
Fast And Space Efficient Trie Searches

Phil Bagwell

Searching and traversing m-way trees using tries is a well known and broadly used technique.
Three algorithms are presented, two have constant insert, search or delete cost, are faster than
Hash Trees and can be searched twice as quickly as Ternary Search Trees (TST). The third has
a lgN byte compare cost, like a TST, but is faster. All require 60% less memory space per node
than TST and, unlike Hash Trees, are smoothly extensible and support sorted order functions.
The new algorithms defining Array Compacted Trees (ACT), Array Mapped Trees (AMT), Unary
Search Trees (UST) and their variants are discussed. These new search trees are applicable in
many diverse areas such as high performance IP routers, symbol tables, lexicon scanners and FSA
state tables.

Categories and Subject Descriptors: H.4.m [Information Systems]: Miscellaneous

General Terms: Searching,Database

Additional Key Words and Phrases: Trie,Tries,Search,Trees,TST,ACT,AMT,UST,Symbol Table

1. INTRODUCTION

The concept of tries was originally conceived by Brandais [1959] and later given that
name by Fredkin [1960] which he derived from the word retrieval, in information
retrieval systems. Tries are one of the most general-purpose data structures used in
computer science today, their wide application makes any performance improvement
very desirable.

In this paper I present two algorithms, together with variants, that for a set of N
keys have a cost, for inserts, searches and traversal iterations, that is independent of
N . The third has a lgN byte compare search cost, like the elegant Ternary Search
Trees (TST) by Bentley and Sedgewick [1997]. These algorithms were originally
conceived as the basis for fast scanners in language parsers where the essence of
lexicon recognition is to associate a sequence of symbols with a desired semantic.
M-way tries have been shown to be a powerful technique to create this association
and many hybrid algorithms have been developed, examples include Hash Tries,
Bentley, McIlory, and Knuth [1986] and TST.

The method for searching tries is conceptually simple. It can be illustrated by
finding whether the key ADD exists in a map, perhaps an entry in a symbol table,

Address: Es Grands Champs, 1195-Dully, Switzerland

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · Phil Bagwell

organized as an m-way trie. Start at the root node, take the first letter of the key, A
and use its ordinal value to index down the branches to the corresponding sub-trie.
Next take the D and find the subsequent sub-trie. Finally take the last D and find
the terminal node that will contain the value to be associated with the word ADD.
If at any stage a sub-trie cannot be found to match the particular character then
the key is not in the symbol table. A partial tree is depicted in figure 1.

NULLB

ST2A

NULLC

NULLD

NULLE

NULLZ

NULLB

NULLA

NULLC

ST3D

NULLE

NULLZ

NULLB

NULLA

NULLC

ENDD

NULLE

NULLZ

Fig. 1. An Array Tree.

Direct table indexing represents the fastest way to find a sub-trie, however all
the sub-tries must be created as branch tables with a length equivalent to the
cardinality of the symbol set. Each possible symbol is allocated a place in the table
according to its equivalent ordinal value, the entry contains either a pointer to the
next sub-trie or a null value to indicate a non-member.

Given this structure then the simple C++ code fragment, Figure 2, can be con-
structed to enable keys to be found in a time independent of the number of keys in
the map.

// Assuming characters are represented as A=0, B=1,...,Z=25
class Table{Table *Base};

Table *ITable;
char *pKey; // pKey points to the zero terminated Key string
ITable=RootTable;
while((*pKey)&&(ITable=ITable[*pKey++]));

Fig. 2. An Array Tree Search Code Fragment.

The drawback to this approach is only too apparent. The space required for
tables is proportional to sp where s is the symbol alphabet cardinality, 26 in the
example above, and p is the length of the keys to be stored in the map. For 5 letter
keys it could require 265 or about 12 million nodes.

This concept has been known since the early 60’s as has the associated problem
of the high space overhead for null-pointers and for this reason the approach has

Fast And Space Efficient Trie Searches · 3

usually been discarded as impractical, Knuth [1998] pages 492-512. As an alter-
native compression techniques have been used within hybrid trees to give better
packing of the pointers but suffer attendant time penalties. In this paper I ex-
ploit the properties of key sets to create new data structures that minimize these
difficulties.

In typical key sets the number of trie branches per trie is small. For a random
set of N keys from an alphabet M , the branches at each level l of iteration of the
search is given by M l(1− (1−M−l)N)−N(1−M−l)N−1, Knuth [1998] page 725.

With randomly ordered and most typical key sets early branches tend to the
cardinality of the alphabet, while later tries tend to be sparse. However, many
useful key sets contain a common or fixed prefix which lead to fuller tries towards
the end of the key sequence. This branch count distribution can be used to achieve
an advantageous balance of speed against memory use.

The general problem of taking an m-way branch in a trie can be encapsulated
in a function I will call Next(Node,Symbol). It takes as arguments the current tree
node and the symbol value indicating which sub-trie or arc to follow. The function
returns the sub-trie node or a null value if there is no valid branch. The challenge
is to implement this function efficiently. This form is immediately recognizable as
an FSA table transition function.

// Generic Key Search in a trie based Dictionary
int Find(char *Key)
{
TNode *P,*C;
P=Root;
while(C=Next(P,*Key)){Key++;P=C;}
if(*Key==0)return P->Value;
return 0;
}

Fig. 3. A Generic Trie Search Function.

Given this function, Figure 3 shows an algorithm to find a zero terminated string
key in such a tree. This is a very compact and efficient search method, however the
central problem has just been delegated to the Next function, the question remains
as to how well this can be implemented. A simple and fast approach is to use the
TST.

1.1 Ternary Search Trees (TST)

A TST is a hybrid, combining the concept of an m-way tree and a small binary
tree to find the sub-trie needed to match a specific symbol. Figure 4 illustrates
the structure; as with the previous example start at the root but, instead of direct
indexing an array a small binary tree is searched to find the sub-trie corresponding
to the A. Once done, the D is taken and the search continues in the next binary
tree associated with this sub-tree and finally repeated for the ending D.

This approach solves the wasted space problem and the binary search proceeds
very quickly, as only one character is compared rather than a full key as would be

4 · Phil Bagwell

ST14B

ST2A

ENDC
ST56D

ST33E

ST19B

ST12A

ST34D
ST67F

ST72M

ST14N

ENDD

ST3T

ST56F

ST33A

Fig. 4. A Ternary Search Tree.

the case in a simple binary search tree. Figure 5 shows an implementation of the
Next function using a TST.

In the published form each TST node requires three pointers, a split character
and the associated value. Clement, Flajolet, and Vallee [1998] have shown that
the cost of the algorithm is proportional to lgN byte comparisons where N is the
number of keys in the dictionary. In practice a TST seems to perform better than
this would suggest, the cached memory hierarchy of modern computers and the
skew in the distribution tree branches give enhanced performance.

// TST Next Method
Class Node {

char Splitchar;
Node *equal,*kidl,*kidr;
};

inline Node *Next(Node *P,unsigned char c)
{
do{

if(P->Splitchar==c)return P->equal;
if(P->Splitchar>c)P=P->kidl;
else P=P->kidr;
}while(P);

return NULL;
}

Fig. 5. The Next function based on a TST

Modern computers incorporate one or more caches between the CPU and main
memory, frequently accessed locations and algorithm instructions tend to be cache
resident. The branch distribution for tries towards the root of the tree tend to
the cardinality of the alphabet and, because they are close to the root, are most
frequently accessed. The majority of the nodes in the early part of the tree will

Fast And Space Efficient Trie Searches · 5

therefore become cache resident. In many machines the cache functions at between
ten and twenty times the speed of the main memory, hence the binary search at the
root of the tree runs much faster than when accesses are being made randomly into
main memory further down the tree. For a moderate size dictionary, up to 50000
keys, the performance of a TST is excellent and almost independent of the number
of keys. However, for very large dictionaries or where main memory performance
approaches the cache speed or where the dictionary is only infrequently referenced
from a larger application then the lgN performance becomes apparent.

The performance of a TST, as with simple binary trees, can be degraded by the
same degenerate case of inserting keys in order, instead of the benefits of a lgN
search at each trie branch it can degenerate to an N/2 search, where N in this case
has a maximum of the alphabet cardinality. For the performance comparisons, tree
balancing was added to the TST insert function. The performance of this enhanced
version, TST*, is reported in Table 3 towards the end of the paper.

1.2 Array tries

In implementing the Next function the core problem is to eliminate the space lost
with null-pointers while retaining the speed of direct indexing. The algorithms for
Array Compacted Trees (ACTs) and Array Mapped Trees (AMTs) both do use
direct array indexing and have a search time independent of the dictionary size.
ACT is far more complex but does give a search algorithm that is close to ideal.
AMT on the other hand is a robust, less complex, hybrid algorithm with excellent
performance.

2. ARRAY COMPACTED TREE (ACT)

Most branch tables are sparsely filled, therefore by careful arrangement two or
more tries may be overlaid in the same space, Knuth [1998] page 493. An example,
illustrated in table 1, will demonstrate the principles involved, a dictionary con-
taining the keys ABLE, BASE, BEAR, BANE and BIN will be searched for
the existence of the keys BEAR and BEG.

In the illustration the table represents the nodes in a trie based dictionary. The
letters in the alphabet A to Z are associated with the ordinal values 0 to 25. Each
node has a node number in the column headed Node and two pointers to other
nodes Parent and Xbase. The Parent address is used to mark each of its Child
nodes. On indexing into the trie if the node marker matches the Parent address
then the character is a member of the trie, otherwise it is not. Xbase points to the
base of the next sub-trie. The column headed Letter is not part of the node data
but has been added to make the example easier to follow.

Now test for the existence of the key BEAR in the dictionary. The first letter
in BEAR is B. Start at the root node at node 0 the Xbase for this trie is 1 and is
added to 1, the value of B to arrive at node 2. Notice the letter B appears in the
column headed Letter and verifies that the procedure has been followed correctly.
Its Parent is 0 indicating that this letter is indeed a member of this trie.

The new Xbase is 4, now add 4, the value of E to give 8. The Parent node for
node 8 is indeed 2 so E is a member of this trie. The new Xbase is 9 to which 0
is added, the value of A to give 9. The Parent node for node 9 is 8 so A is valid.
Next take the value of R, 17 and add to the next Xbase of 1, giving node 18. The

6 · Phil Bagwell

Parent node is 9 so this is a valid branch too.
All four letters where found while traversing the trie thus BEAR is in the dic-

tionary.

Table 1. Overlaid tries.
Node Letter Parent XBase Node Letter Parent XBase
0 NULL 1 10
1 A 0 2 11
2 B 0 4 12 I 2 3
3 B 1 2 13 L 3 1
4 A 2 1 14 N 4 2
5 E 13 NULL 15
6 E 14 NULL 16 N 12 NULL
7 E 19 NULL 17
8 E 2 9 18 R 9 NULL
9 A 8 1 19 S 4 3

Now repeating the exercise with BEG, all goes well for B and E to arrive at
node 8. Next take the G, value 6, and add it to the Xbase of 9 to give 15. The
Parent of node 15 is 12 and not 8, there is no match for the G and hence the word
BEG is not in the dictionary.

In inserting the tries it is essential to ensure that no valid branches collide and
occupy the same location.

With this concept of overlaid tries a very lean implementation of the Next function
can be realized. Figure 6 contains a suitable class declaration and the Next function.
As with the previous implementation using a TST, the function returns a pointer
to the next sub-trie if the character is a member of the trie or a NULL if it is not.
Utilizing this Next function with the Find function in Figure 3 it can be seen, by
inspection, that the resulting algorithm takes a small constant time for each key
character that is independent of the total number of keys.

class ACTSNode {
public:

ACTSNode *Parent,*IndexBase;
unsigned char EndZone:2,Term:1,Free:1,
FirstChar,NextChar,BranchCnt;
int Value;
}

ACTSNode *Next(Node *P,unsigned char c)
{

ACTSNode *C;
If((BranchCnt)&&(((C=P->IndexBase+c)->Parent)==P))return C;
else return NULL;

}
};

Fig. 6. The Next function based on an ACT

Fast And Space Efficient Trie Searches · 7

Note that the last sub-trie is detected when a node has a zero branch count.
This algorithm does indeed approach the ideal, is not dependent on the dictionary
size and moreover gives the minimum number of memory accesses. The goal of
achieving the speed of direct array indexing has been reached, but apparently at
the expense of having a difficult insertion problem to solve. If the algorithm is to be
space efficient a variation on the familiar knapsack packing theme must be solved
which could be computationally expensive.

Favorable trie branch distribution allows an insert algorithm to be created that
has a comparable cost to other trie insert algorithms, without this ACT would
remain a curiosity confined to a few special applications where dictionaries are
static, such as spelling checkers, router tables, and so on.

2.1 Packing The Knapsack

The order of difficulty in packing tries into memory can be perceived by selecting a
couple of dozen words and to do the task by hand. First define the trie entries and
attempt to overlay them in the smallest space. Starting with the tries with most
entries first, it is surprising that it is not such a difficult job after all

It is soon discovered that there are a few tries with many entries and many tries
with only one or a few entries. With N random keys made up from s symbols
then on average after logs N symbols keys are unique. For example, taking 18000
random keys composed from the 26 letters A to Z this happens after about three
letters. Tries after the 3rd letter will frequently have just one entry.

The root trie will often be fully filled, each entry having 18000/26 ways to be
filled. The tries for the second letter in the key will most likely be filled, there are
18000/(26 ∗ 26) ways for this to happen. By the third letter the tries will start
to become more sparsely populated. From the forth position onward there will be
only a few entries.

Table 2 shows the distribution of tries by number of branches for an ACT con-
structed from an English language dictionary containing 149000 unique words. The
alphabet includes the letters A to Z and a few special characters. Notice how quickly
the number of tries drop with increasing branch count.

Table 2. Tries with a given number of branches.
Branches Tries Branches Tries Branches Tries

1 103027 11 165 21 14
2 190192 12 114 22 6
3 34500 13 59 23 17
4 12423 14 64 24 7
5 4548 15 60 25 5
6 2131 16 40 26 7
7 997 17 39 27 5
8 567 18 21 28 3
9 363 19 29 29 1

10 269 20 11 30 1

It is this distribution that makes the puzzle solvable. Many of the tries to be
inserted will be small and unconstrained. View the problem as fitting a few large

8 · Phil Bagwell

objects and a lot of ”sand” into the knapsack, the higher the ratio between sand
and larger objects the easier it is to fit them all in. Adding one more object becomes
easy, just push some sand out of the way.

Unlike the pencil and paper example earlier, most real world problems do not give
one the luxury of knowing all the keys before starting to create the key dictionary.
As the number of keys is not known in advance therefore it is not possible to start
with the largest and most constrained tries first. Each time a new key is added one
of the tries must be modified with the consequence that any individual trie may
grow unpredictably.

2.2 Memory Management

Before planning the actual insertion for trie nodes, the general memory management
strategy must be considered. As was seen in the first example, individual ACT
nodes cannot simply be taken from the heap. The location of each node needs to
be specifically controlled so that it occupies the correct offset from an index base.

Special care must also be taken at the end zones of the storage area. Recall that
the search detects non-valid characters by the corresponding child node in the trie
having a different parent. If the trie base is located closer than the cardinal value of
the alphabet to the upper end of memory then an illegal memory reference would
occur for any characters causing an access beyond this boundary. This bounds check
is made at insert time thus removing the overhead for all searches. The alternative,
using wrap-around or a modulus technique, was discarded for this reason.

ACT nodes are therefore allocated in contiguous blocks each time more space is
required. This size is set to increase total node space by some factor, say 10 per-
cent. However, the minimum size block allocated must be larger than the alphabet
cardinality number of nodes. Empirically I have found that a block size greater
than sixteen times the cardinality gives good performance, hence for an alphabet of
256 characters, greater than 4096 nodes are allocated at a time. The more memory
allocated in each block the easier the packing task becomes.

2.3 Placing Tries

The very first and subsequent tries nodes must be located to minimize collisions.
Each time a trie node from one trie collides with one from another, one of the tries
must be relocated, an expense best avoided. One alternative is to use a random
number generator to choose a location. This is a reasonable solution, but it is not
the fastest, even at moderate space occupancy the time wasted on collisions and
retries leads to a poor insertion performance.

Analysis of the node branch frequency suggests a better approach. Clearly it is
best to distribute the nodes with the most branches at least the alphabet cardinality
number of nodes apart. In this way they would have no risk of collision. This would
be theoretically possible when the complete set of tries is known, but would not be
the case for progressive insertion and extensible tries. However, recall that the most
accessed tries tend to be the ones that eventually have the most branches and that
the tries most accessed tend to be defined earliest in the creation of a dictionary.
For example, with random keys, the root trie will be the first started and typically
be the first to fill.

The strategy that proves to be most successful is to use a binary allocation. The

Fast And Space Efficient Trie Searches · 9

first trie base created is allocated at the half way free storage point. The next at
the quarter array size point, the next at the three quarters, the next at the one
eighth and so one. The earliest placed tries tend to grow the most and are spaced
well apart. The smaller tries tend to be added later and fill the gaps.

Knowing this allocation pattern the process can be enhanced by initially linking
the free nodes in this distribution order. New tries are created by drawing a new
node from the free list with the knowledge that they will be well spaced from their
neighbors.

This interlaced row sequence can be generated in two ways. One uses a binary
counter and reverses the bit order, each new location is defined by incrementing
the counter and then exchanging the left and right bits to reverse the bit order.
The other generates the sequence directly using a mirror counter, the highest bit
position is incremented and instead of allowing carries to propagate left they are
propagated right, the carry is added to the next lower bit, rather than to the next
higher one. The sequence is the mirror of that produced by simply incrementing
a counter. When a new block of ACT memory is allocated all the new nodes are
linked in a free list using the mirror counter to create the order. On allocation a
new trie will automatically be placed with a low risk of collision. Tests have shown
this method to be four times faster than using a simple random insert.

2.4 Growing Tries

Nearly every time a new key is added to the dictionary a character will be added
to an existing trie. This will only fail to happen when the new key is a prefix of
an existing key. Often this new location will be free and the insertion is simply a
matter of removing the free node from the free memory list and creating the new
trie entry. If the new location has already been used there is a high probability
that it will be by a trie with only one entry. This type of trie can be relocated to
the first available free node to make room for the entry to be inserted on the trie
being extended.

Occasionally, the new entry will collide with nodes of another multiple entry trie,
the only recourse is to entirely move one of the two tries to another location in
memory. To keep the problem as simple as possible the tries are compared for
length and the shortest moved. The short one is the easiest to fit elsewhere. There
are a few special cases that cause exceptions to this rule.

2.5 Moving Tries

Finding a new location for a trie is the most complex operation in ACT’s. A
trie can be imagined to be like a comb with teeth in the places where there are
entries and all the other teeth broken off. The task then is to try finding a place
in memory where the teeth match up with nodes that are either free or are easy
to move. The comb is systematically tested in different locations until a match is
found. Typically the location is found after only a few attempts yet occasionally it
proves to be impossible. The free node list may be close to exhaustion for example.
The solution that bounds the insert time is to extend the free space by allocating
another set of ACT nodes using more of the system heap. The limit for the number
of retries sets the upper bound on the insertion time and can be traded against
memory efficiency.

10 · Phil Bagwell

An implementation of an ACT based on the concepts so far presented performs
well enough to be of real practical use. Search speed is better than in either a Hash
Tree or a TST. The insert speed will be comparable to Binary Trees but space is
not efficient, about fifteen to twenty percent of the free nodes will be wasted. This
may not be of concern in some applications, but in others space use may be critical.

This memory waste is caused by the forced allocations needed when tries cannot
be found new homes. With short keys and relatively well filled key spaces the tries
tend to become well filled, progressively more become candidates for additional
memory allocation. A significant reduction in unused nodes can be made by using
one of the knapsack packing strategies, namely constraint reduction, Brown, Baker,
and Katseff [1982]. If there are several objects already in the knapsack and another
large irregularly shaped object needs to be added, then move some smaller ones
out the way, these being easier to pack because they are less constrained.

Memory utilization can be improved significantly by applying this constraint
reduction thus allowing a large trie to be inserted by displacing one or more small
tries. A small trie is less constrained than a large one. It is simpler to find a
place for 3 small tries with 3 branches than one large trie with 8 branches. The
overall insert time is slightly reduced and, for typical key sets, the wasted memory
eliminated almost completely.

As a result of these optimizations and the smaller node data structure, ACT uses
less memory space to represent a dictionary than standard Hash Tree, Binary Tree
or TST implementations. However, an ACT is more complex to code.

2.6 ACT’s Data Structure

The data structure of the ACT is the key determinant of memory use and per-
formance. The smaller this structure’s size the better. But it is a compromise,
a balance between the information needed to allow efficient key insertion and the
memory used. In a 32 bit address model an ACT may be implemented with 8, 12
or 16 bytes per node.

An ACT can be implemented for any symbol representation bit size. Practical
constraints limit the useful range from 2 to 16 bits. An ACT uses two address
pointers, Parent and Index Base, up to 4 bytes of node control data and a value or
pointer to associate with the key. A suitable class definition is shown in Figure 7.

class ACTSNode {
public:
unsigned char EndZone:2,Free:1,Term:1,

StrCnt:4,FirstChar,NextChar,BranchCnt;
int Value;
ACTSNode *ParentA;
ACTSNode *IndexBaseA;
};

Fig. 7. The ACT data structure.

The control data bytes are not used at all in the search function but are used
during insertion to speed up adding symbols to tries and to enable fast fit tests

Fast And Space Efficient Trie Searches · 11

when tries require relocation. The control bytes also enable the fast traversal or
sequential access to keys stored in the dictionary.

When colliding tries need to be moved new bases must be chosen for the trie
and tested until a fit is found. Each of the character entry positions in the trie
must be compared with the corresponding positions in a new potential location. If
characters are selected from an alphabet with cardinality s then each of the s entries
need to be checked for collision. However, as most of the tries contain only a few
branch entries, this would be costly. A linear linked list overcomes this sparse array
problem. The number of entries is limited to the symbol set cardinality hence where
s = 256 only one byte is required to represent each link, for larger cardinalities this
size must increase.

The head of the list is carried in a byte called FirstChar, it contains the character
value of the first character in its trie. Each of the trie child nodes carries a forward
link to the next character in the trie called NextChar. The end of the list is marked
by a zero.

For the vast majority of key collections this approach works extremely well,
most tries contain only a few entries so scanning through the list sequentially is
quickly done. However, there are some useful key collections that lead to the
tries being more complete, an example would be keys issued sequentially in blocks
such as manufacturing part numbers. In these cases the lists become long and the
scanning time becomes lengthy. This apparent problem of completeness leads to
an optimization that gives a speed improvement.

Each time an entry is added to a trie then the link list grows by one. But at
the same time, if the entries are distributed randomly the distances between entries
in the trie decreases. There is a point at which it will cost less to directly index
into the trie entries and search linearly backwards through the array to find a
previous entry rather than search down the linked list. If there are p entries in a
trie of cardinality s then the average distance between entries will be s/p and the
cross over point is defined when the average search costs are equal, that is when
(s/n)/2 = n/2 or when n =

√
s. However, empirical tests show that the algorithm

to search backwards is approximately twice as fast as searching forward in the linked
list and the cross over point then becomes when n =

√

s/2. Further, typical key
sets tend to cluster around a sub-set of the alphabet allowing the cardinality s to
be substituted by the actual alphabet range used.

The insertion algorithm chooses the best strategy to follow based on the number
of entries already in the trie, typically reducing insert time by 4%. The entry count
is available as the BranchCnt in the parent trie Node.

The linked list provides the structure to support rapid sequential key access and
selective key searching.

2.7 Adding New Nodes to a Trie

When adding a new node to a trie there are three cases to consider.

• The node is free. The free node is removed from the free list and the extra
branch node is created.

• The colliding node has a single branch. The colliding node is relocated to
the first available free node on the free list.

12 · Phil Bagwell

• The colliding node is a member of another multi branch trie. The smaller
of the tries is relocated.

The first two cases are most common. For the third case, several approaches
have been assessed with the goal of minimizing the search time needed to find a
suitable new location. The search is guided by the control information in the node,
the Free flag, BranchCnt and StrCnt for the tail compressed string version.

The trie to be relocated is tested for a fit at the next and subsequent free nodes on
the free list until an entry point is found, the trie is then relocated and parent/child
pointers are updated. Care must be taken to ensure that special cases are dealt
with correctly, for example, a child node being moved to create space may be the
parent of the trie being inserted.

After a number of attempts to fit a trie the effort is abandoned, a new block of
free nodes added, linked to the free list and the trie fitted in this new space. This
sets a bound on the maximum time for an insert, but at the expense of less efficient
memory utilization. Unlike hash tables, the structure is dynamic and extensible.
As mentioned earlier, the growth granularity is made a function of the current size
of the tree and the alphabet cardinality.

When keys are inserted into an ACT the node that corresponds to the last char-
acter in the key is marked as the terminating node by setting Term true. For
the same reason partial match, nearest match and range checking are easily con-
structed. Note that arbitrary character sort sequences can also be obtained without
recreating the structure, a useful feature.

2.8 Squeezing Memory Use

The basic ACT uses four words in a 32 bit architecture implementation, or 16 bytes.
This can be reduced by increasing complexity or by accepting a slower insertion
speed. Reduction to 12 bytes can be achieved after realizing that the last node in a
key has no sub-trie index base and this space may be used to store the associated key
value. However, any keys that are a prefix of another key seem to require exclusion.
There are applications where this is acceptable, routing an IP address being one
example, though in general it would limit the usefulness of the algorithm. However,
the prefix termination and the associated value can be stored with a fixed offset
to the trie node terminating the prefix. Term is set True to indicate a prefix, the
cardinality of the alphabet added to the offset and the associated key value stored in
this ghost node, essentially doubling the cardinality of alphabet and increasing the
insert overhead marginally. Apart from this inconvenience the node size is reduced
by one pointer and the search performance improves.

In some applications insert time is not critical but minimizing space may be. In
these special cases a little trickery can be used to save the 4 control bytes and reduce
the footprint to 8 bytes per node. The First and Next character bytes are removed
requiring that during trie moves the memory must be scanned from the trie base
to its upper limit to find all the entries and the branch count computed. The insert
speed suffers as a direct consequence, for alphabets with small cardinality, up to
50, this is only a few percent, however for a cardinality of 200 or more this can be
3 times slower than the standard version.

Memory is allocated ensuring Node pointers are aligned to even word boundaries.

Fast And Space Efficient Trie Searches · 13

The BranchCnt reduced to just two bits, now only indicating zero, one, few or many
trie entries, together with the EndZone markers, Term Flag and Free Flag are stored
in the bottom 3 bits of the IndexBase and Parent pointers.

In this form the tree uses 60% less memory than the published version of the
TST, which uses 20 bytes per node.

Similar techniques can be applied to AMT and UST, which follow, and the TST
described earlier.

3. ARRAY MAPPED TREE

Now I will describe a third way to eliminate the null pointers in a trie, this is called
an Array Mapped Tree. The AMT is another hybrid tree yet like the ACT search
time is independent of the number of keys in a dictionary. The AMT is simple to
code and has a search and insert performance that is comparable to an ACT.

Bit Map Offset

0

1

2

3

4

5

6

7

Fig. 8. The Bit Map Structure for an AMT.

The core concept is to use one bit in a bit map for each node that represents a
valid branch in the trie. For an alphabet cardinality of 256 this will require 256 bits
The symbol is used to index to the associated bit in the bit map. This bit is set to
one if a sub-trie exists or zero if there is none. A pointer list is associated with this
bit map containing an entry for each one bit in the bit map. Finding the branch for
a symbol s, requires finding its corresponding bit in the bit map and then counting
the bits below it in the map to calculate an index into an ordered sub-trie pointer
table. The cost of null branches is thereby reduced to one bit. This method is not
new and was first described by Bird [1977],Bird and TU. [1979], who conceived a
hardware solution to this problem. An efficient software algorithm to count bits in
the bit map provides the critical component for an AMT.

The fundamental problem is to derive a sub-trie pointer from the array bit map
given a symbol. All the bits in the map do not need to be counted at search time.
The high bits in the symbol are used to index directly to a word in the bit map. At
insert time a tally of the bits in the map below this map word is computed. This
is done by incrementing all tallies above the current one each time a new entry is
made in the map. Then, at search time, only the bits in the specific map word need
be counted and added to the offset calculated by corresponding tally. The result
becomes the index into the sub-trie node table, figure 8.

The technique used to count the bit population is a variation on and a squeezed
version of the algorithm to be found in Hacker’s Memory programming tricks,
used for Bit-Board manipulation in the Darkthought chess program. On several
computer architectures the bit population count can be accomplished by a single

14 · Phil Bagwell

Bit Map Offset

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Bit Map

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Bit Map Offset

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Bit Map

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Node Count

Sub Trie Pointer

Character

Fig. 9. An Array Mapped Tree.

CTPOP instruction and on these systems AMT performance will improve accord-
ingly.

Two bits are needed to represent each possible symbol value, one for the map and
one in the tally. Although small this still gives an overhead of 64 bytes per node
for a 32 bit implementation and cardinality of 256. All nodes cannot be mapped
this way. In order to reach an acceptable memory cost the typical node branch
distribution is exploited to create a hybrid, illustrated in figure 9.

Nodes, with a branch count less than some value n, are not bit mapped but
searched sequentially. Empirically n = 5 gives a good balance between space and
speed. Each basic AMT node contains a 16 bit sub-trie node count, a 16 bit
character value and the pointer to the next sub-trie. For nodes with only a few
branches the valid branch characters are stored in the AMT node. Each branch
list of nodes is kept in ascending sorted order. The node branch count distribution
indicates that the majority of branches will be one or two. In these cases the linear
search makes the same number of probes as a binary search yet the set up cost
is lower. In the three and four cases, which represent a small minority, the linear
probe is only one worse than the binary search. Overall the linear search wins. A
data structure and the associated method to search such a tree with cardinality of
256 is shown in figure 10.

The critical step is the computation of the number of ones in the bitmap. Using
the method shown in figure 11 this can be achieved in a small time, independent
of bits set in the map. Although this computation looks lengthy it uses only shifts
and adds, after compilation it becomes register based and is completed without
memory references. Even so the CTPOP instruction would be better, in fact the
entire search algorithm can be reduced to just 11 native Alpha instructions. Using
the instruction set of the Intel x86 P3 the hybrid described here performs pleasingly
well, search and insert costs are independent of the key set size and the space
required is typically 8 bytes per node plus a 5% overhead for the bit maps.

Fast And Space Efficient Trie Searches · 15

class AMTNode {
unsigned int NodeCnt:16,Chr:16;
#ifdef AMTSMALL
union{
AMTNode *IndexBaseA;
int Value;
};

#else
AMTNode *IndexBaseA;
int Value;

#endif
AMTNode *IndexBase(){return IndexBaseA;}
void SIndexBase(AMTNode *IB){IndexBaseA=IB;}
AMTNode(){IndexBaseA=NULL;NodeCnt=0;}
friend class CAMT;
};

Fig. 10. The AMT data structure.

4. UNARY SEARCH TREE (UST)

In the AMT a bitmap was used to select the appropriate sub-trie pointer. The size of
this bitmap becomes the practical limit on allowing increased cardinality alphabets.
A variation using the same basic node structure but replacing the bitmap search
with a binary search of the pointer list and the UST Next method is illustrated in
figure 12.

As the data structure uses just one pointer I followed the Bentley and Sedgewick
convention and called this a Unary Search Tree. It is significantly faster than the
TST and requires less memory space to represent the same tree. A UST has the
same node structure as the AMT described above.

5. COMMON TREE ATTRIBUTES

All the trees described support the required important tree operations, since these
are common across all the tree forms they are described here rather than with each
tree.

5.1 Tree Tail Compression

For short keys the memory efficiency is reasonable. Many of the initial characters in
keys share the same node. If there are 500 keys starting with the letter A then only
one node is used to represent all 500. However, if the keys are longer than logsN ,
where s is the symbol set size and N is the number of keys, then each additional
key character takes one full node. This becomes very wasteful for even moderate
length keys. For long keys this is costly, requiring at least 8 bytes per character in
the above implementations. These expensive tails can easily be stored as a string.

As a new key is inserted it is converted to nodes until the point at which the
key becomes unique. The remainder of the key is stored as a string. The case
when a new key only becomes unique part way through a tail string requires that

16 · Phil Bagwell

inline AMTNode *CAMT::Next(AMTNode *pNode,unsigned int chr)
{
AMTNode *pList;
int L,H,M,NCnt;
if(!(NCnt=pNode->NodeCnt))return NULL;
pList=pNode->IndexBase();
if(NCnt<=BMLim){
do{
if(chr==pList->Chr)return pList;
pList++;
}while(--NCnt);
return NULL;

}
unsigned int Idx,Map;
Idx=chr>>5; //Get top bits
chr&=0x1F; // clear top bits in chr
Map=((AMTBMap *)pList)[Idx].BitMap;
if(!(Map&(1<<chr)))return NULL; // no match
Map&=(~((~0)<<chr));
// Count Bits
Map-=((Map>>1)&K5);
Map=(Map&K3)+((Map>>2)&K3);
Map=(Map&KF0)+((Map>>4)&KF0);
Map+=Map>>8;
return &pList[((Map+(Map>>16))&0x1F)

+((AMTBMap *)pList)[Idx].Offset+LList];
}

Fig. 11. The Next function based on an AMT

the existing string must be converted into nodes up to that point and the new tail
stored before adding the new key. With this little added complexity significant
storage space can be saved and search times improved. For long keys the search
becomes a simple string comparison.

With the ACT the tail can be packed into ACT nodes. This has the benefit that
they too are easy to relocate and represent more sand in the knapsack. Timings
for this variation are denoted by ACT(c) to be found in table 3 at the end of the
paper.

The AMT(c) was implemented with an alternative method namely that tree
nodes are only created when characters differ between two keys. The whole key is
stored as a string, each tree node has an additional pointer to a character in the
stored string and the character count to the next multi-way branch. In this way the
nodes required per key stored is significantly reduced. Between branch nodes a fast
memory byte compare tests characters in the stored string and against those in the
key. A suitable Find method is illustrated in figure 13. In some applications this
has the added advantage that the string pointer can be used as a handle. Note also
that an AMT can be squeezed to use an average of about 5.5 bytes per node with

Fast And Space Efficient Trie Searches · 17

inline USTNode *CUST::Next(USTNode *pNode,unsigned int chr)
{
USTNode *pList;
int L,H,M;
if(!pNode->NodeCnt)return NULL;
pList=pNode->IndexBase();
L=0;H=pNode->NodeCnt-1;
do{
M=(L+H)/2;
if(chr==pList[M].Chr)return &pList[M];
if(chr>pList[M].Chr)L=M+1;
else H=M-1;
}while(L<=H);

return NULL;
}

Fig. 12. The Next function based on a UST

int CAMT::Find(CString str)
{

AMTNode *P,*C;
const unsigned char *s,*ps;
int Cnt;
if(*(s=((unsigned char *)(LPCTSTR)str))==0)return 0;
P = Root;
ps=s;
while(C=Next(P,*s)){
s++;
if(Cnt=C->ChrCnt){
if (memcmp(C->Key+(s-ps),s,Cnt))return 0;
else s+=Cnt;
}

P=C;
}

if(*s==0)return P->Value;
return 0;

}

Fig. 13. Find function for AMT(c) with external strings.

a small loss of speed for ultimate space efficiency. Both of these implementations
use less space than Hash Trees and perform faster searches.

A Directed Acyclic Word Graph (DAWG) may be considered for further savings
in some applications, Appel and Jacobson [1988].

18 · Phil Bagwell

5.2 Deletion

Deleting a key from the AMT and ACT is low cost. The key entry is found using
the standard lookup routine, where the key is a sub-string of another key, then all
that is required is the resetting of Term to false or removing the ghost node.

If the key is a unique long key then a little more work is required. The tree is
traversed starting from the leaf node to the multi-way branch node that leads to
this leaf node, typically a traverse of one or two nodes. Then this branch is clipped
from the trie by removing its entry. It and the following nodes are returned to
the free node pool. Deletion is only slightly slower than lookup and faster than
insertion.

5.3 Sequential Key Access

Many applications need to be able to access keys from a dictionary in a sorted
sequential order. The ordered data structure in AMT and the linked list structure
in each sub-trie of an ACT enables simple traversal and a very fast iterator can be
easily coded.

5.4 Query Set Definition and Regular Expressions

Frequently search queries need to be qualified by filters, examples could be ignoring
Upper and Lower case sensitivity, abbreviations or using the regular expression
syntax . and * to define a search key pattern. BB..d* means return in sequence
all keys starting with B in the first two positions, any symbol in the third or fourth
position, d in the fifth and any number of any symbols to follow. Rivest [1976] and
Bentley and Sedgewick [1997] for a detailed description and analysis.

In the first example, keys containing both upper and lower case characters may
have been stored in the Tree in the normal way. At query time all the keys matching
a query key need to be found irrespective of case. A slightly modified lookup
function achieves this. In the standard lookup algorithm a character value is used
to index into a trie. Here the character value and its other case value are used. If
the test is successful the test continues to the next character until a failure is found.
At this point it is necessary to back track to the last successful branch on case and
try the alternative. In general it could take 2N − 1 steps to test the key. However,
if the test is biased to the most dominant case e.g. lower case for English text, then
only a few steps are needed in practice.

In some applications such as a command line interpreter you may wish to allow
unique abbreviations of the commands or in a text editor give intelligent type ahead.
For the potential abbreviated key the tree is searched until there are no more multi-
branches and the key is uniquely defined. The remainder of the key from this point
onwards becomes the type ahead characters. Further more this comparison can be
made as keys are typed allowing the command line interpreter to fill in the full
command.

The third case is dealt with in much the same way as the first. When a . is
encountered all the entries for the corresponding trie are returned in sequence.
When the * is encountered it is treated as any number of . to the right of its
position. When specified letters are encountered they must match exactly.

Fast And Space Efficient Trie Searches · 19

5.5 Priority Queues

Priority queues are important structures used to solve many everyday application
problems. They appear in task scheduling, graph searches and many other common
algorithms. Here a Map is required that enables keys to be inserted in a random
order using a key that defines the priority of an entry and then is systematically
retrieved by the highest priority key. The key could be for example the schedule
date and time for events to occur. These may be inserted at any time. The scheduler
monitors current time and retrieves tasks from the top of the scheduling queue to
execute as time passes. This could be at the level of an operating system scheduling
programs or a manufacturing process scheduling work.

A priority queue needs to support several operations namely insertion, deletion,
find first, find last, replace and joins, on keys in an efficient way.

For almost all key types an ACT (or AMT) can be used to implement priority
queues. Insertion, head removal and deletion can all be fast functions independent
of the key set size. Joins, the merging of two queues, can be performed efficiently
too.

Insertion and deletion are carried out as described earlier. The retrieval of the
top or first key is straight forward. Starting at the root node the tree is traversed
always picking the lowest branch value in a trie. Since this is carried in the data
structure as FirstChar this is rapidly done. Typically only logsN nodes need to
be traversed, where N is the number of keys and s is the symbol set cardinality.
As discovered previously, keys are typically unique after this number of symbols in
the key. Alternatively a head of queue pointer may be maintained and updated on
insertions.

In practice an ACT and AMT perform extremely well as a priority queue and
increasing free memory in an ACT ensures a consistently fast insert.

5.6 Range Searching

All the Trees support fast range searching. This is the problem of finding the
number of keys that lie between an upper and lower key defining the range. This
may be a set of names, co-ordinates or values. Adding a range data element to each
node allows ranges to be calculated quickly. The range element is set to the count
of keys below that node in the tree.

To find the number of keys in a given range the lower key is found in the Tree.
The first character is taken and used to index into the root trie. The range count
is stored. The range count for characters found early in the linked list is added
to this, then as each subsequent character is used to index into their respective
tries the range count of characters earlier in the character link list of that trie are
added to the previously calculated range count. Typically there are few additions
to make. The process is repeated using the higher bound key. The range is given
by subtracting the lower bound result from the upper bound result.

Maintaining the Range information in the tree only requires incrementing the
data element as new keys are added or reducing the count when keys are deleted.

20 · Phil Bagwell

6. PERFORMANCE COMPARISON

6.1 Test Method

All the algorithms were tested with the same wide variety of unique key sets with
different alphabet cardinalities. The sets were in random, sorted order or semi-
ordered sequence. The test sets were produced using a custom pseudo random
number generator. These were created by first generating a random prime number
which was repetitively added to an integer to produce a sequence of 32 bit integer
keys. For high value prime numbers this sequence is pseudo random while for low
value prime numbers the sequence is ordered. Values in between generate semi-
ordered sequences.

A random cardinality value was generated in the range 20 to 255 and used as
a radix to convert the integer key to a string of characters. Additional characters
were added to create an eight-character key. All the tests reported in Table 3 were
for 8 character key sets created in this manner.

The technique ensures unique key production and allows search test key sets to
be generated with different sequences to those used during insertion yet from the
same key set.

AMT(c) and ACT(c) indicate the tail string compressed version of the algorithms.
The initial hash table size was set to 50000 and the results reflect the load factor
around this value. The TST algorithm used is an enhanced version that balances
sub-trie trees.

Each algorithm’s performance was measured on an Intel P2, 400 MHz with 512Mb
of memory, NT4 and VC6, they are compared in Table (3). Times shown are in µS
per insert or search for 8 character keys averaged across 2000 test key sets.

Insert and search times were measured using the QueryPerformanceCounter()
function.

6.2 Results

Table 3. Comparative performance of search trees.
Algo. SetSize 10K 20K 40K 80K 160K 320K 640K 1280K
ACT(c) Insert 5.03 6.13 9.00 14.49 17.27 14.94 14.66 14.79

Search 1.13 1.24 1.37 1.51 1.52 1.59 1.66 1.74
AMT(c) Insert 6.36 7.03 8.39 12.20 13.45 12.55 12.57 11.11

Search 1.37 1.57 1.68 1.77 1.90 2.00 2.14 2.29
Hash Insert 2.97 2.74 2.90 3.24 3.65 4.56 6.24 9.64

Search 1.29 1.49 1.88 1.97 2.48 3.40 5.15 8.54
TST* Insert 10.23 11.08 12.67 14.72 14.59 13.76 13.07 12.26

Search 2.78 2.99 3.27 3.57 3.87 4.16 4.51 4.86
ACT Insert 6.12 7.54 10.12 12.89 14.4 20.9 26.6 21.26

Search 1.69 1.95 2.09 2.28 2.22 2.26 2.31 2.38
AMT Insert 10.06 11.02 11.02 12.85 13.40 12.57 11.98 11.53

Search 1.87 1.97 2.09 2.13 2.20 2.31 2.46 2.55
UST Insert 9.81 10.08 10.67 12.41 13.10 12.40 11.86 11.45

Search 2.18 2.35 2.43 2.57 2.75 2.90 3.06 3.22

Fast And Space Efficient Trie Searches · 21

7. CONCLUSIONS

As can be seen from the comparison UST, ACT and AMT all give an excellent
performance, are space efficient and support sorted order retrieval. Both an AMT
and ACT give better search performance than Hash Tables yet use less space and
are extensible. They perform particularly well in mostly-not-found applications.

For medium sized key sets both TST and UST out perform the logarithmic per-
formance anticipated by Clement, Flajolet, and Vallee [1998]. This is attributed to
the cache effect described above. The critical parameter is the number of non-cache
resident memory references made in the algorithm. The trie with most branches is
typically traversed most often and these nodes tend to be cache resident therefore
not attracting the additional time required to complete a binary search of the TST
or UST trie nodes. However, for very large key sets or for applications with mixes
of lookups and other computation the advantage of an ACT or an AMT becomes
apparent. Notice as the set size grows for a TST or UST, the reducing cache hits in-
creases search times. A UST has the same lgN cost as a TST yet occupies 60% less
space and is faster. The constant search cost, independent of set key size of an ACT
or AMT together with their space efficiency makes them particularly attractive for
very large key sets.

An ACT performs well for typical key sets but insert performance can deteriorate
seriously with some key sets. Once the keys no longer sparsely populate the space
of all possible keys the trie placement becomes difficult and memory use accelerates.
However, the ACT provides an excellent supporting data structure for FSA’s and
symbol tables.

An AMT has an excellent performance independent of key sets, compact, simple
to code and robust. Implementation on a Compaq Alpha processor, Motorola Power
PC, Sun UltraSparc or Cray using CTPOP provides an attractive solution for any
high performance search problem. They are faster and more space efficient than
Hash Tables, yet are extensible and support sorted order functions.

Finally, its worth noting that case statements could be implemented using an
adaptation of the AMT to give space efficient, optimized machine code for fast
performance in sparse multi-way program switches.

ACKNOWLEDGMENTS

I would like to thank Prof. Martin Odersky, Christoph Zenger and Mathias Zenger
at the Labo. Des Methodes de Programmation (LAMP), EPFL, Switzerland for
their review of the draft paper and valuable comments.

REFERENCES

Appel, A. and Jacobson, G. 1988. The world’s fastest scrabble program. Communications
of the ACM 31, 5 (May), 572–578.

Bentley, J., McIlory, M., and Knuth, D. 1986. Programming pearls: A literate pro-
gram. Communications of the ACM 29, 6 (June), 471–483.

Bentley, J. and Sedgewick, R. 1997. Fast algorithms for sorting and searching strings.
In Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (1997), SIAM Press
(1997).

Bird, R. 1977. Two-dimensional pattern matching. In Inform Procee. Lett: 6(5) (1977).
Bird, R. and TU., J. 1979. Associative crosspoint processor system. U. S. Patent 4,152,

22 · Phil Bagwell

762 .
Brandais, R. 1959. File searching using variable length keys. In Proceedings of Western

Joint Computer Conference, Volume 15 (1959), pp. 295–298.
Brown, D., Baker, B., and Katseff. 1982. Lower bounds for on-line two-dimensional

packing algorithms. Acta Informatica 18, 207–225.
Clement, J., Flajolet, P., and Vallee, B. 1998. The analysis of hybrid trie structures.

In Proceedings of Western Joint Computer Conference, Volume Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (1998), pp. 531–539. SIAM Press.

Fredkin, E. 1960. Trie memory. Communications of the ACM 3, 490–499.
Knuth, D. 1998. The Art of Computer Programming, volume 3: Sorting and Searching,

2nd Ed. Addison-Wesley, Reading, MA.
Rivest, R. 1976. Partial-match retrieval algorithms. SIAM Journal on Computing 5, 1,

19–50.

