of bad buckets, the number
m — | Py| of empty slots in total is

m—|Py|<azb+(x+1)(w—-1)+w-1

where the last w — 1 accounts for slots [m — w + 1, m] that do not belong to any bucket. The
dominating term is xb so using E[z] = O(%w™?) we obtain E[%] = O(w™?), which
completes the proof of Lemma 14.

11  The Design Space of BuRR

There is a large design space for implementing BuRR. We outline it in some breadth because
there was a fruitful back-and-forth between different approaches and their analysis, i.e.,
different approaches gradually improved the final theoretical results while insights gained by
the analysis helped to navigate to simple and efficient design points. The description of the
design space helps to explain some of the gained insights and might also show directions for
future improvements of BuRR. To also accommodate more “hasty” readers, we nevertheless
put emphasis on the the main variant of BuRR analyzed Section 10 and also move some
details to appendices. We first introduce a simple generic approach and discuss concrete
instantiations and refinements in separate subsections. In Appendix A, we describe further
details.

As all layers of BuRR function in the same way, we need only explain the construction
process of a single layer. The BuRR construction process makes the ribbon retrieval approach
of Section 6 more dynamic by bumping ranges of keys when insertion of a row into the linear
system fails by causing a linear dependence. Bumping is effected by subdividing the table
for the current layer into buckets of size b. More concretely, bucket B contains metadata
for keys x with s(x) € Bb+ 1..(B + 1)b. We also say that x is allocated to bucket B even
though retrieving = can also involve subsequent buckets. In Section 10, we showed that it
basically suffices to adaptively remove a fraction of the keys from buckets with high load
to make the equation system solvable, i.e., to make all remaining keys retrievable from the
current layer. The structure of the linear system easily absorbs most variance within and
between buckets but bigger fluctuations are more efficiently handled with bumping.

Construction.

We first sort the keys by the buckets they are allocated to. For simplicity, we set each key’s
leading coefficient 1(z)[s(x)] to 1. As the starting positions are distributed randomly, this is
not an issue. The ribbon solving approach is adapted to build the row echelon form bucket
by bucket from left to right (see Appendix A.4 for a discussion of variants). Consider now the
solution process for a bucket B. Within B, we place the keys in some order that depends on
the concrete strategy; see Appendix A.1. One useful order is from right to left based on s(z).
We store metadata that indicates one or several groups of keys allocated to the bucket that
are bumped. These groups correspond to ranges in the placement order, not necessarily
from s(z). Which groups can be represented depends on the metadata compression strategy,
which we discuss in Sections 11.1 and A.2. For example, in the right-to-left order mentioned
above, it makes sense to bump keys x with s(z) € Bb+ 1..Bb + t for some threshold ¢, i.e.,
a leftmost range of slots in a bucket. This makes sense because that part of the bucket
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is already occupied by keys placed during construction of the previous bucket (see also
Figure 3).

If placement fails for one key in a group, all keys in that group are bumped together.

Such transactional grouping of insertions is possible by recording offsets of rows inserted
for the current group, and clearing those rows if reverting is needed. This implies that we
need to record which rows were used by keys of the current group so that we can revert their
insertion if needed.

Keys bumped during the construction of a layer are recorded and passed into the
construction process of the next layer. Note that additional or independent hashing erases
any relationships among keys that led to bumping. In the last layer, we allocate enough
space to ensure that no keys are bumped, as in the standard ribbon approach.

Querying. At query time, if we try to retrieve a key x from a bucket B, we check whether
2’s position in the insertion order indicates that x is in a bumped group. If not, we can
retrieve = from the current layer, otherwise we have to go on to query the next layer.

Overloading. The tuning parameter ¢ = 1 — m/n is very important for space efficiency.

While other linear algebra based retrieval data structures need € > 0 to work, a decisive feature
of BuRR is that negative ¢ almost eliminates empty table slots by avoiding underloaded
ranges of columns.

We discuss further aspects of the design space of BuRR in additional subsections. By
default, bucket construction is greedy, i.e., proceeds as far as possible. Appendix A.3 presents
a cautious variant that might have advantages in some cases. Appendix A.4 justifies our
choice to construct buckets from left to right. Section 11.2 discusses how more sparse bit
patterns can improve performance. Construction can be parallelized by bumping ranges
of w consecutive table slots. This separates the equation system into independent blocks;
see Section 11.3. In that section, we also explain external memory construction that with
high probability needs only a single scan of the input and otherwise scanning and integer
sorting of simple objects. The computed table and metadata can be represented in various
forms that we discuss in Appendix A.5. In particular, interleaved storage allows to efficiently
retrieve f(z) one bit at a time, which is advantageous when using BuRR as an AMQ. We
can also reduce cache faults by storing metadata together with the actual table entries.

A very interesting variant of BuRR is bump-once ribbon retrieval (Bu' RR) described in
Section 11.4 that guarantees that each key can be found in one of two layers.

11.1 Threshold-Based Bumping

Recall that BuRR places the keys one bucket B at a time and within B according to some
ordering — say from right to left defined by a position in 1..b. A very simple way to represent
metadata is to store a single threshold jp that remembers (or approximates) the first time
this insertion process fails for B (jp = 0 if insertion does not fail). During a query, when
retrieving a key = that has position j in the insertion process, x is bumped if j > jg. We
need log b bits if we conflate b — 1 and b onto b — 1 and bump the entire bucket. It turns
out that for small r (few retrieved bits), the space overhead for this threshold dominates the
overhead for empty slots. Thus, we now discuss several ways to further reduce this space.

2-bit Thresholds and c-bit Thresholds. metadata implies that we have to choose
between four possible thresholds values. It makes sense to have support for threshold values
for jg = 0 (no bumping needed in this bucket) and jp = b (bump entire bucket). The
latter is a convenient way to ensure correctness in a nonprobabilistic way, thus obviating
restarts with a fresh hash function. The former threshold makes sense because the effect of
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obliviously bumping some keys from every bucket could also be achieved by choosing a larger
value of €. This leaves two threshold values ¢, u, as tuning parameters. The experiments in
Section 12 use linear formulas of the form [(¢; — ¢2¢)b] for £ and u with the values of ¢; and
co dependent on w, but it also turns out that v = 2/ is a good choice so that the cases 0, ¢,
and 2¢ can be decoded with a simple linear formula and only the case jg = b needs special
case treatment. Moreover, this approach can be generalized to c-bit thresholds, where we
use 2¢ — 1 equally spaced thresholds starting at 0 plus the threshold b.

1T-Bit Thresholds. The experiments performed for 2-bit thresholds indicated that actually
choosing ¢ = u performs quite well. Indeed, the analysis in Section 10 takes up this scheme.
Moreover, both experiments and theory show that the threshold b (bump entire bucket)
occurs only rarely. Hence, we considered compression schemes that store only a single bit
most of the time, using some additional storage to store larger bumping thresholds. We
slightly deviate from the theoretical setting by allowing arbitrary larger thresholds in order
to reduce the space incurred by empty buckets. Thus, we considered a variant where the
threshold values 0 (bump nothing), ¢ (bump something), and also values ¢ + 1..b (bump a
lot) are possible but where the latter (rare) cases are stored in a separate small hash table
HT whose keys are bucket indices.

Compared to 2-bit thresholds, we get a space-time trade-off, however, because accessing
the exception table HT costs additional time (even if it is very small and will often fit into
the cache). Thus, a further refinement of 17-bit thresholds is to partition the buckets into
ranges of size b* and to store one bit for each such range to indicate whether any bucket in
that range has an entry in H™.

11.2 Sparse Bit Patterns

A query to a BuRR data structure as described so far needs to process about rw/2 bits of
data to produce r bits of output. Despite the opportunity for word parallelism, this can
be a considerable cost. It turns out that BuRR also works with significantly more sparse
bit patterns. We can split w bits into k groups and set just one randomly chosen bit per
group. The downside of sparse patterns is that they incur more linear dependencies. This
will induce more bumped keys and possibly more empty slots. Our experiments indicate that
the compromise is quite interesting. For example for w = 64 and k = 8 we can reduce the
expected number of 1-bits by a factor of four and observe faster queries for large r at the
cost of a slight increase of space overhead. Figure 5 indicates that our implementation of
sparse coefficient BuRR is indeed a good choice for r € {8, 16}.

11.3 Parallelization and Memory Hierarchies

As a static data structure, queries are trivial to parallelize on a shared-memory system.
Parallelizing construction can use (hard) sharding, i.e., subdividing the data structure into
pieces that can be built independently. An interesting property of BuRR is that sharding
can be done transparently in a way that does not affect query implementation and thus
avoids performance overheads for queries. To subdivide the data structure, we set the
bumping information in such a way that each piece is delimited by empty ranges of at
least w columns in the constraint matrix. This has the effect that the equation system can
be solved independently in parallel for ranges of columns separated by such gaps. With
the parametrization we choose for BuRR, the fraction of additionally bumped keys will be
negligible as long as n > pw? where p is the number of threads.
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For large BuRRs that fill a significant part of main memory, space consumption during
construction can be a major limitation. Once more, sharding is a simple way out — by
constructing the data structure one shard at a time, the temporary space overhead for
construction is only proportional to the size of a shard rather than to the size of the entire
data structure.

An alternative is to consider a “proper” external memory algorithm. The input is a file F’
of n key—value pairs. The output is a file containing the layers of the BuRR data structure. A
difficulty here is that keys could be much larger than logn bits and that random accesses to
keys is much more expensive than just scanning or sorting. We therefore outline an algorithm
that, with high probability, reads the key file only once. The trick is to first substitute keys
by master hash codes (MHCs) with clogn bits for a constant ¢ > 2. Using the well-known
calculations for the birthday problem, this size suffices that the MHCs are unique with high
probability. If a collision should occur, the entire construction is restarted.'® Otherwise, the
keys are never accessed again — all further hash bits are obtained by applying secondary hash
functions to the MHC.?"

Construction then begins by scanning the input file F' and producing a stream F} of
pairs (MHC, function value)?!. Construction at layer i amounts to reading a stream F; of
MHC—value pairs. This stream F; is then sorted by a bucket ID that is derived from the
MHCs. A collision is detected when two pairs with the same MHC show up. These are easy
to detect since they will be sorted to the same bucket and the same column within that
bucket. Constructing the row echelon form (REM) then amounts to simultaneously scanning
F;, the REM and the right-hand side. At no time during this process do we need to keep
more than two buckets worth of data in main memory. Bumped MHC—value pairs are output
as a stream F;iq that is the input for construction of the next layer. Back-substitution
amounts to a backward scan of the REM and the right-hand side — producing the table for
layer 7 as an output.

Overall, the I/O complexity is the I/Os for scanning n keys plus sorting O(n) items
consisting of a constant number of machine words (O(logn) bits). The fact that there are
multiple layers contributes only a small constant factor to the sorting term since these layers
are shrinking geometrically with a rather large shrinking factor.

11.4 Bu!RR: Accessing Only Two Layers in the Worst Case

BuRR as described so far has worst-case constant access time when the the number of
layers is constant (our analysis and experiments use four layers). However, for real-time
applications, the resulting worst case might be a limitation. Here, we describe how the
worst-case number of accessed layers can be limited to two. The idea is quite simple: Rather
than mapping all keys to the first layer, we map the keys to all layers using a distribution
still to be determined. We now guarantee that a key originally mapped to layer ¢ is either
retrieved there or from layer i + 1. A query for key x now proceeds as follows. First the
primary layer i(x) for that key is determined. Then the bumping information of layer i is
queried to find out whether ¢ is bumped. If not, x is retrieved from layer 7, otherwise it is

9 For use in AMQs, restarts are not needed since duplicate MHCs lead to identical equations that will be
ignored as redundant by the ribbon solver.

20We use a (very fast) linear congruential mapping [35, 23] that, with some care, (multiplier congruent 1
modulo 4 and an odd summand) even defines a bijective mapping [35]. We also tried linear combinations
of two parts of the MHC [34] which did not work well however for a 64 bit MHC.

21 When used as an AMQ, the function value need not be stored since it can be derived from the MHC.
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retrieved from layer ¢ + 1 without querying the bumping information for layer i + 1.

For constructing layer i, the input consists of keys E. bumped from layer i — 1 (E] = ()
and keys F; having layer i as their primary layer (F; = () for the last layer). First, the
bumped keys E! are inserted bucket by bucket. In this phase, a failure to insert a key causes
construction to fail. Then the keys F; are processed bucket by bucket as before, recording
bumped keys in £ ;.

The size of layer i can be chosen as (1 + €)(|E!| + | E;|) to achieve the same overloading
effect as in basic BuRR. An exception is the last layer i* where we choose the size large enough
so that construction succeeds with high probability. Note that if |F;| shrinks geometrically,
we can choose i* such that |F;~| is negligible.

Except in the last layer, construction can only fail due to keys already bumped, which is a
small fraction even for practical w. In the unlikely?? case of construction failing, construction
of that layer can be retried with more space. Tests suggest that increasing space by a factor
of wTH has similar or better construction success probability than a fresh hash function.

A simpler Bu'RR construction has layers of predetermined sizes, all in one linear system.
Construction reliability and/or space efficiency are reduced slightly because of reduced
adaptability. For moderate n ~ w3, layers of uniform size can work well, especially if the last
layer is of variable size.

Our implementation of Bu'RR, tested to scale to billions of keys, uses layers with sizes
shrinking by a factor of two, each with a power of two number of buckets. To a first
approximation, the primary layer i(x) of a key is simply the number of leading zeros in an
appropriate hash value, up to the maximum layer. To consistently saturate construction with
expected overload of o = —¢, this is modified with a bias for the first layer. A portion () of
values with a leading 0 (not first layer) are changed to a leading 1 (re-assigned to first layer), so
|Eo| ~ (1+ )27 'm and other |E;| ~ (1 — )2~ +m. With bumped entries, |E}| ~ a2~ 'm,
expected overload is consistent through the layers: |E;| + |E!| = (1 4+ )2~ Dm,

12  Experiments

Implementation Details. We implemented BuRR in C++ using template parameters
that allow us to navigate a large part of the design space mapped in the full paper. We
use sequential construction using 64-bit master-hash-codes (MHCs) so that the input keys
themselves are hashed only once. Linear congruential mapping is used to derive more pseudo-
random bits from the MHC. When not otherwise mentioned, our default configuration is
BuRR with left-to-right processing of buckets, aggressive right-to-left insertion within a
bucket, threshold-based bumping, interleaved storage of the solution Z, and separately stored
metadata. The data structure has four layers, the last of which uses w’ := min(w, 64) and
€ > 0, where ¢ is increased in increments of 0.05 until no keys are bumped. For 17-bit, we
choose t := [—2eb+ /b/(1+¢€)/2] and € := —2/3 - w/(4b + w). For 2-bit, parameter tuning
showed that £ := [(0.13 —&/2)b] ,u := [(0.3 — &/2)b], and € := —3/w work well for w = 32;
for w > 64, we use £ = [(0.09 — 3/4)b], u = [(0.22 — 1.3¢)b], and ¢ := —4/w.

In addition, there is a prototypical implementation of Bu'RR from [23]; see Section 11.4.
Both BuRR and Bu'RR build on the same software for ribbon solving from [23]. For
validation we extend the experimental setup used for Cuckoo and Xor filters [30], with our

22We do not have a complete analysis of this case yet but believe that our analysis in Section 10 can be
adapted to show that the construction process will succeed with high probability for w = Q(logn).



P. C. Dillinger, L. Hiibschle-Schneider, P. Sanders, and S. Walzer

107 | | —e— plain, b=256
- | —e— 1%bit, b=256
1072;7 —«— 2-bit, b=256 ’====‘
I |—*— plain, b=128 ey
|| —=— 1tbit, b=128 s

—— 2-bit, b=128
—=— 1I*bit, b=64
——  2-bit, b=64

N

,_.
3
w

\ \yw

T T T
71
Ll

Fraction of empty slots e
— —
S o
L1

10-6

10777 L | L | L | L | L | L | |
—20% —-18% —-16% —-14% —-12% —-10% -8% —-6%

Overloading factor e =1 —m/n

| |
—4% 2%

o
X

Figure 7 Fraction of empty slots for various configurations of bumped ribbon retrieval with
w = 64, depending on the overloading factor e.

code available at https://github.com/lorenzhs/fastfilter_cpp and https://github.
com/lorenzhs/BuRR.

Experimental Setup. All experiments were run on a machine with an AMD EPYC 7702
processor with 64 cores, a base clock speed of 2.0 GHz, and a maximum boost clock speed
of 3.35GHz. The machine is equipped with 1TiB of DDR4-3200 main memory and runs
Ubuntu 20.04. We use the clang++ compiler in version 11.0 with optimization flags -03
-march=native. During sequential experiments, only a single core was active at any time to
minimize interference.

We looked at different input sizes n € {10%,107,10%}. Like most studies in this area, we
first look at a sequential workload on a powerful processor with a considerable number of
cores. However, this seems unrealistic since in most applications, one would not let most
cores lay bare but use them. Unless these cores have a workload with very high locality this
would have a considerable effect on the performance of the AMQs. We therefore also look at
a scenario that might be the opposite extreme to a sequential unloaded setting. We run the
benchmarks on all available hardware threads in parallel. Construction builds many AMQs
of size n in parallel. Queries select AMQs randomly. This emulates a large AMQ that is
parallelized using sharding and puts very high load on the memory system.

Space Overhead of BuRR Figure 7 plots the fraction e of empty slots of BuRR for
w = 64 and several combinations of bucket size b and different threshold compression schemes.
Similar plots are given in the appendix in Figure 10 for w = 32, w = 128, and for w = 64
with sparse coefficients. Note that (for an infinite number of layers), the overhead is about
o=-e+u/(rb(1—e)) where r is the number of retrieved bits and p is the number of metadata
bits per bucket. Hence, at least when pu is constant, the overhead is a monotonic function in
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e and thus minimizing e also minimizes overhead.

We see that for small |e], e decreases exponentially. For sufficiently small b, e can get
almost arbitrarily small. For fixed b > w, e eventually reaches a local minimum because with
threshold-based compression, a large overload enforces large thresholds (> w) and thus empty
regions of buckets. Which actual configuration to choose depends primarily on r. Roughly,
for larger r, more and more metadata bits (i.e., small b, higher resolution of threshold values)
can be invested to reduce e. For fixed b and threshold compression scheme, one can choose &
to minimize e. One can often choose a larger € to get slightly better performance due to
less bumping with little impact on 0. Perhaps the most delicate tuning parameters are the
thresholds to use for 2-bit and 17-bit compression (see Section 11.1). Indeed, in Figure 7
17-bit compression has lower e than 2-bit compression for b = 64 but higher e for b = 128.
We expect that 2-bit compression could always achieve smaller e than 1*-bit compression,
but we have not found choices for the threshold values that always ensure this. Table 4 in
Appendix B summarizes key parameters of some selected BuRR configurations.

In all following experiments, we use b = 2lw?/(2logy w)] fo uncompressed and 2-bit
compressed thresholds, and b = olw?/(4log; w)] when using 17-bit threshold compression.

Performance of BuRR Variants

We have performed experiments with numerous configurations of BuRR. See Table 2 in
Appendix B for a small sample and Appendix C for the complete list. The scatter plot in
Figure 8 summarizes the performance-overhead trade-off for r ~ 8. Plots for different values
of r and for construction and query times separately are in Appendix B (Figures 11 to 15).

A small ribbon width of w = 16 is feasible but does not pay off with respect to
performance because its high bumping rates drive up the expected number of layers accessed.
Choosing w = 32 yields the best performance in many configurations but the penalty for
going to w = 64 is very small while reducing overheads. In contrast, w = 128 has a large
performance penalty for little additional gain — overheads far below 1% are already possible
with w = 64. Thus, on a 64-bit machine, w = 64 seems the logical choice in most situations.

With respect to performance, 1*-bit compression is slightly slower than 2-bit compression
or uncompressed thresholds but not by a large margin. However, 1*-bit achieves the lowest
overheads. Interleaved table representation (see Appendix A.5) is mostly faster than
contiguous representation. This might change for sufficiently large r and use of advanced
bit-manipulation or SIMD instructions. Nevertheless, sparse coefficients with 8 out of 64
bits using contiguous representation achieve significantly better query performance than the
best dense variant with comparable or better overhead when contiguous storage is efficiently
addressable, i.e., r is a multiple of 8.

Bu'RR is around 20 % slower than BuRR and also somewhat inferior with respect to
the achieved overheads. This may in part be due to less extensive parameter tuning. When
worst-case guarantees matter, Bu' RR thus might be a good choice.

In a parallel scaling experiment with 10'° keys, construction and queries both scaled well,
shown in Figure 16 in Appendix B. Constructing many AMQs in parallel achieves speedups
of 65 — 71 depending on the configuration when using all 64 cores plus hyperthreads of
our machine (50 without hyperthreading). Individual query times are around 15 % higher
than sequentially when using all cores, and 50 % higher when using all hyperthreads. This
approximately matches the speedups for construction.
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Figure 8 Performance—overhead trade-off for false-positive rate 27", approximately 0.3 % to 1%,
for different AMQs and inputs. For each category of approaches, only points are shown that are not
dominated by variants in the same category. Sequential benchmarks use a single AMQ of size n
while the parallel benchmark uses 1280 AMQs and 64 cores. Logarithmic vertical axis above 1200 ns.

Comparison with Other Retrieval and AMQ Data Structures

To compare BuRR with other approaches, we performed an extensive case study of different
AMQs and retrieval data structures. To compare space overheads, we compare r-bit
retrieval data structures to AMQs with false positive rate 27". Our benchmark extends
the framework used to evaluate Cuckoo and Xor filters [30], with our modified version
available at https://github.com/lorenzhs/fastfilter_cpp. In addition to adding our
implementations of standard ribbon, homogeneous ribbon, BuRR, and Bu'RR, we integrated
existing implementations of Quotient Filters [39, 40] and LMSS, Coupled, GOV, 2-block,
and BPZ retrieval [19, 50]. We extended the implementations of LMSS, Coupled, and BPZ
to support the cases of 7 = 8 and r = 16 in addition to one-bit retrieval.??

We also added a parallel version of the benchmark where each thread constructs a number
of AMQs independently, but queries access all of them randomly. In the Cuckoo filter
implementation, we replaced calls to rand() with a std::mt19937 Mersenne Twister to
eliminate a parallel bottleneck. The implementation of LMSS cannot be run simultaneously
in multiple threads of the same process and was excluded from the parallel benchmark.

Both the sequential and the parallel benchmark use three query workloads: positive
queries, negative queries, and a mixed set containing equal numbers of positive and negative
queries. We report many results in the form of construction time per key plus the time for
one query from each of the three sets, measured by dividing the running time for construction
plus n queries of each type by the input size n. This metric is a reasonable tradeoff between
construction and queries; we provide figures for the individual components in Appendix B
(Figures 13 to 15).

Once more, the scatter plot in Figure 8 summarizes the performance—overhead trade-off
for r ~ 8; other values of r are covered in Appendix B (Figures 11 and 12). In addition,

23 This is easy for peeling-based approaches, but far more work would be required to do the same for GOV
and 2-block.
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Figure 5 gives an overview of the fastest approach for different values of r and overhead. We
now discuss different approaches progressing from high to low space overhead.

Bloom Filters Variants: Plain Bloom filters [7] set k ~ log(1/¢) random bits in a table
for each key in order to achieve false-positive rate . They are the most well-known and
perhaps most widely used AMQ. However, they have an inherent space overhead of at least
44 % compared to the information-theoretic optimum. Moreover, for large inputs they cause
almost k cache faults for each insertion and positive query. Blocked Bloom filters [17]
are faster because they set all of the k bits in the same cache block. The downside is that
this increases the false-positive rate, in particular for large k. This can be slightly reduced
using two blocks.

Cuckoo Filters [25] store a random fingerprint for each key (similar to retrieval-based AMQs).
However, to allow good space efficiency, several positions need to be possible. This introduces
an intrinsic space overhead of a few bits per key that is further increased by some empty
slots that are required to allow fast insertions. The latter overhead is reduced in Morton
filters [1 1] which can be viewed as a compressed representation of cuckoo filters. In our
measurements, cuckoo and Morton filters are the most space efficient dynamic AMQ for
small ¢, but are otherwise outperformed by other constructions.

Quotient Filters (QF) [5] can be viewed as a compressed representation of a Bloom filter
with a single hash function. QFs support not only insertions but also deletions and counting.
Similar to cuckoo filters, they incur an overhead of a few bits per key (2-3 depending on
the implementation) plus a multiplicative overhead due to empty entries. Search time grows
fairly quickly as the multiplicative overhead approaches zero. Counting Quotient Filters
(CQF) [45] mitigate this dependence at the cost of less locality for low fill degrees. Overall,
quotient filters are good if their rich set of operations is needed but cannot compete with
alternatives (e.g., blocked Bloom filters and cuckoo filters) for dynamic AMQs without
deletions. Compared to static AMQs, they have comparable or slower speed than BuRR but
two orders of magnitude higher overhead.

Xor filter/retrieval. Xor Filters and Xor+ Filters [31] are a recent implementation of
peeling-based retrieval that can reduce overhead to 23 % and 14 %, respectively. An earlier
implementation [10] is 35-90 % slower to construct and also has slightly slower queries. Fuse
filters [20], a variant of Xor, achieve higher loads and are fast to construct if n is not too
large, but construction becomes slow for large n and parallel queries are less efficient than
for plain Xor filters. In the plots we only show the Pareto-optimal variants in each case
and call all of them Xor in the following and in Section 1. Among the tried retrieval data
structures, Xor has the fastest queries for sequential settings but is otherwise dominated by
BuRR, which has one to two orders of magnitude smaller overheads.

Low overhead peeling-based retrieval. By using several hash functions in a nonuniform way,
peeling-based retrieval data structures can in principle achieve arbitrarily small overheads
and thus could be viewed as the primary competitors of ribbon-based data structures. LMSS
[38] was originally proposed as an error-correcting code but can also be used for retrieval.
However, in the experiments it is clearly dominated by BuRR. The more recent Coupled
peeling approach [51] can achieve Pareto-optimal query times for large sequential inputs but
is otherwise dominated by ribbon-based data structures. Coupled has faster construction
times than LMSS but in that respect is several times slower than BuRR for large n and
in our parallel benchmark, even when it is allowed an order of magnitude more overhead.
Nevertheless, when disregarding ribbon-based data structures, Coupled comes closest to
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a practical retrieval data structure with very low overhead. For small inputs (n = 10),
r &~ 16 and overhead between 8 and 15 %, it is even the fastest AMQ in our benchmark (see
Figure 5). Perhaps for large r and by engineering faster construction algorithms, Coupled
could become more competitive in the future.

Standard Ribbon can achieve overhead around 10%. However, it often fails for large n,
requiring larger space overhead when used without sharding on top of it. For AMQs this
can be elegantly remedied using homogeneous ribbon filters. Thus, in the heatmap,
homogeneous ribbon occupies the area between (blocked) Bloom filters and BuRR and its
variants. However, the performance advantage over BuRR in parallel and large settings is
not very large (typically 20 %).

BuRR and its variants take the entire right part of the heatmap. Compared to the best
competitor — homogeneous ribbon filters — overhead drops from around 10 % to well below 1%
at a moderate performance penalty. In particular, due to BuRR’s high locality, performance
is even better than for successful competitors like Xor, Cuckoo, or Bloom filters.

2-block [19] can be viewed as a generalization of ribbon-based approaches that use two rather
than one block of nonzeroes in each row of the constraint matrix. Unfortunately this makes
the equation system much more difficult to solve. This implies very expensive construction
even when aggressively using the sharding trick. In our experiments, an implementation by
Walzer [50] for » = 1 achieves smaller overhead than BuRR with w = 128 at the price of an
order of magnitude larger construction time. It is however likely that a BuRR implementation
able to handle w = 256 would dominate 2-block.

Techniques not tried. There are a few interesting retrieval data structures for which we
had no available implementation. FiRe [14] is likely to be the fastest existing retrieval data
structure and also supports updates to function values as well as a limited form of insertions.
FiRe maps keys to buckets fitting into a cache line. Per-bucket metadata is used to uniquely
map some keys to data slots available in the bucket while bumping the remaining keys. This
requires a constant number of metadata bits per key (around 4) and thus implies an overhead
two orders of magnitude larger than BuRR. Additionally, the only known implementation of
FiRe is closed source and owned by SAP, and was not available to us.

We are not aware of implementations of the lookup-table based approaches [40, 4] and do
not view them as practically promising for the reasons discussed in Section 5.

13 Conclusion and Future Work

BuRR is a considerable contribution to close a gap between theory and practice of retrieval and
static approximate membership data structures. From the theoretical side, BuRR is succinct
while achieving constant access cost for small number of retrieved bits (r = O(log(n)/w)). In
contrast to previous succinct constructions with better asymptotic running times, its overhead
is tunable and already small for realistic values of n. In practice, BuRR is faster than widely
used data structures with much larger overhead and reasonably simple to implement. Our
results further strengthen the success of linear algebra based solutions to the problem. Our
on-the-fly approach shows that Gauss-like solvers can be superior to peeling based greedy
solvers even with respect to speed.

While the wide design space of BuRR leaves room for further practical improvements,
we see the main open problems for large r. In practice, peeling based solvers (e.g., [51])
might outperform BuRR if faster construction algorithms can be found — perhaps using
ideas like overloading and bumping. In theory, existing succinct data structures (e.g. [16, 4])
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allow constant query time but have high space overhead for realistic input sizes. Combining
constant cost per element for large r with small (preferably tunable) space overhead therefore
remains a theoretical promise yet to be convincingly redeemed in practice.
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to place more and more keys in the next bucket. The analysis in Section 10 suggests that
linear dependencies mostly occur in two ways. Either, when the overload of this bucket (or
some subrange of it) is too large, or when it runs into the keys placed into the left part of
the bucket when the previous bucket was constructed. We make the former event unlikely by
choosing appropriate values of b and €. When the latter event happens, we can bump a range
of keys allocated to the leftmost range of the bucket. This bumping scheme is discussed in
Section 11.1. The right-to-left ordering then helps us to find the right threshold value. An
illustration is shown in Figure 3.

(Quasi)random order. The above simple insertion order is limited to situations where
the overload per bucket is less than w most of the time. Otherwise, placement will often
fail early, bumping many keys that could actually be placed because their s falls into a
range of slots that remain empty. We can achieve more flexibility in choosing € by spreading
keys more uniformly over the bucket during the insertion process. We tried several such
approaches. Bu'RR uses additional hash bits to make the ordering for bumping independent
of the position within the bucket. Another interesting variant is most easy to explain when b
is a power of two. We use ¢ = log b bits of hash function value to define the position within a
bucket. However, rather than directly using the value as a column number, we use its mirror
image, i.e., a value he_1he—s ... h1hy addresses column hghy ...h._2h.—1 of a bucket. We
also tried a tabulated random permutation, which according to early experiments, works
slightly worse than the mirror permutation.

A.2 Metadata for Bumping Multiple Groups

A disadvantage of threshold-based bumping is that a single failed placement of a key implies
that all subsequently placed keys allocated to that bucket must be bumped. This penalty
can be mitigated by subdividing the positions in the insertion order into multiple groups
that can be bumped separately, e.g., by storing a single bit that indicates whether a group is
bumped. Choosing groups of uniform (expected) size is simple and fast. It works well when
highly compressed metadata is not of primary importance, e.g., when r is large.

Better compression can be achieved by choosing groups of variable size. Bu'RRs use
groups whose sizes are a geometric progression with a factor about /2 between subsequent
group sizes. For example, to cover a bucket of size b = 1024 using 8 bits of metadata, one
could use groups of expected sizes 28, 40, 57, 80, 113, 160, 226, and 320. Note that smaller
groups cannot and need not be bumped since the main effect of bumping “too much” is
that fewer keys spill over to the next bucket which can be rectified there. This is also the
underlying reason why highly compressed representations of the threshold metadata from
Section 11.1 are sufficient.

A.3 Aggressive versus Cautious Bumping

By default, the generic BuRR solving approach described in Section 11 is greedy, i.e., it tries
to place as many keys as possible into the current bucket. This will usually spill over close to
w keys into the next bucket. This increases the likelihood that construction in that bucket

fails early. It might be a better approach to be more cautious and try to avoid this situation.

For example, when after processing a column j, more than aw keys are already placed in the
next bucket then all further keys are bumped from the current bucket. More sophisticated
balancing approaches are conceivable.

For example, we use a form of cautious bumping for our implementation of Bu'!RR (see
Section 11.4). After placing keys bumped from the previous layer, when processing bucket i,
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we first try to place keys in its largest group. Then we try to place the keys in the second
largest group in bucket ¢ — 1, the third largest group in bucket ¢ — 2, etc. This can be viewed
as driving a “wedge” through the buckets.

A.4 Different Global Insertion Orders

Many of our implemented variants of BuRR process buckets from left to right and, within a
bucket, place keys x from right to left with respect to s(z). We also tried the dual approach
— traversing the buckets from right to left and then inserting from left to right within a
bucket. This behaves identically with respect to space efficiency but leads to far more row
operations and much higher construction times. The straightforward ordering from left
to right both between and inside buckets does not work well with aggressive bumping —
placement frequently fails early. We expect that it may turn out to be a natural order for a
cautious bumping strategy. Many other insertion orders can be considered. However, the
global left-to-right order has the advantage that spilling keys to the next bucket is cheap
since it is still empty. Thus, other orders might have higher insertion time.

A.5 Table Representation

Interleaved Versus Contiguous Storage. Contiguous storage is the “obvious” represen-
tation of the table by m slots of r contiguous bits each. Interleaved means that the table is
organized as rm/w words of w bits each where word i represents bit ¢ mod r of w subsequent
table entries [23]. This organization allows the extraction of one retrieved bit from two
adjoining machine words using population-count instructions. Interleaved representation is
advantageous for uses of BuRR as an AMQ data structure since a negative query only has to
extract two bits in expectation. Moreover, the implementation directly works for any value
of r.

The contiguous representation, despite its conceptual simplicity, is more difficult to
implement, in particular when r is not a power of two. On the other hand, we expect it to
be more efficient when all r bits need to be retrieved, in particular when r is large and when
the implementation makes careful use of available bit-manipulation®® and SIMD instructions.
This is particularly true when the sparse bit patterns from Section 11.2 are used.

24 For example, the BMI2 bit manipulation operations PDEP and PEXT in newer x86 processors look
useful.
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Embedded Versus Separate Metadata. The “obvious” way to represent metadata is as
a separate array with one entry for each bucket (and a separate hash table for the 1*-bit
representation). On the other hand, if the metadata cannot be assumed to be resident in
cache, it is more cache-efficient to store one bucket completely in one cache line, holding both
its table entries and metainformation. Then, assuming b > w, querying the data structure
accesses only one cache line plus possibly the next cache line when the accessed part of the
table extends there. In preliminary experiments with variants of this approach, we observed
performance improvements of up to 10 % in some cases. We believe that, depending on the
implementation and the use case, the difference could also be bigger but have not investigated
this further since there are too many disadvantages to this approach: In particular, in the
most space-efficient configurations of BuRR, buckets can be bigger than a cache line and the
metadata will often fit into cache anyway. Furthermore, when the memory system is not
too contended, metadata and primary table can be accessed in parallel, thus eliminating the
involved overhead. Finally, embedded metadata is more complicated to implement.

B Further Experimental Data

The following figures and tables contain

Figure 10. Shows the fraction of empty slots for many BuRR variants, supplementary to
Figure 7.

Figures 11 and 12. Performance-overhead trade-off of AMQs for very high false positive rate
(=~ 50%) and very low false positive rate (= 0.01%) roughly corresponding to performance
of 1-bit retrieval and 16-bit retrieval for the retrieval-based AMQs.

Figures 13 to 15. Performance-overhead trade-off of AMQs as in Figure 8, but seperately
for positive queries, negative queries and construction.

Figure 16. Experiments concerning parallel scaling.

Tables 2 and 3. Numerical display of selected data.

Table 4. Overloading factors used for various BuRR configurations and corresponding
overhead.
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Figure 10 Fraction of empty slots for various configurations of BuRR, depending on the over-
loading factor e.
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Figure 11 Performance—overhead trade-off for false-positive rate > 46 % for different AMQs and
different inputs. This large false-positive rate is the only one for which we have implementations for
GOV [29] and 2-block [19]. Note that the vertical axis switches to a logarithmic scale above 900 ns.
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Figure 12 Performance-overhead trade-off for false-positive rate < 272 a2 0.01 % for different
AMQs and different inputs. Logarithmics vertical axis above 1600 ns.
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Figure 13 Query time—overhead trade-off for positive queries, false-positive rate between 0.3 %
and 1% for different AMQs and different inputs. Note that Xor filters have excellent query time
sequentially where random fetches can be performed in parallel but are far from optimal in the
parallel setting where the total number of memory accesses matters most. Logarithmic vertical axis
above 350 ns.
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Figure 14 Query time-overhead trade-off for negative queries, false-positive rate between 0.3 %
and 1% for different AMQs and different inputs. Again, Xor filters perform well sequentially but
suffer in the parallel case. Logarithmic vertical axis above 350 ns.
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Figure 15 Construction time-overhead trade-off for false-positive rate between 0.3 % and 1% for
different AMQs and different inputs. Compressed vertical axis above 350 ns.
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Table 2 Experimental performance comparisons. Overhead, construction and query times
(positive and negative queries) for various AMQs. Tested configurations: n = 10° keys, n = 10® keys,
both sequential, as well as 1280 AMQs with n = 107 keys each (total: 1.28 x 1010 keys), constructed
and queried in parallel using 64 threads, with each query operating on a randomly chosen AMQ.

Space | ns/key, n =10° | ns/key, n = 10® parallel, n=10"
Configuration ovr % | con pos mneg | con pos neg | con  pos  neg
J False positive rate around 1 %, ribbons using r =7 |
Blocked Bloom [36]  52.0 3 3 31 17 24 24| 50 116 101
Blocked Bloom [22]  49.8 7 4 4 50 26 26 78 109 85
Blocked Bloom [22] k=2  45.0 9 7 7 57 43 43 | 110 149 194
Cuckool2 [25] 46.3 29 10 7| 118 56 52 | 239 162 282
Cuckool2 [25] 404 35 12 7| 166 58 51 | 288 180 271
Morton [11]  40.6 32 25 22 64 96 87 | 130 182 203
Xor [31]r=7%1 23.0 91 8 8 | 169 56 56 | 644 333 348
Xor 31]r=8 23.0 91 5 51| 159 41 41 | 586 386 392
Xor+ [31]r=8 144 94 14 15 | 209 86 85 | 853 372 475
XorFuse [20] r =8 16514 89 6 6| 215 43 44 | 453 532 534
LMSS [38] D=12,¢=0.91,r=38 11.1 421 28 28 | 779 134 134 not tested
LMSS [38] D=150,¢=0.99,r=8 1.0 464 34 34 | 877 152 152 not tested
Coupled [51] k =4,r =38 8;4 104 9 9 | 229 59 59 | 546 579 578
Coupled [51] k=7,r=8 62 | 160 12 12| 331 91 91 | 813 1337 1342
Quotient Filter [5]  81.9 69 432 272 | 114 225 169 | 133 385 308
Counting Quotient Filter [15]  67;55 60 45 31 | 172 153 113 | 183 307 252
Standard Ribbon w =64  14;20 32 16 20 70 78 66 | 324 234 194
Standard Ribbon w = 128 6;8 69 24 25 | 121 140 87 | 464 296 206
Homog. Ribbon w = 16 52.2 19 14 20 42 73 61 69 148 128
Homog. Ribbon w = 32 20.7 20 13 19 50 73 60 | 105 147 168
Homog. Ribbon w = 64 9.9 28 14 19 67 75 63 | 155 164 170
Homog. Ribbon w = 128 4.9 58 21 23 | 118 135 85 | 306 292 208
Bu'RR w = 327 10.3 40 21 26 94 125 88 | 163 275 286
Bu'RR w = 32 2.4 62 21 26 | 121 123 88 | 174 261 239
BuRR plain w = 32 1.4 76 20 26 81 82 79 | 151 247 210
BuRR 2-bit w = 32 1.3 77 19 26 82 82 80 | 152 233 245
BuRR 1™-bit w =32  0.82 80 29 34 84 88 88 | 158 240 231
Bu'RRw=64 062 | 121 21 26 | 188 128 90 | 197 292 300
BuRR plain w = 64 0.48 109 18 24 | 115 82 74 | 182 229 213
BuRR 2-bit w = 64 0.25 110 19 24 | 115 82 74 | 190 215 215
BuRR 1%-bit w =64  0.21 110 27 33 | 115 86 84 | 189 238 228
Bu'RR w =128 0.31 | 332 29 30 | 442 147 100 | 427 369 285
BuRR plain w = 128 0.18 209 27 27 | 214 141 88 | 319 317 226
BuRR 2-bit w =128 0.10 186 27 27 | 191 140 88 | 294 313 211
BuRR 1%-bit w =128  0.06 | 208 34 37 | 214 142 92| 304 319 235

1 Larger space allocated to improve construction time.
1 Potentially unfavorable bit alignment.
; Standard Ribbon, XorFuse, Coupled, and CQF space overhead depend on n.
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Table 3 Experimental performance comparisons (continued from Table 2).

Space

Configuration ovr %

ns/key, n = 10°

con pos neg

ns/key, n = 10®

con

pos

neg

parallel, n = 107

con pos neg

J False positive rate around 10 %, ribbons using r =3 |

Xor [31] r=3f 23.0
Standard Ribbon w = 64  14;20
Standard Ribbon w = 128 6;8
Homog. Ribbon w =16  34.6
Homog. Ribbon w = 32 16.1
Homog. Ribbon w = 64 8.0
Homog. Ribbon w = 128 4.0
Bu'RRw=32 28
BuRR plain w = 32 3.2
BuRR 2-bit w = 32 2.5
BuRR 1%bit w =32 1.6
Bu'RR w = 64 0.8
BuRR plain w = 64 1.1
BuRR 2-bit w = 64 0.6
BuRR I"bit w=64 0.4

91 6 6

27 9 9

62 14 14
16 9 9

17 8 8

24 8 8

57 13 13
60 14 14
73 14 21
74 14 21
T 23 30
118 13 13
104 13 20
106 13 21
106 22 29

169
65
114
40
49
65
119
119
78
79
82
187
110
111
111

51
54
67
58
45
45
65
67
64
64
67
66
63
64
66

51
51
67
59
45
45
65
67
64
65
74
67
62
64
71

633 292 270
326 118 138
467 139 191

67 141 140
101 153 151
158 132 145
324 162 193
175 193 212
145 180 170
147 227 214
150 202 215
195 192 220
177 160 172
188 174 181
189 196 221

|l False positive rate aro

und 27 = 0.05 %,

ribbons using r =

11 |

Cuckool6 [25]  30.1

Cuckool6 [25] 1  35.7
CuckooSemiSort  26.6

Morton [11]  36.8

Xor [31]]r=12  23.0

Xor+ [31] r =111  12.8
Quotient Filter [5]  93.6

Standard Ribbon, w =64  14;20
Standard Ribbon, w = 128 6;8
Homog. Ribbon, w =32  28.5
Homog. Ribbon, w = 64 12.1
Homog. Ribbon, w = 128 6.5
Bu'RR, w =32 24

BuRR plain w = 32 0.94
BuRR 2-bit w =32  0.95
BuRR 1*-bit w =32  0.61
Bu'RR, w=64 0.57

BuRR plain w = 64 0.32
BuRR 2-bit w = 64 0.17
BuRR I"bit w =64 0.14
BuRR plain w = 128 0.13
BuRR 2-bit w =128  0.08
BuRR I™bit w =128  0.05

31 11 7
28 10 7
64 15 14
38 40 35
89 8 7
98 16 16
71 485 304
38 23 21
71 33 26
24 18 20
32 18 20
58 30 25
66 28 27
81 28 26
82 27 26
8 35 35
128 28 27
116 27 25
118 27 25
115 33 34
214 35 28
202 35 28
214 42 38

156
119
259
69
163
215
109
76
124
53
70
115
125
86
87
90
196
121
123
120
220
208
219

56

56

79

167
57

101
235
143
158
82

86

155
152
145
145
148
152
146
146
147
159
159
160

50
44
79
156
57
99
175
69
91
63
65
89
92
83
81
92
95
79
7
90
92
92
96

309 180 294
243 188 308
376 264 326
127 314 305
632 415 435
759 470 494
138 402 324
342 294 205
442 336 243
109 230 179
165 218 195
281 333 305
178 405 277
149 327 229
150 328 217
158 352 220
203 400 296
175 334 250
164 328 209
189 353 239
305 364 244
297 358 226
317 389 294

t Larger space allocated to improve construction time.

i Potentially unfavorable bit alignment.

; Standard Ribbon space overhead depends on n.
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Table 4 Selected BuRR. configurations for various r. Sparse coefficient vectors used for rows with
threshold compression mode marked °.

thresh overloading empty metabits estimated

r w b mode factor e slots (%)  /bucket overhead (%)

1 128 512 1I™-bit -0.0470588  0.017477 1.3194 0.275219

1 64 256 2-bit -0.034375 0.442091 2 1.226810

1 64 128 2-bit®  -0.05625 0.261241 2 1.827833

1 32 64  2-bit -0.08125 0.681598 2 3.828044

2 128 512 Itbit -0.0470588  0.017477 1.3194 0.146348

2 64 128 1Itbit -0.0888889  0.062375 1.2511 0.551393

2 64 128 2-bit -0.08125 0.013288 2 0.794642

2 64 128 2-bit* -0.05625 0.261241 2 1.044537

2 32 64  2-bit -0.08125 0.681598 2 2.254821

4 128 512 1%-bit -0.0431373  0.008797 1.4402 0.079125

4 64 128 2-bit -0.08125 0.013288 2 0.403965

4 64 128 2-bit® -0.05625 0.261241 2 0.652889

4 32 64 2-bit -0.08125 0.681598 2 1.468210

8 128 512 I-bit -0.0431373  0.008797 1.4402 0.043961

8 64 128 2-bit -0.08125 0.013288 2 0.208626

8 64 128 2-bit® -0.05625 0.261241 2 0.457065

8 32 64  2-bit -0.08125 0.681598 2 1.074904

16 128 512 1%bit -0.0411765  0.007102 1.5117 0.025557
16 64 128 2-bit -0.08125 0.013288 2 0.110957
16 64 64 2-bit® -0.065625 0.109362 2 0.304888
16 32 64 plain  -0.13125 0.046154 6 0.632362




P. C. Dillinger, L. Hiibschle-Schneider, P. Sanders, and S. Walzer

250 [ I I I I I
——w = 32, plain —e—w = 64, plain

T
—o—w = 32, 1*-bit ——w = 64, 1Tbit |

200 | | 8w = 32, 2-bit —=—w = 64, 2-bit

Construction time per key (ns)

150 (- s
100+ c] 4 = & 5 | threading |
| | | | | | ! |
1 2 4 8 16 32 64 128

Number of threads (cores)

(a) Construction of 10000 filters with 10° keys each (w = 32) or 5000 filters with 2 - 10 keys each
(w = 64), for a total of 10'° keys; strong scaling.
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(b) Scaling behavior of positive queries on the filters from (a). Each query accesses a randomly chosen
filter. Tested with 108 queries per thread.
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(c) Scaling behavior of negative queries on the filters from (a). Each query accesses a randomly chosen
filter. Tested with 108 queries per thread.

Figure 16 Scaling experiments for parallel construction and querying of BuRR.
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C Full Experimental Results

Tables 5 and 6 below contain the results of our performance experiments for all tested
configurations for the experiments of Section 12, first for retrieval-based approaches in
Table 5, and then for AMQ data structures in Table 6.



Table 5 Performance of retrieval-based approaches

Space ns/key, n = 10° ns/key, n = 108 parallel, n=107
Method Config w r  ovr % con pos neg con pos neg con pos neg
} Standard Ribbon |
Standard Ribbon 64 1 14520 26 4 4 64 16 16 320 7 99
64 3 14520 27 9 9 65 54 51 326 118 138
64 5 14;20 32 13 20 70 72 62 319 147 165
64 7 14,20 32 16 20 70 78 66 324 234 194
10 % Pad 64 7 14,20 32 16 20 70 78 66 330 167 177
15% Pad 64 7 15;20 32 16 20 70 78 66 329 166 190
20 % Pad 64 7 20.0 32 16 20 69 78 67 337 167 160
25 % Pad 64 7 25.0 32 16 20 67 78 66 351 167 153
64 7.7 15521 35 20 23 74 95 78 336 242 215
64 8 14;20 32 16 20 70 78 66 325 189 181
Smash 64 8 14;20 34 18 23 76 79 78 331 179 169
64 9 14;20 33 19 22 71 90 68 332 191 172
64 11 14520 38 23 21 76 143 69 342 294 205
64 13 14520 35 26 22 73 150 71 323 312 209
64 15 14;20 38 28 22 77 154 72 315 319 222
128 1 68 61 7 7 113 17 17 462 88 106
128 3 68 62 14 14 114 67 67 467 139 191
128 5 68 65 18 23 118 85 82 465 258 185
128 7 68 69 24 25 121 140 87 464 296 206
128 77 79 70 28 26 122 147 90 471 307 211
128 8 68 69 24 25 121 140 87 442 300 223
Smash 128 8 68 72 27 27 125 143 92 467 303 212
128 9 68 70 29 25 122 150 88 462 319 293
128 11 6;8 71 33 26 124 158 91 442 336 243
128 13 658 74 35 27 126 164 93 431 349 320
128 15 659 76 38 27 128 169 94 460 361 340
Space ns/key, n = 10° ns/key, n = 108 parallel, n=10"
Method Config w r  ovr % con pos neg con pos neg con pos neg
J Homogeneous Ribbon |
Homogeneous Ribbon 16 1 29.7 15 4 4 39 17 17 67 67 78
16 3 346 16 9 9 40 58 59 67 141 140
16 5 41.5 17 12 19 41 68 59 67 138 164
16 7 522 19 14 20 42 73 61 69 148 128
16 7.7 581 23 17 20 43 75 61 74 161 169
16 8 594 23 15 19 45 75 61 72 151 147
16 9 68.0 23 17 20 42 79 62 72 158 129
16 11 88.3 33 23 20 55 135 64 83 263 183
32 1 142 17 3 3 49 13 13 104 92 91
32 2.7 19.2 20 10 16 50 47 50 105 123 136
32 3 16.1 17 8 8 49 45 45 101 153 151
32 33 187 20 10 17 50 55 53 103 128 126
32 5 18.2 20 10 18 50 67 57 100 135 119
32 7 207 20 13 19 50 73 60 105 147 168
32 77 228 22 16 19 52 75 60 106 178 173
32 8 222 20 14 19 50 75 60 105 210 163
32 9 24.0 20 15 20 49 76 62 104 156 169
32 11 285 24 18 20 53 82 63 109 230 179
32 13 344 26 23 20 55 141 64 110 304 163
32 15 413 27 24 20 55 146 65 108 297 142
32 16 449 28 26 20 56 149 66 109 302 196
64 1 71 24 3 3 65 12 12 158 99 94
64 27 11.0 26 10 17 67 47 52 153 129 124
64 3 80 24 8 8 65 45 45 158 132 145
64 3.3 10.3 27 10 17 67 56 54 159 152 150
64 5 89 27 11 19 68 68 59 156 193 169
64 7 99 28 14 19 67 75 63 155 164 170
64 7.7 114 30 16 20 69 79 65 161 190 177
64 8 10.5 28 15 20 67 78 64 151 214 152
64 9 11.0 27 15 20 66 79 65 155 200 189
64 11 12.1 32 18 20 70 86 65 165 218 195
64 13 13.1 29 23 21 67 143 66 152 303 199
64 15 13;16 32 24 21 69 148 65 150 312 219
64 16 14;17 31 25 21 68 151 66 155 316 199
128 1 36 57 6 6 122 15 15 336 115 107
128 3 4.0 57 13 13 119 65 65 324 162 193
128 5 45 57 16 21 119 7 76 298 186 197
128 7 49 58 21 23 118 135 85 306 292 208
128 7.7 6.1 59 25 24 119 140 87 306 304 250
128 8 5.1 56 24 23 116 142 80 302 305 220
128 9 54 58 26 24 117 147 87 286 316 281
128 11 6.5 58 30 25 115 155 89 281 333 305
128 13 658 59 33 25 116 161 91 301 349 359
128 15 6511 61 32 24 117 162 83 299 360 373
128 16  6;15 61 32 23 118 164 82 270 372 354
Space ns/key, n = 10° ns/key, n = 108 parallel, n=10"
Method Config w r  ovr % con pos neg con pos neg con pos neg
| Bump-Once Ribbon (Bu'RR) |
Bu'RR 32 1 4.0 58 10 10 119 23 23 175 182 187
32 3 28 60 14 14 119 67 67 175 193 212
32 5 25 62 17 24 121 7 82 175 237 263
32 7 24 62 21 26 121 123 88 174 261 239
10 % Pad 32 7 103 40 21 26 94 125 88 163 275 286
15% Pad 32 7 153 37 21 26 89 125 89 164 264 274
20 % Pad 32 7 203 36 21 26 88 126 89 166 280 269
25% Pad 32 7 253 35 21 26 87 126 89 165 275 244
32 77 24 65 23 26 124 127 89 178 336 292
32 8 24 63 22 26 122 128 88 177 357 264
32 9 24 63 24 27 121 141 90 178 373 266
32 11 24 66 28 27 125 152 92 178 405 277
32 13 23 68 30 27 128 158 95 178 419 256
32 15 23 69 32 28 128 162 96 182 428 261
64 1 14 118 10 10 187 21 21 197 152 187
64 3 0.80 118 13 13 187 66 67 195 192 220
64 5 0.67 122 18 25 190 78 83 198 235 269
64 7 0.62 121 21 26 188 128 90 197 292 300
64 7.7 0.61 125 23 26 193 134 91 196 356 255
64 8 0.61 122 22 26 189 131 88 199 375 259
64 9 0.59 124 24 27 192 140 93 197 385 255
64 11 0.57 128 28 27 196 152 95 203 400 296
64 13 0.56 125 31 27 192 160 96 203 409 272
64 15 0.55 127 33 28 194 165 97 205 418 280
128 7 031 332 29 30 442 147 100 427 369 285
128 11 0.29 334 38 32 444 168 106 429 417 365
Space ns/key, n = 10° ns/key, n = 108 parallel, n=107
Method Config w r  ovr % con pos neg con pos neg con pos neg
J Bumped Ribbon Retrieval (BuRR) with contiguous result storage |
BuRR contiguous storage plain 32 8 1.3 78 32 32 83 99 98 140 318 282
2-bit 32 8 1.2 80 33 32 84 101 101 147 262 269
1bit 32 8 0.75 82 41 41 86 106 106 153 300 305
plain 32 16 0.68 82 33 33 86 104 104 146 276 275
2-bit 32 16 0.77 83 33 33 88 104 103 147 274 269
1bit 32 16 049 86 42 42 90 114 113 154 336 304
plain 64 8 0.43 111 48 48 116 145 145 179 307 311
2-bit 64 8 0.23 111 47 47 116 145 144 176 307 306
1™bit 64 8 0.18 112 56 56 116 145 145 177 336 346
plain 64 16 0.23 123 47 47 128 159 159 164 349 351
2-bit 64 16 0.13 125 48 48 130 159 159 167 347 350
1=bit 64 16 0.11 124 56 56 128 159 159 164 372 378
J Bumped Ribbon Retrieval (BuRR) with embedded metadata, contiguous result storage |
BuRR Cache-Line Storage plain 32 8 1.7 79 43 42 83 161 160 153 322 319
2-bit 32 8 3.6 81 40 39 85 155 152 156 309 318
I=bit 32 8 3.6 83 51 50 88 161 158 153 337 363
plain 32 16 1.7 82 52 52 86 184 182 147 367 390
2-bit 32 16 3.6 83 52 52 88 178 175 151 361 356
T=bit 32 16 3.5 86 61 60 91 182 179 152 383 388
plain 64 8 0.46 110 53 53 116 173 174 193 352 350
2-bit 64 8 0.83 111 67 67 116 187 186 194 374 366
1=bit 64 8 0.88 111 72 71 115 184 183 194 378 403
plain 64 16 0.46 123 68 68 128 209 208 183 398 425
2-bit 64 16 0.83 125 80 80 130 212 212 176 407 413
1bit 64 16 0.86 125 89 89 129 213 213 173 430 432
J Bumped Ribbon Retrieval (BuRR) with sparse coefficient vectors, contiguous result storage |
BuRR Sparse plain 32 8 1.8 79 23 23 83 81 81 147 243 231
2-bit 32 8 23 79 23 23 84 82 82 144 236 238
T=bit 32 8 23 84 44 43 89 89 88 151 303 301
plain 32 16 14 81 23 23 86 84 84 136 232 249
2-bit 32 16 19 82 24 23 87 86 86 140 238 249
T=bit 32 16 19 87 44 43 93 92 91 151 340 310
plain 64 8 0.95 102 21 21 107 80 80 167 210 250
2-bit 64 8 0.56 100 21 21 105 80 80 161 226 254
T=bit 64 8 1.1 102 31 31 107 83 83 168 274 228
plain 64 16 0.82 114 22 21 119 85 85 152 228 248
2-bit 64 16 046 113 21 21 117 86 86 150 248 257
Ibit 64 16 1.1 114 31 31 119 88 88 153 241 306
Space ns/key, n = 10° ns/key, n = 108 parallel, n=10"
Method Config w r  ovr % con pos neg con pos neg con pos neg
J Bumped Ribbon Retrieval (BuRR) with interleaved result storage |
BuRR interleaved storage plain 32 1 95 72 7 7 7 17 17 131 160 170
plain 32 3 32 73 14 21 78 64 64 145 180 170
plain 32 5 20 76 17 24 80 74 75 146 200 203
plain 32 7 14 76 20 26 81 82 79 151 247 210
plain 32 8 1.3 77 22 25 82 111 78 153 293 221
plain 32 9 1.1 76 24 26 81 133 79 146 306 256
plain 32 11 094 81 28 26 86 145 83 149 327 229
plain 32 13 0281 82 30 27 87 151 84 144 339 235
plain 32 15 071 83 32 26 87 155 84 146 347 226
plain 32 16 0.67 85 34 26 90 157 84 148 352 273
plain 64 1 3.2 105 5 5 110 13 13 181 137 139
plain 64 3 11 104 13 20 110 63 62 177 160 172
plain 64 5 0.66 108 16 23 114 74 70 192 182 189
plain 64 7 048 109 18 24 115 82 74 182 229 213
plain 64 8 0.43 111 21 24 117 131 80 193 302 196
plain 64 9 0.38 113 23 25 118 134 79 179 315 211
plain 64 11 0.32 116 27 25 121 146 79 175 334 250
plain 64 13 0.27 116 29 26 121 152 81 180 343 198
plain 64 15 0.24 115 31 25 121 156 78 192 347 208
plain 64 16 0.23 115 34 25 120 156 81 196 353 215
plain 128 1 1.0 204 13 13 210 22 21 307 119 149
plain 128 3 0.38 206 17 23 211 70 74 321 199 222
plain 128 5 0.25 208 22 26 213 120 86 318 291 209
plain 128 7 0.18 209 27 27 214 141 88 319 317 226
plain 128 8 0.17 211 30 27 216 148 90 320 326 225
plain 128 9 0.15 213 31 28 218 151 92 296 340 236
plain 128 11 0.13 214 35 28 220 159 92 305 364 244
plain 128 13 0.12 218 38 28 223 166 93 301 377 272
plain 128 15 0.11 219 42 29 225 175 94 282 445 272
plain 128 16 0.10 222 44 29 227 178 94 284 455 272
2-bit 32 1 6.6 74 7 7 79 15 15 141 132 147
2-bit 32 3 25 74 14 21 79 64 65 147 227 214
2-bit 32 5 1.6 76 17 24 81 74 74 150 207 236
2-bit 32 7 13 77 19 26 82 82 80 152 233 245
2-bit 32 8 1.2 78 22 25 83 95 74 153 318 242
2-bit 32 9 1.1 79 24 26 83 133 80 152 304 207
2-bit 32 11 095 82 27 26 87 145 81 150 328 217
2-bit 32 13 0.86 84 30 26 89 150 83 152 337 218
2-bit 32 15 0.80 85 32 26 90 154 84 145 347 265
2-bit 32 16 0.77 86 32 27 91 154 87 147 351 268
2-bit 64 1 1.6 104 6 6 109 13 13 186 113 124
2-bit 64 3 0.55 106 13 21 111 64 64 188 174 181
2-bit 64 5 0.35 108 16 24 114 74 74 189 200 201
2-bit 64 7 025 110 19 24 115 82 74 190 215 215
2-bit 64 8 0.23 111 21 25 116 98 78 195 303 238
2-bit 64 9 0.21 115 23 25 120 133 82 181 312 246
2-bit 64 11 0.17 118 27 25 123 146 77 164 328 209
2-bit 64 13 0.15 118 29 26 123 151 81 163 344 233
2-bit 64 15 0.14 117 31 26 122 156 79 192 346 209
2-bit 64 16 0.13 116 34 26 121 156 84 196 353 198
2-bit 128 1 045 190 12 12 195 21 21 291 113 137
2-bit 128 3 0.18 191 17 23 196 70 74 303 171 180
2-bit 128 5 0.13 184 22 27 189 120 86 296 285 203
2-bit 128 7 0.10 186 27 27 191 140 88 294 313 211
2-bit 128 8 0.09 194 30 28 199 148 90 301 320 221
2-bit 128 9 0.09 199 32 28 205 151 90 303 341 238
2-bit 128 11 0.08 202 35 28 208 159 92 297 358 226
2-bit 128 13 0.08 205 38 28 210 170 93 283 375 239
2-bit 128 15 0.07 207 42 29 212 174 93 273 447 239
2-bit 128 16 0.07 210 44 30 215 177 94 274 463 231
1=bit 32 1 44 76 21 21 81 27 26 151 158 194
T=bit 32 3 16 7 23 30 82 67 74 150 202 215
T=bit 32 5 1.1 80 26 33 85 7 84 154 213 265
T=bit 32 7 0.82 80 29 34 84 88 88 158 240 231
T=bit 32 8 0.75 80 31 34 85 110 87 157 308 231
T=bit 32 9 0.69 81 32 34 86 138 90 156 331 284
T=bit 32 11 0.61 85 35 35 90 148 92 158 352 220
I=bit 32 13 0.55 86 37 34 91 153 93 149 369 239
Tbit 32 15 0.51 87 39 35 91 157 94 154 375 247
I=bit 32 16 049 89 40 35 94 157 93 142 371 282
1=bit 64 1 1.2 105 20 19 110 21 21 187 176 173
I=bit 64 3 042 106 22 29 111 66 71 189 196 221
1bit 64 5 0.27 109 24 32 114 76 81 194 211 214
1bit 64 7 021 110 27 33 115 86 84 189 238 228
1=bit 64 8 0.18 112 31 34 117 134 89 194 320 232
1=bit 64 9 0.16 115 30 33 120 136 86 191 338 232
1bit 64 11 0.14 115 33 34 120 147 90 189 353 239
1bit 64 13 0.12 116 36 34 122 152 90 175 372 286
1™bit 64 15 0.11 116 38 34 121 156 90 198 374 274
1bit 64 16 0.11 116 41 34 121 158 92 181 373 243
Ihbit 128 1 0.33 203 25 25 208 25 25 309 126 149
1=bit 128 3 0.12 191 28 34 197 72 7 304 182 217
Ihbit 128 5 0.08 193 31 36 199 120 88 315 299 226
Itbit 128 7 0.06 208 34 37 214 142 92 304 319 235
Ihbit 128 8 0.06 202 37 37 208 146 94 311 327 250
Itbit 128 9 0.05 213 37 37 218 152 94 322 349 271
T=bit 128 11 0.05 214 42 38 219 160 96 317 389 294
T=bit 128 13 0.04 218 47 37 223 171 97 295 385 274
T=bit 128 15 0.04 220 52 38 225 179 97 296 429 259
T=bit 128 16 0.04 217 54 38 222 184 96 299 478 251
Space ns/key, n = 10° ns/key, n = 108 parallel, n=10"
Method Config w r  ovr % con pos neg con pos neg con pos neg
J} Various Other Retrieval Methods
BPZ c=0.81 1 235 133 7 7 331 28 28 983 221 219
BPZ c=0.81 23.4 124 7 7 305 56 56 962 404 446
BPZ c=0.81 16 234 123 8 8 305 58 58 1081 321 431
Coupled k=3 1 15;10 105 8 8 257 21 21 563 231 262
Coupled k=3 15;10 86 8 8 222 56 56 505 410 417
Coupled k=3 16 15;10 85 9 9 223 58 58 504 435 437
Coupled k=4 1 84 130 9 9 259 26 26 581 313 316
Coupled k=4 8;4 104 9 9 229 59 59 546 579 578
Coupled k=4 16 84 103 10 10 233 62 62 559 531 543
Coupled k=17 1 6;2 197 12 12 349 43 43 841 534 541
Coupled k=7 6;2 169 12 12 331 91 91 813 1337 1342
Coupled k=17 16 652 167 12 12 332 99 99 825 929 939
GOV k=3,¢=0.9,C=10% compr. 1 129 423 13 13 477 30 30 1112 211 260
GOV k=4,¢=0.96,C=10% compr. 1 6.1 565 15 15 644 32 32 1367 287 286
LMSS D=12,¢=0.91 1 111 451 29 29 827 40 40 not tested
LMSS D =12,¢=0.91 8§ 11.1 421 28 28 779 134 134 not tested
LMSS D=12,¢=0.91 16 11.1 420 29 29 780 141 141 not tested
LMSS D =150,c=0.99 1 13 492 35 35 918 44 44 not tested
LMSS D =150,c=0.99 1.0 464 34 34 877 152 152 not tested
LMSS D =150,c=0.99 16 1.0 464 35 35 877 160 160 not tested
TwoBlock C' =10000 0.42 2255 10 10 | 2665 16 16 | 4444 160 206
TwoBlock C' =20000 0.24 4190 10 10 | 4990 15 15 8455 198 195

; Standard Ribbon space overhead depends on input size n. Coupled uses different parameters depending on n.




Table 6 Performance of pure AMQs

Space ns/key, n = 10° ns/key, n = 108 parallel, n=10"

Method  ovr % con pos neg con pos neg con pos neg
| Bloom filter variants |

Bloom8 44.6 9 8 19 53 59 60 199 752 271
Bloom8, bulk add 44.6 21 8 19 43 59 60 175 750 256
Bloom10 44.3 10 9 19 63 66 62 266 913 273
Bloom12 44.4 12 10 19 73 73 63 332 1058 267
Bloom12, bulk add 44.4 30 10 19 58 73 63 204 1174 257
Bloom16 44.2 17 13 20 105 99 66 504 1486 312
Bloom16, bulk add 44.2 40 13 20 80 96 65 230 1487 289
BlockedBloom 58.5 2 2 2 13 17 17 50 127 103
BlockedBloom64 52.0 3 3 3 17 24 24 50 116 101
BlockedBloom, bulk add 58.5 4 2 2 14 17 17 60 117 103
BlockedBloom, simple  112;223 2 2 2 17 19 21 47 99 99
BlockedBloom1K 44.3 2 2 2 12 17 17 8 110 108
BlockedBloom2K 44.5 3 3 3 24 23 23 15 76 76
BlockedBloom3K 44.9 4 3 3 30 24 24 35 93 7
BlockedBloom4K 45.7 5 4 4 37 25 25 53 116 80
BlockedBloom5K 46.9 6 4 4 40 25 25 67 108 82
BlockedBloom6K 48.4 7 4 4 50 25 25 71 139 130
BlockedBloom6KCompare 49.8 7 4 4 50 26 26 78 109 85
BlockedBloom7K 50.1 8 4 4 53 26 26 83 117 85
BlockedBloom8K 52.3 9 4 4 54 26 26 79 135 126
BlockedBloom9K 55.3 10 7 5 55 49 32 101 118 139
BlockedBloom10K 58.3 11 7 5 75 49 32 94 147 143
BlockedBloom11K 62.7 13 7 5 78 50 32 99 153 166
BlockedBloom12K 68.4 14 7 5 80 50 33 112 129 142
BlockedBloom13K 74.9 14 7 5 80 50 33 117 144 139
BlockedBloom14K 81.4 14 7 5 81 50 33 124 138 161
BlockedBloom15K 88.5 15 7 5 82 50 33 119 140 169
BlockedBloom16K 93.7 16 7 5 82 50 33 128 146 149
TwoBlockBloom2K 44.3 4 5 5 31 39 39 21 197 192
TwoBlockBloom3K 44.4 5 6 6 40 41 41 47 198 146
TwoBlockBloom4K 44.5 7 6 6 46 42 42 64 225 214
TwoBlockBloom5K 44.8 8 6 6 53 42 42 98 154 258
TwoBlockBloom6K 45.0 9 7 7 57 43 43 110 149 194
TwoBlockBloom7K 45.4 10 6 6 65 43 43 133 161 247
TwoBlockBloom8K 45.8 10 6 6 75 43 43 110 307 259
TwoBlockBloom9K 46.3 12 6 6 80 43 43 122 274 326
TwoBlockBloom10K 46.9 12 6 6 81 43 43 131 284 328
TwoBlockBloom11K 47.7 14 6 6 86 44 44 175 210 276
TwoBlockBloom12K 48.4 15 6 6 102 44 44 177 193 253
TwoBlockBloom13K 49.4 16 6 6 104 44 44 161 191 274
TwoBlockBloom 14K 50.1 17 6 6 106 44 44 189 185 242
TwoBlockBloom15K 51.2 17 6 6 107 44 44 195 249 269
TwoBlockBloom16K 52.2 18 6 6 108 44 44 206 282 262
BranchlessBloom8, bulk add 44.6 21 8 10 43 61 59 176 743 371
BranchlessBloom12, bulk add 44.4 30 10 9 58 75 58 203 1224 446
BranchlessBloom16, bulk add 44.2 40 13 10 80 100 61 230 1492 469
CountingBloom10, bulk add 479.4 29 11 21 76 85 74 190 1020 374
SuccCountingBloom10, bulk add 206.9 271 9 20 342 65 62 429 749 251
SuccCountBlockBloom10 255.7 248 8 7 372 48 37 393 160 107
SuccCountBlockBloomRank10 255.7 73 8 7 198 48 37 231 112 93

Space ns/key, n = 10° ns/key, n = 108 parallel, n=10"
Method  ovr % con pos neg con pos neg con pos neg

|l Cuckoo filters and Morton filters |
Cuckoo8, 5% Pad 72.9 25 10 7 107 53 49 212 153 241
Cuckool0 50.0 35 20 10 169 65 55 299 211 247
Cuckool0, 5% Pad 56.0 29 21 10 122 67 55 223 201 248
Cuckool2 40.4 35 12 166 58 51 288 180 271
Cuckool2, 5% Pad 46.3 29 10 118 56 52 239 162 282
Cuckool4 34.4 37 22 11 177 70 61 339 220 238
Cuckool4, 5% Pad 40.0 30 21 11 128 69 56 252 246 240
Cuckool6 30.1 31 11 7 156 56 50 309 180 294
Cuckool6, 5% Pad 35.7 28 10 7 119 56 44 243 188 308
CuckooPowTwo8  176;98 15 5 6 65 40 40 147 109 286
CuckooPowTwol2  150;71 18 5 6 75 48 41 175 124 331
CuckooPowTwol6  139;60 15 5 5 70 48 41 162 135 337
CuckooSemiSort13 26.6 64 15 14 259 79 79 376 264 326
CuckooSemiSortPowTwol3  127;55 33 14 13 168 75 76 354 240 271
Morton3_ 8 40.6 32 25 22 64 96 87 130 182 203
Morton7_8 54.0 30 34 31 56 121 101 121 234 207
Morton7_12 36.8 38 40 35 69 167 156 127 314 305
| Golomb-coded sequence |
GCS (Golomb-coded sequence) 255 | 131 89 88 | 183 234 234 | 348 567 575
} Quotient Filters |

CQF7 67;55 60 45 31 172 153 113 183 307 252
CQF8 63;51 61 45 31 175 155 116 188 315 260
CQF10  131;56 44 38 24 172 155 110 175 328 197
CQF13 53;41 64 46 32 185 161 122 207 331 254
QuotientFilter7 81.9 69 432 272 114 225 169 133 385 308
QuotientFilter10 93.6 71 485 304 109 235 175 138 402 324
QuotientFilter13 47,53 70 501 314 108 232 172 137 400 311

Space ns/key, n = 10° ns/key, n = 10® parallel, n=10"
Method  ovr % con pos neg con pos neg con pos neg

} Xor filters and their variants |

Xorly 23.0 93 4 4 170 27 27 645 227 241
Xor3t 23.0 91 6 6 170 51 51 647 181 258
Xorbht 23.0 91 7 7 170 54 54 642 324 332
XorT7t 23.0 91 8 8 169 56 56 644 333 348
Xor8 23.0 91 5 5 159 41 41 586 386 392
Xor8-singleheader 23.0 78 6 6 137 43 43 654 397 405
Xor9f 23.0 91 7 7 169 56 56 645 373 394
Xorl07 23.0 91 8 8 168 57 57 635 402 407
Xorl0 31.2 84 5 5 167 42 42 632 396 502
Xorl0.666 23.0 91 7 7 206 51 53 656 414 422
Xorl2 23.0 89 8 7 163 57 57 632 415 435
Xorlly 23.0 90 8 8 168 57 57 635 406 481
Xorl3f 23.0 90 8 8 168 57 57 630 418 466
Xorl4dy 23.0 90 9 9 167 58 58 627 417 448
Xorl5f 23.0 89 8 8 167 58 58 629 414 451
Xorl6 23.0 82 5 5 159 41 41 584 312 457
XorPlus5t 18.3 99 15 15 216 93 92 808 328 456
XorPlus7y 15.4 99 15 15 216 99 97 741 344 468
XorPlus8 14.4 94 14 15 209 86 85 853 372 475
XorPlus97t 13.9 98 15 15 215 96 95 763 348 494
XorPlusl1t 12.8 98 16 16 215 101 99 759 470 494
XorPlus13t 12.0 98 16 16 214 102 100 724 359 516
XorPlusl5t 11.5 97 16 16 214 104 101 755 589 553
XorPlus16 114 93 15 15 211 89 87 851 387 531
XorFuse8 16;14 89 6 6 215 43 44 453 532 534
XorFusel6 20;16 83 7 7 116 46 47 436 513 529
XorPowTwo8  57;101 65 4 4 276 35 35 856 369 389

; Space overhead depends on input size n

1 potentially suboptimal bit alignment
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