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ABSTRACT: Several new methods are presented for 
selecting n records at random without replacement from a 
file containing N records. Each algorithm selects the records 
for the sample in a sequential manner--in the same order 
the records appear in the file. The algorithms are online in 
that the records for the sample are selected iteratively with 
no preprocessing. The algorithms require a constant amount 
of space and are short and easy to implement. The main 
result of this paper is the design and analysis of Algorithm D, 
which does the sampling in O(n) time, on the average; 
roughly n uniform random variates are generated, and 
approximately n exponentiation operations (of the form a b, 
for real numbers a and b) are performed during the 
sampling. This solves an open problem in the literature. 
CPU timings on a large mainframe computer indicate that 
Algorithm D is significantly faster than the sampling 
algorithms in use today. 

1. INTRODUCTION 
Many computer science and statistics applications 
call for a sample of n records selected randomly with- 
out replacement from a file containing N records 
or for a random sample of n integers from the set 
{1, 2, 3 . . . . .  NI. Both types of random sampling are 
essentially equivalent; for convenience, in this paper 
we refer to the former type of sampling, in which rec- 
ords are selected. Some important uses of sampling in- 
clude market surveys, quality control in manufactur- 
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ing, and probabilistic algorithms. Interest in this subject 
stems from work on a new external sorting method 
called BucketSort that uses random sampling for pre- 
processing [7]. 

One way to select the n records is to generate an 
independent random integer k between I and N and to 
select the kth record if it has not already been selected; 
this process is repeated until n records have been se- 
lected. (If n > N/2 ,  it is faster to select the N - n 
records not in the sample.) This is an example of a 
nonsequential algorithm because the records in the sam- 
ple might not be selected in linear order. For example, 
the 84th record in the file may be selected before the 
16th record in the file is selected. The algorithm re- 
quires the generation of O(n) uniform random variates, 
and it runs in O(n) time if there is enough extra space 
to check in constant time whether the kth record has 
already been selected. The checking can be done in 
O(N) space using a bit array or with O(n) pointers using 
hashing techniques (e.g,, [2, 6]}. In either case, the 
space required may be prohibitive. 

Often, we want the n records in the sample to be in 
the same order that they appear in the file so that they 
can be accessed sequentially, for example, if they re- 
side on disk or tape. In order to accomplish this using a 
nonsequential algorithm, we must sort the records by 
their indices after the sampling is done. This requires 
O(n log n) time using a comparison-based sorting algo- 
rithm like quicksort or heapsort; address-calculation 
sorting can reduce the sorting time to O(n), on the aver- 
age, but it requires space for O(n) pointers. Nonsequen- 
tial algorithms thus take nonlinear time, or their space 
requirements are very large and the algorithm is some- 
what complicated. 
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More importantly, the n records cannot be output in 
sequential order online: It takes O(n) time to output the 
first element since the sorting can begin only after all n 
records have been selected. 

The alternative we take in this paper is to investigate 
sequential random sampling algorithms, which select 
the records in the same order that they appear in the 
file. The sequential sampling algorithms in this paper 
are ideally suited to online use since they iteratively 
select the next record for the sample in an efficient 
way. They also have the advantage of being extremely 
short and simple to implement. 

The measure of performance we use for the algo- 
rithms is CPU time, not I /O  time. This is reasonable for 
records stored on random-access devices like RAM or 
disk since all the algorithms take O(n) I /O  time in this 
case. It is reasonable for tape storage as well since many 
tape drives have a fast-forward speed that can quickly 
skip over unwanted records. In terms of sampling n 
integers out of N, the I /O  time is insignificant because 
there is no file of records being read. 

The main result of this paper is the design and analy- 
sis of a fast new algorithm, called Algorithm D, which 
does the sequential sampling in O(n) time, on the aver- 
age. This yields the optimum running time up to a 
constant factor, and it solves the open problem listed in 
exercise 3.4.2-8 in [6]. Approximately n uniform ran- 
dom variates are generated during the algorithm, and 
roughly n exponentiation operations (of the form a b = 

exp(b In a), for real numbers a and b) are performed. 
The method is much faster than the previously fastest- 
known sequential algorithm, and it is faster and simpler 
than the nonsequential algorithms mentioned above. 

In the next section, we discuss Algorithm S, which 
up until now was the method of choice for sequential 
random sampling. In Section 3, we state and analyze 
three new methods (Algorithms A, B, and C); the main 
result, Algorithm D, is presented in Section 4. The na- 
ive implementation of Algorithm D requires the genera- 
tion of approximately 2n uniform random variates and 
the computation of roughly 2n exponentiation opera- 
tions. One of the optimizations given in Section 5 re- 
duces both counts from 2n to n. The analysis in Section 
6 shows that the running time of Algorithm D is linear 
in n. The performance of Algorithm S and the four new 
methods is summarized in Table I. 

Section 7 gives CPU timings for FORTRAN 77 imple- 
mentations of Algorithms S, A, C, and D on a large 
mainframe IBM 3081 computer system; the running 
times of these four algorithms (in microseconds) are 
approximately 16N (Algorithm S), 4N (Algorithm A), 
8n 2 (Algorithm C), and 55n (Algorithm D). In Section 8, 
we draw conclusions and discuss related work. The 
Appendix gives the Pascal-like versions of the FOR- 
TRAN programs used in the CPU timings. A summary 
of this work appears in [10]. 

2. ALGORITHM S 
In this section, the sequential random sampling method 
introduced in [3, 4] is discussed. The algorithm sequen- 

TABLE I: Performance of Algorithms 

Algorithm 
Average Average 
Uniform 
Random Running 

Time Variates 

S (N + 1)n O(N) 
n + l  

A n O(N) 

B n O(n ~ log Iog(-~)) 

C n(n + 1) O(n 2) 
2 

D : n  O(n) 

tially processes the records of the file and determines 
whether each record should be included in the sample. 
When n records have been selected, the algorithm ter- 
minates. If m records have already been selected from 
among the first t records in the file, the (t + 1)st record 
is selected with probability 

n - m (2-1) 1 - t  

In the implementation below, the values of n and N 
decrease during the course of execution. All of the algo- 
rithms in this paper follow the convention that n is the 
number of records remaining to be selected and N is the 
number of records that have not yet been processed. (This is 
different from the implementations of Algorithm S in 
[3, 4, 6] in which n and N remain constant, and auxil- 
iary variables like m and t in (2-1) are used.) With this 
convention, the probability of selecting the next record 
for the sample is simply n/N.  This can be proved di- 
rectly by the following short but subtle argument: If at 
any given time we must select n more records at ran- 
dom frofn a pool of N remaining records, then the next 
record should be chosen with probability n /N .  

The algorithms in this paper are written in an Eng- 
lish-like style used by the majority of papers on random 
sampling in the literature. In addition, Pascal-like im- 
plementations are given in the Appendix. 

ALGORITHM S. This method sequentially selects n rec- 
ords at random from a file containing N records, 
where 0 _< n ~ N. The uniform random variates gener- 
ated in Step $1 must be independent of one another. 

S1. [Generate U.] Generate a random variate U that 
is uniformly distributed between 0 and 1. 

S2. [Test.] If NU > n, go to Step $4. 

$3. [Select.] Select the next record in the file for the 
sample, and set n := n - 1 and N := N - 1. If 
n > 0, then return to Step $1; otherwise, the 
sample is complete and the algorithm terminates. 

S4. [Don't select.] Skip over the next record (do not 
include it in the sample), set N := N - 1, and 
return to Step $1. | 
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Before the algorithm is run, each record in the file 
has the same chance of being selected for the sample. 
Furthermore, the algorithm never runs off the end of 
the file before n records have been chosen: If at some 
point in the algorithm we have n -- N, then each of the 
remaining n recgrds in the file will be selected for the 
sample with probability one. The average number  of 
uniform random variates generated by Algorithm S is 
(N + 1 ) n / ( n  + 1), and the average running time is O(N). 
Algorithm S is studied further in [6]. 

3. T H R E E  N E W  S E Q U E N T I A L  A L G O R I T H M S  
We define S(n, N)  to be the random variable that counts 
the number  of records to skip over  before selecting the 
next record for the sample. The parameter n is the 
number  of records remaining to be selected, and N is 
the total number  of records left in the file. In other 
words, the (S(n, N) + 1)st record is the next one se- 
lected. Often we will abbreviate S(n, N)  by S in which 
case the parameters n and N will be implicit. 

In this section, three new methods (Algorithms A, B, 
and C) for sequential random sampling are presented 
and analyzed. A fourth new method (Algorithm D), 
which is the main result of this paper, is described and 
analyzed in Sections 4 and 5. Each method decides 
which record to sample next by generating S and by 
skipping that many records. The general form of all 
four algorithms is as follows: 

Step 1. Generate a random variate S(n, N}. 

Step 2. Skip over the next S(n, N)  records in the file 
and select the following one for the sample. 
Set N : =  N -  S(n, N ) -  1 and n := n -  1. 
Return to Step 1 if n > 0. 

The four methods differ from one another in how they 
perform Step 1. Generating S involves generating one or 
more random variates that are uniformly distributed 
between 0 and 1. As in Algorithm S in the last section, 
all uni form variates  are assumed  to be independen t  of  one 
another. 

The range of S(n, N) is the set of integers in the 
interval 0 ___ s < N - n. The distribution function F(s) = 
ProblS -< s}, for 0 _< s ___ N - n, can be expressed in two 
ways: 

F(s) = 1 (N - s - 1) n (N - n) +~-~ 
- Nn = 1 - N ~ . t  • (3 - 1} 

{We use the notation a b to denote the "falling power" 
a(a - 1) . . .  (a - b + 1) = a!/{a - b)!.) We have F(s) = 0 
for s < 0 and F(s) = 1 for s _> N - n. The two formulas 
in (3-1} follow by induction from the relation 

1 - F(s) = ProblS > s} 

= P r o b l S > s -  1 1 - N _ s  

= ( l - F ( s - 1 ) )  1 N -  " (3-2) 

n/N . . . . . . . .  cg(s) 

• o o o e • o  f(s) 
@ 

* o o o * * ,  h(s) 

O 

o 

o • • 

o . . .  

° : i i i 8 8 , . ,  I • * 1  

N/n N - n N 

FIGURE 1. The probability funcUon f(s) = ProbIS = s} is graphed 
as  a function of s. The mean and standard deviation of S are both 
approximately N/n. The quantities cgls) and his) that are used in 
Algorithm D are also graphed for the case  in which the random 
variable X is integer-valued. 

The expression n / ( N  - s) is the probability that the 
(s + 1)st record is selected for the sample, given that the 
first s records are not selected. The probability function 
/(s) = Prob{S = s}, for 0 <_ s <_ N - n, is equal to F(s) - 
F(s - 1). Substituting (3-1), we get the following two 
expressions for/(s), 0 _< s _< N - n: 

n (N - s - 1) a=l n (N - n) ~ (3-3) 
f(s) = ~ (N - 1) n=l = N (N - 1) ~ 

When s < 0 or s > N - n, we define f{s) = O. An 
alternate derivation of (3-3} follows from the combina- 
torial identity 

The expected value ~(S)  is equal to 

N - n  
3Y(S) = • sf(s} - n + 1 ' (3-4) 

and the variance var(S) is equal to 

var(S) = Y~ sZf(s) - _~(S) 2 = {N + 1)(N - n)n 
(n + 2}(n + 1} 2 

(3-5} 

Both the expected value and the standard deviation of S 
are = N / n .  The probability function f(s) is graphed in 
Figure 1. 

3.1 A l g o r i t h m  A 
This is, by far, the simplest of the four methods. It is 
based on the observation that f(s) is equal to the differ- 
ence F(s) - F(s - 1). We can generate S by setting it 
equal to the min imum value s such that U -< F(s), 
where U is uniformly distributed on the unit  interval. 
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By (3-1), we have 

U _< 1 (N - n) ~2" 
N~+I , 

( N  - n) ~ 
_ < I - U .  

N+~2 

The random variable V = 1 - U is uniformly distrib- 
uted as U is, so we can generate V directly, as in the 
following algorithm. 

ALGORITHM A. This method sequentially selects n 
records at random from a file containing N records, 
where 0 -< n ~ N. The uniform random variates gener- 
ated in Step A1 must be independent of one another. 

A1. [Generate V.] Generate a random variate V that 
is uniformly distributed between 0 and 1. 

A~.. [Find minimum s.] Search sequentially for the 
minimum value s _ 0 so that (N - n) ~+~ <_ N~+~V " 
Set S := s. 

A3. [Select the (S + 1)st record.] Skip over the next 
S(n, N) records in the file and select the follow- 
ing one for the sample. Set N := N - S(n, N) - 1 
and n := n - 1. Return to Step A1 if n > 0. | 

Steps A1-A3 are iterated n times, once for each se- 
lected record in the sample. In order to generate S, the 
inner loop implicit in Step A2 is executed O(S + 1) 
times; each loop takes constant time. The total time 
spent executing Step A2 is O(Y,I~/~,(S + 1)) = O(N). The 
total time is thus O(N). 

Algorithms S and A both require O(N) time, but the 
number n of uniform variates generated by Algorithm 
A is much less than (N + 1 ) n / ( n  + 1), which is the 
average number of variates generated by Algorithm S. 
Depending on the implemetation, Algorithm A can be 
four to eight times faster. 

Algorithm A is similar to the one proposed in [3], 
except that in the latter method, the minimum s > 0 
satisfying U <_ F(s) is found by recomputing F(s) from 
scratch for each successive value of s. The resulting 
algorithm takes O(nN)  time. As the authors in [3] noted, 
that algorithm was definitely slower than their imple- 
mentation of Algorithm S. 

3.2 Algorithm B (Newton's Method} 
In Step A2 of Algorithm A, the minimum value s 
satisfying U <_ F(s) is found by means of a sequential 
search. Another way to do that is to find the 
"approximate root" s of the equation 

F(s) ~ U, (3-6) 

by using a variant of Newton's interpolation method. 
This resultant method is called Algorithm B. 

Since F(s) does not have a continuous derivative, we 
use in its place the dif ference func t ion  

AF(s) = r(s  + 1) - r(s) = f(s + 1). 

Newton's method can be shown to converge for this 
situation. The method requires O(log log S) iterations to 

find the approximate root s of (3-6) when s is large. 
Each iteration involves the computation of F(s) and 
AF(s), for some value s. The evaluation of F(s) requires 
O(n) time, and AF(s) = f(s + 1) can be computed from 
F(s) in constant time using (3-1) and (3-3). Thus, the 
time per selected record is O(n log log S) for large S. The 
total sampling time is bounded by O(Y.I~_I~_, t log log S). 
Using the constraint that Y,l~t~, S _< N - n, it is easy to 
show that ~l_~t_~, t log log S is maximized when each S 
is approximately N / n .  Hence, the total running time for 
Algorithm B is O(n2(l + log l og (N/n) ) )  in the worst case. 
It can be shown that the average running time is not 
better than the worst-case time by more than a 
constant factor. 

We can obtain a higher order convergence in the 
search for the minimum s by replacing Newton's 
method with an interpolation scheme that uses higher 
order differences AkF(s) = Ak-1F(s + 1) -- Ak-IF(s). Each 
difference AkF(s), for k > 1, can be computed in 
constant time from Ak-IF(s)  using the formula 

AkF(s) = -- 7_ S -- Ak-IF(s)" (3-7) 

Algorithm B does not seem to be of practical interest, 
especially when compared to Algorithms A and D, so 
further details are omitted. 

3.3 Algorithm C (Independence Method) 
Let U1, U2 . . . . .  U, be independent and uniformly dis- 
tributed random variables on the unit interval. The dis- 
tribution function F(s) = Prob[S _< s} can be expressed 
algebraically as 

F(s) = 1 - I I  N - s - k 

-- 1 - I1 (1 - Fk(S + 1)), (3-8) 
l ~ k < _ n  

where we let Fk(X) = Prob{(N - k + !)Uk <-- X} = x / ( N  -- 
k + 1) be the distribution function of the random vari- 
able (N - k + 1)Uk. By independence, we have 

II (1 - Fk(s + 1)) 
1-.k-<n 

= [I  Prob{(N - k + 1)Uk > s + 1} 
l~_k<_n 

. oblmin + > s  + 11 
J 

Substituting this back into (3-8), we get 

= 1 - Problm.in { ( N -  k + 1)Uk} > S  + 1] F(s) 
I ]<_k<~_ _ 1  ! 

= Problmin_ _, { ( N - k +  1)Uk} _ < s +  11 

= Prob{[min { ( N - k +  1,Uk}] < S}. (3-9, 

(The notation t x l ,  which is read "floor of x," denotes 
the largest integer _< x.) This shows that S has the same 
distribution as the floor of the minimum of the n inde- 
pendent random variables NU1, (N - 1)U2 . . . . .  (N - n 
+ 1)U,. The following algorithm makes use of this fact 
to generate S. 
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ALGORITHM C (Independence Method). This method se- 
quentially selects n records at random from a file con- 
taining N records where  0 _< n _< N. The uniform ran-  
dom variates generated in Step C1 must  be independent  
of one another. 

C1. [Generate Uk, 1 -< k -< n.] Generate n independ-  
ent random variates U1, U2 . . . . .  U,, each uni- 
formly distr ibuted between 0 and 1. 

C2. [Find minimum.]  Set S := tminlsL,{(N - k + 
1)Uk}J. IfS = N - n + 1, set S to an arbi t rary 
value between 0 and N - n. (We can ignore this 
test if the random number  generator used in 
Step C1 can only produce numbers  less than 1.) 

C3. [Select the (S + 1)st record.] Skip over the next 
S(n, NO records in the file and select the following 
one for the sample, Set N := N - S(n, N) - 1 and 
n := n - 1. Return to Step C1 if n > 0. I 

Steps C1-C3 are i terated n times, once for each se- 
lected record. The selection of the j th record in the 
sample, where 1 _< j _< n, requires the generation of 
n - j + 1 independent  uniform random variates and 
takes O(n - j + 1) time. Hence, Algorithm C requires 
n + (n - 1) + . . .  + 1 = n(n + 1)/2 uniform variates, 
and it runs in O(n 2) time. 

4. ALGORITHM D (REJECTION METHOD) 
It is interesting to note that if the term (N - k + 1)Uk in 
(3-9) is replaced by NUk, the resulting expression would 
be the distribution function for the min imum of n real 
numbers in the range from 0 to N. That distribution is 
the continuous counterpart  of S, and it approximates S 
well. One of the key ideas in this section is that we can 
generate S in constant t ime by generating its continu- 
ous counterpart  and then "correcting" it so that it has 
exactly the desired distr ibution function F(s). 

Algorithm D has the general form described at the 
beginning of Section 3. The random variable S is gener- 
ated by an application of von Neumann 's  rejection-ac- 
ceptance method to the discrete case. We use a random 
variable X that is easy to generate and that has a distri- 
bution which approximates F(s) well. For simplicity, we 
assume that X is either a continuous or an integer- 
valued random variable. Let g(x) denote the density 
function of X if X is continuous or else the probabili ty 
function of X if X is integer-valued. We choose a con- 
stant c >_ 1 so that 

f(ixJ} <_ cg(x), (4-1) 

for all x in the domain of g(x). 
In order to generate S, we generate X and a random 

variate U that is uniformly distr ibuted on the unit  in- 
terval. If U > f{LXJ)/cg(X) (which occurs with low prob- 
ability), we reject LXI and start all over by generating a 
new X and U. When the condition U <_ f(tXJ)/cg(X) is 
finally satisfied, then we accept i X / a n d  make the as- 
signment S := LXJ. A modification of the following 
lemma is proven in [6]. 

LEMMA 1 
The random variate S generated by the above procedure has 
distribution (3-1}. 

The comparison U > f(LXJ)/cg(X) that is made in or- 
der to decide whether  LXJ should be rejected involves 
the computat ion of f(iX3), which by (3.3) requires 
O(min{n, LXJ + 1}) time. Since the probabil i ty of rejec- 
tion is very small, we can avoid this expense most of 
the time by substituting for f(s) a more quickly com- 
puted function h(s) such that 

h(s) <_ f(s). (4-2) 

With high probability, we will have U <_ h(LXJ)/cg(X). 
When this occurs, it follows that U <_ f{tXJ}/cg(X}, so we 
can accept LXJ and set S := LXJ. The value of f(LXJ) 
must be computed only when U > h(LXJ)/cg(X}, which 
happens rarely. This technique is sometimes called a 
squeeze method since we have h(ixJ) ~ f(LxJ) ~ cg{x}. 
Typical values of the functions f(s), cg(s), and h(s) are 
graphed in Figure 1 for the case in which X is an inte- 
ger-valued random variable. 

When n is large with respect to N, the rejection tech- 
nique may be slower than the previous algorithms in 
this section due to the overhead involved in generating 
X, h(tXJ), and g(X}. For large n, Algorithm A is the 
fastest sampling method. The following algorithm uti- 
lizes a constant a that specifies where the tradeoff is: If 
n < aN, the rejection technique is used to do the sam- 
pling; otherwise, if n _> aN, the sampling is done by 
Algorithm A. The value of a depends on the part icular  
computer  implementation.  Typical values of a can be 
expected to be in the range 0.05-0.15. For the imple- 
mentat ion described in Section, 7, we have a ~ 0.07. 

ALGORITHM D (Rejection Method). This method se- 
quential ly selects n records at random from a file con- 
taining N records, where  0 ~ n _< N. At any given point 
in the algorithm, the variable n stores the number  of 
records that remain to be selected for the sample, and 
N stores the number  of (unprocessed) records left in the 
file. The uniform random variates generated in Step D2 
must be independent  of one ano ther  The functions g(x} 
and h(s) and the constant c >_ 1 depend on the current  
values of n and N, and they must satisfy (4-1) and (4-2). 
The constant a is in the range 0 ___ a _< 1. 

D1. [Is n >_ aN?] If n _> aN, use Algorithm A to do the 
sampling and then terminate the algorithm. 
(Otherwise, we use the rejection technique of 
Steps D2-D5.) 

D2. [Generate U and X.] Generate a random variate 
U that is uniformly distr ibuted between 0 and 1 
and a random variate X that has density function 
or probabili ty function g(x). 

D3. [Accept?] If U <_ h(LXl)/cg(X), then set S := LXJ 
and go to Step D5. 

D4. [Accept? 1 If U <_ f(LXl)/cg(X), then set S := LXJ. 
Otherwise.  return to Step D2. 

D5. [Select the (S + 1)st record.] Skip over the next 
S(n, N) records in the file and select the follow- 
ing one for the sample. Set N := N - S(n, N) - 1 
and n := n - 1. Return to Step D2 if n > 0. I 

July 1984 Volume 27 Number 7 Communications of the ACM ?07 



Research Contributions 

Choosing the Parameters 
Two good ways (namely, (4-3) and (4-5)) for choosing 
the parameters  X, c, g(x), and h(s) are presented below. 
Discovering these two ways is the hard part of this 
section; once they are determined,  it is easy to prove 
Lemmas 2 and 3, which show that (4-3) and (4-5) satisfy 
conditions (4-1) and (4-2). 

The first way works better  when n 2 / N  is small, and 
the second way is better when n 2 / N  is large. An easy 
rule for deciding which to use is as follows: If n 2 / N  ~_ fl, 
then we use Xl, cl, gl(x), and hi(s); else if n2 /N  > fl, 
then X2, c2, g2(s), and h2(s) are used. The value of the 
constant fl is implementat ion-dependent .  We show in 
Section 5 that in order to minimize the average number  
of uniform variates generated by Algorithm D, we 
should set fl ~ 1.The running times of the FORTRAN 
implementat ions discussed in Section 7 are minimized 
by fl ~ 50. 

Our first choice of the parameters  is 

(n[ x\"-' 
~ 1 - ~ )  , i f 0 - < x ~ N ;  

gl(x) ! 
1. 0, otherwise; 

N 
c~= N - n + 1 '  (4-3) 

(, s ;1 
1 , i f O < s < N - n ;  

hi(s) = N - n + l  - - 

I .  0, otherwise. 

The random variable X~ with density gl(x) has the beta 
distribution scaled to the interval [0, N] and with param- 
eters a = 1 and b = n. It is the continuous counterpart  
of S, as ment ioned in the beginning of this section: The 
value of X1 can be thought of as the smallest  of n real 
numbers chosen independent ly  and uniformly from the 
interval [0, N]. 

We can generate X1 very quickly with only one uni- 
form or exponential  random variate. Let Z1, Z2 . . . . .  Z, 
denote n independent  and uniformly chosen real num- 
bers from the interval  [0, N]. We define Gl(x) to be the 
distribution function of X1. By independence,  we have 

G~(x) = Prob{X, _< x} 

= 1 - Prob{Xl > x} 

= 1 -  H Prob{Zk>X} 
l~_k<_n 

= 1 -  (,-;y 
It is well  known that we can generate a random variate 
X1 with distr ibution Gl(x) by setting 

X1 := G~q(U) or X1 := G71(e-r), 

where U is uniformly distr ibuted on the unit  interval  
and Y is exponential ly distributed. By algebraic manip-  
ulation, we get 

G-fl(y) = N(1 - ( 1  - y)I/"}. 
Since 1 - U is uniformly distr ibuted when U is, we can 
generate X1 by setting 

X I : = N ( 1 -  U ~/") or X~ : = N ( 1 - e - Y / " ) .  (4-4) 

The following lemma shows that the definitions in 
(4-3) satisfy requirements  (4-1) and (4-2). 

LEMMA 2. 
The choices of gl(x), cl, and h~(s) in (4-3) satisfy the 
relation 

hi(s) <-f(s} <- clgl(s + 1). 

Note that since gl(x) is a nonincreasing function, this 
immediate ly  implies {4-1}. 

PROOF 
The proof is straightforward. First we prove the second 
inequality. We have 

n ( N - s -  1) "-1 
f(s) - N (N - 1) 'az2- 

n (N - s - 1) v-=! 
- N - n + 1  N a=t 

- N - n +  l n( 
- N - n + 1 ffl 1 - - -  = clg,(s + 1). 

The "~" term in the above derivat ion follows because 
N - s - l - k  N - s - 1  

-< , for 0_< k_< n - 2. The first 
N - k  N 

inequali ty can be proved in the same way: 

n N s - n + l  
h~(s) = - ~  • - -  n + T 

n ( N - s -  1 ~  
< -- = f(s). 
- N (N - 1) "-~ 

The "<__" term follows since 

N - s - n + l  < N N S - l - k  
N - n + l  - Z T - -  ~ . , f o r 0 _ < k _ < n - 2 .  I 

The second choice for the parameters  is 

n-l(1 n t' g 2 ( s ) - ~  1 ~ - -  , s >_ 0; 

n N - 1  
C 2 = - - - - ;  

n - - 1  N 

{ (1 
h2(s) = N ~,1 -- 

0, otherwise. 

The random variable X2 with probabil i ty function g2(s) 
has the geometric distribution. Its range of values is the 
set of nonnegative integers. 

We can generate X2 quickly with a single uniform or 
exponential  random variate by setting 

(4-5) 

i f O < _ s < _ N - n ;  

?08 Communications of the ACM July 1984 Volume 27 Number 7 



Research Contributions 

X2:=l(InU)/In(l N- I)] 
or (4-6) 

×. 

where U is uniformly distributed on the unit interval 
and Y is exponentially distributed. This is easy to 
prove: Let p denote the fraction (n - 1)/(N - 1). We 
have X2 = s if and only if s ~ (In U)/ln(1 - p) < s + 1, 
which is equivalent to the condition (1 - p)5 _> U > (1 - 
p)~+l, and this occurs with probability ga(s) = p(1 - p)L 

The following lemma shows that (4-5) satisfies re- 
quirements (4-1) and (4-2). 

LEMMA 3. 
The choices g2(s), c2, and h2(s) in (4-5) satisfy the relation 

h2(s) -- f(s) ~ c2g2(s) 

PROOF 
This proof is along the lines of the proof of Lemma 2. 
To prove the first inequality, we note that 

n ( N - n )  ~- n ( N - n y  
f(s} - ~ (N 1} ~- <- -N \ N  - 1 /  

n ~  N N ~  FJ - = c . x . ( s ) .  

The first inequality can be proved in the same way: 

n ( N - s - n +  1) s n ( N - n )  ~ 
= - < - -  - f ( s ) .  | h.(s} ~ N ~ s  - N ( N - 1 )  -~ 

5. OPTIMIZING ALGORITHM D 
In this section, four modifications of the naive imple- 
mentation of Algorithm D are given that can improve 
the running time significantly. In particular, the last 
two modifications cut the number of uniform random 
variates generated and the number of exponentiation 
operations performed by half, which makes the algo- 
rithm run twice as fast, Two detailed implementations 
utilizing these modifications are given in the Appendix. 

5.1 W h e n  to Tes t  n _> a N  
The values of n and N decrease each time S is gener- 
ated in Step D5. If initially we have n / N  ~ a, then 
during the course of execution, the value of n / N  will 
probably be sometimes < a and sometimes _> a. When 
that is the case, it might be advantageous to modify 
Algorithm D and do the "Is n >_ aNT '  test each of the n 
times S must be generated. If n < aN, then we generate 
S by doing Steps D2-D4; otherwise, steps A1 and A2 are 
executed. This can be implemented by changing the 
"go to" in Step D5 so that it returns to Step D1 instead 
of to D2, and by the following substitution for Step DI: 

D1. [Is n >_ aN?] If n >- aN, then generate S by exe- 
cuting Steps A1 and A2 of Algorithm A, and go 
to Step D5. (Otherwise, S will be generated by 
Steps D2-D4.) 

When n / N  ~ c~, the time required to do the n - 1 extra 
"Is n -> aN?" tests will be compensated for by the de- 
creased time for generating S; if n / N  ~e a, this modifica- 
tion will cause a slight increase in the running time 
(approximately 1-2 percent). An important advantage 
of this modification when X~ is used for X in the rejec- 
tion technique is to guard against "worst case" behav- 
ior, which happens when the value of N decreases 
drastically and becomes roughly equal to n as a result 
of a very large value of S being generated; in such cases, 
the running time of the remainder of the algorithm will 
be quite large, on the average unless the modification is 
used. 

The implementations of Algorithm D in the Appen- 
dix use a slightly different modification, in which a "Is 
n _> aN?" test is done at the start of each loop until the 
test is true, after which Algorithm A is called to finish 
the sampling. The resulting program is simpler than the 
first modification, and it still protects against worst-case 
behavior. 

5.2 Th e  Spec ia l  Case  n -" 1 
The second modification speeds up the generation of S 
when only one record remains to be selected. The ran- 
dom varible S(1, N) is uniformly distributed among the 
integers 0 ~ s-< N -  1; thus when n = 1 we can 
generate S directly by setting S := LNUJ, where U is 
uniformly distributed on the unit interval. (The case 
U -- 1 happens with zero probability so when we have 
U = 1, we can assign S arbitrarily.) This modification 
can be applied to all the sampling algorithms discussed 
in this paper. 

5.3 R e d u c i n g  the  Number of Uniform R a n d o m  
V a r i a t e s  G e n e r a t e d  

The third modification allows us to reduce the number 
of uniform random variates used in Algorithm D by 
half. Each generation of X as described in (4-4) and (4-6) 
requires the generation of an independent uniform ran- 
dom variate, which we denote by V. (In the case in 
which an exponential variate is used to generate X, we 
assume that the exponential variate is generated by 
first generating a uniform variate, which is typically 
the case.) Except for the first time X is generated, the 
variate V (and hence X) can be computed in an inde- 
pendent way using the values of U and X from the 
previous loop, as follows: During Steps D3 and possibly 
D4 of the previous inner loop, it was determined that 
either U _< y~, yl < U _< y2, or y2 < U, where y~ = 
h(LXJ)/cg(X) and y2 = f(LXJ)/cg(X). We compute V for 
the next loop by setting 

t U ,  if U ~ yl; yl 

U yl , if yl < U _< y2; (5-1) V := y2 yl 

U y2 if y2 "< U. 
1 y2 

The following lemma can be proven using the defini- 
tions of independence and of V: 
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LEMMA 4. 
The value V computed via (5-1) is a uniform random variate 
that is independent of all previous values of X and of 
whether or not each X was accepted. 

5.4 Reducing the Number of Exponentiation 
Operations 

An exponentiation operation is the computation of the 
form a b = exp(b In a), for real numbers a and b. It can 
be done in constant time using the library functions 
EXP and LOG. For simplicity, each computation of exp 
or In is regarded as "half" an exponentiation operation. 

First, the case in which X1 is used for X is considered. 
By the last modification, only one uniform random 
variate must be generated during each loop, but each 
loop still requires two exponentiation operations: one 
to compute Xa from V using (4-4) and the other to 
compute 

h a ( L X l J ) _ N - n + l ( N - n - I X a ] + l  N ;)n-a 
clgl(X1) N -I~-  n 7-1 N - ~  " 

We can cut down the number of exponentiations to 
roughly one per loop in the following way: Instead of 
doing the test U <- hl(tXad)/cagl(X~), we use the equiva- 
lent test 

(N )1/{.-1) 
N U 

- n + l  
N - n - [XaJ + 1 N 

< • (5-2) 
- N - n +  l N - X a  

If the test is true, which is almost always the case, 
we set V' to the quotient of the LHS divided by the 
RHS; the resulting V'  has the same distribution as the 
(n - 1)st root of a uniform random variate. Since n 
decreases by 1 before the start of the next loop, we can 
generate the next value of X1 without doing an expo- 
nentiation by setting 

Xa := N(1 - V') (5-3) 

(cf., (4-4)). Thus, in almost all cases, only one exponen- 
tiation operation is required per loop. Another impor- 
tant advantage of using the test (5-2) instead of the test 
U <- ha(tX1l)/caga(XO is that the possibility of floating 
point underflow is eliminated. 

When X2 is used for X, we have a similar situation, 
though not quite as favorable. The computation of X2 
from V requires two In operations (which counts as one 
exponentiation operation, as explained above). Another 
exponentiation operation in each loop is required to 
compute 

h2(X2) _ (.N - n - X2 + l N - ln)X=" 
c2g2(X2) X X2 N 

The number of exponentiations can be cut down to 
about 1.5 per loop, as follows: Instead of doing the test 
U ~ h2(X2)/c2g2(X2), w e  u s e  the equivalent test 

l n U ~ X 2 x  In 1 / ~ -  

If the test is true, which is almost always the case, we 
set V' to the difference of the LHS minus the RHS; the 
resulting V' has the same distribution as the natural 
logarithm of a uniform random variate. We can gener- 
ate the next value of X2 by setting 

X2 := V' In 1 ~ (5-5) 

(cf., (4-6)). The common term ln(1 - (n - 1)/(N - 1)) in 
(5-4) and (5-5) need only be computed once per loop, so 
the total number of In operations is roughly three per 
loop (which counts as 1.5 exponentiation operations per 
loop). 

The modification discussed in this section is an effi- 
cient alternative to using (5-1) for computing V, for the 
case U ~ ya. When we have U > ya, which happens 
with very low probability, it is quicker to generate V by 
calling a random number generator than it is to use a 
technique similar to (5-1). 

6. ANALYSIS OF ALGORITHM D 
In this section, we prove that the average number of 
uniform random variates generated by Algorithm D and 
the average running time are both O(n). We also discuss 
how the correct choice of Xa or X2 during each iteration 
of the algorithm can further improve performance. 

6.1 Average Number V ( n ,  IV) of Uniform Random 
Variates 

The average number of uniform random variates gener- 
ated during Algorithm D is denoted by V(n, N}. We use 
V'(n, N} to denote the average number of uniform var- 
iates for the modified version of the algorithm in which 
each variate X is computed from the previous values of 
U and X. Theorems 1 and 2 show that V(n, N} and V'(n, 
N) are approximately equal to 2n and n, respectively. 

THEOREM 1 
The average number V(n, N} of uniform random variates 
used by the unmodified Algorithm D is bounded by 

2nN , i f n < a N ;  
V(n,N)_< N - n +  1 

n, if n ~_ aN. 

(6-1) 

When n < aN, we have V(n, N) ~ 2n(1 + n/N}. The 
basic idea of the proof is that U and X must be gener- 
ated roughly 1 + n / N  times, on the average, in order to 
generate each of the n values of S. Thus, approximately 
2n(1 + n/N} variates are needed for the sampling. The 
difficult part of the following proof is accounting for the 
fact that the values of n and N change during the 
course of execution. 

PROOF 
It is assumed that Xa, ga(x), ca, and ha(s), which are 
defined in (4-3), are used for X, g(x), c, and h(s) in 
Algorithm D. If n _> aN, then Algorithm A is used, and 
exactly n uniform random variates are generated. 
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For the n < aN case, (6-1) is derived by induction 
on n. In order to generate S, the average number  of 
times Steps D2-D4 are executed is 1/(1 - r), where r is 
the probabili ty of rejection. The probabili ty of rejection 
is r = f0 N g(t)(1 - f(t)/(cg(t))) dt = 1 - 1/c. By substitu- 
tion, each generation of S requires an average of 1/(1 - 
r) = c iterations, which corresponds to 2c uniform ran- 
dom variates. If n = 1, we have c = 1, so LXI is accepted 
immediate ly  and we have V(1, N) = 2. Now let us 
assume that (6-1) is true for samples of size n - 1; we 
will show that it remains true for n sampled records. 
By (6-1) and (3-3), we have 

2N 
V(n, IV) <_ + Y, f(s)V(n - 1, N - s - 1) 

N -  n + 1 O<s~N-n 

2N 
- N - n + l  

+ y, n ( N - s -  1) a = 2 2 ( n -  1 ) ( N - s -  1) 
0-~s--N-. N ( N -  1) "-1 N - s - n  + 1 

2N 2n(n - 1) 

N - n + 1  + N ~ 

Y~ ( N - s -  1 ) ( N - s -  1) "-2 
O~-s~-N-n 

2N 2n(n - 1) 
- -  . ] _  - -  

N - n + 1  N" 

~N (N-s)  " -1-  X ( N - s -  1) "-2 ) 
0 _ < S  - - n  0 ~ 5 < _ N - n  

2N 2 n ( n  - 1) 
- + N-" N - n + l  

_ N "-~ ) ( N +  1) u ( n -  1 ) ! - - - + ( n - 2 ) !  
n n - 1  

2nN 
- N - n "  

This completes the proof of Theorem 1. | 

THEOREM 2 
The average number V'(n, N} of uniform random variates 
used by Algorithm D with the second and third modifica- 
tions described in the previous section is bounded by 

f nN if n < aN; 
V'(n, N) _< N - n + 1 ' (6-2) 

n, if n >_ aN. 

PROOF 
We need only consider the case n < c~N. By the last 
modification, the variate X is generated using a uniform 
random variate V computed from the previous values of 
U and X. Thus, the first i teration requires the genera- 
tion of the two uniform random variates U and V, but 
each successive loop requires only the generation of U. 
By the second modification, the last i terat ion does not 
require any random variates to be generated. Thus, the 
number  of uniform random variates that must be gen- 
erated is exactly 1/2 V(n, N). The theorem follows from 
(6-1). B 

In our derivation of (6-1) and (6-2), we assumed that 
X1 was used for X throughout Algori thm D. We can do 
better if we sometimes use X2 for X. We showed above 
that we need an average of c i terations to generate each 
successive S. For Xl, we have cl = N / ( N  - n + 1) 
1 + n/N; for X2, we have c2 = (n/(n - 1))((N - 1)/N) 
1 + 1/n. Thus, we could use X1 when n2/N <_ fl, and 
we could use X2 when n2/N > fl, where/8 = 1. 

The following intuit ive argument indicates that this 
might reduce V'(n, N) to 

V'(n, N) 

I n ( 1  + N), i fn2/N<_l, n<aN;  

n 1 + , i f n 2 / N > l ,  n < a N ;  (6-3) 

I n ,  if n >_ aN. 

The informal justification of (6-3) is based on the obser- 
vation that the ratio n / N  usually does not change much 
during the execution of Algorithm D. At the expense of 
mathematical  rigor, we will make the simplifying as- 
sumption that n / N  remains constant during execution. 
The value of n2/N = n(n/N) decreases l inearly to 0 as n 
decreases to 0. If init ially we have n2/N ~ 1 and n < 
aN, then n2/N will always be _< 1 during execution, so 
X1 will be used throughout Algorithm D; thus, V'(n, N) 

n(1 + n/N), as in Theorem 2. If instead we have n2/N 
> 1 and n < aN initially, then X2 will be used for X the 
first n - N / n  t imes S is generated, after which we will 
have n2/N ~- 1. The random variable X1 will be used 
for X the last N / n  times S is generated. Hence, the total 
number  of uniform random variates is approximately 

N N 
= n - - -  + H .  - H N / , ,  + - -  + 1 

n n 

n 2 
= n + l + l n - - .  

N 

(The symbol H, denotes the nth harmonic number  1 + 
1/2 + . . -  + 1/n.) This completes the argument.  

6.2  A v e r a g e  E x e c u t i o n  T i m e  T ( n ,  IV)  

T(n, N) is used to represent the average total running 
time of Algorithm D. As shown in Table II, we can 

TABLE I1: Times per Step for Algorithm D. 

Step Time per Step 

D1 d~ 
D2 d2 
D3 da 
D4 d4 • min{n, LXJ + 1 } 
D5 ds 
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bound the time it takes to execute each step of Algo- 
ri thm D exactly once by the quantities d~, d2, d3, 
d4.min{n, [XJ + 1}, and ds, where each di is a positive 
real-valued constant. 

If initially we have n / N  > a, then Algorithm A is 
used to do the sampling, and the average running time 
T(n, N) can be bounded closely by d~ + d'N + d" n, for 
some constants d" and G'. The following theorem 
shows that T(n, N) is at most l inear in n. 

THEOREM 3. 
The average running time T(n, N) of Algorithm D is 
bounded by 

T(n, N) 

nN (d2 + d3 + 3d4) + dsn, d l + N _ n +  1 

<- if n < aN; (6-4) 

d~ + d'N + din, if n > aN. 

PROOF 
All that is needed is the n < aN case of (6-4), in which 
the rejection technique is used. We assume that X~, 
gl(x), ci, and hi(s) are used in place of X, g(x), c, and h(s) 
throughout Algorithm D. Steps D2 and D3 are each 
executed c times, on the average, when S is generated. 
The proof of Theorem 1 shows that the total contribu- 
tion to T(n, N) from Steps D1, D2, D3, and D5 is 
bounded by 

nN 
dl + (d2 + d3) + dsn. 

N - n + 1  

The tricky part in this proof is to consider the contri- 
bution to T(n, N) from Step D4. The t ime for each exe- 
cution of Step D4 is bounded by d4 .rain{n, I.X1J + 1} 
d4(I.X~J + 1). Step D3 is executed an average of C1 t imes 
per generation of S. The probabili ty that U > hfftX])/ 
Clgl(X) in Step D3 (which is the probabil i ty that Step D4 
is executed next) is 1 - h~(I.XJ)/clg~(X). Hence, the t ime 
spent executing Step D4 in order to generate S is 
bounded by 

I~N (cgl(x)/hl{x) ~ dx Cl 3o d4(x + 1}gl(x) 1 - 

fo jo = cld4 (x + 1)gl(x) dx - d4 (x + 1)h~(x) dx. 

The first integral is 

cld4(..~(Xl) + 1) = Cld4 
N + n + l  

n + l  

The second integral equals 

d 4 N + 2  
c~ n + l  

The difference of the two integrals is bounded by 

3d4Q 

The proof of Theorem 1 shows that the total contribu- 
tion of Step D4 to T(n, N) is at most 

nN 
3nd4cl : 3d4 

N - n + l "  

This completes the proof of Theorem 3. | 

We proved the time bound (6-4) using X1 for X 
throughout the algorithm. We can do better if we in- 
stead use X1 for X when n2/N <_ fl and X2 for X when 
n2/N > ft. We showed in Section 6.1 that the value 
fl ~ 1 minimizes the average number  of uniform var- 
iates generated. The value of fl that optimizes the aver- 
age running time of Algorithm D depends on the com- 
puter  implementat ion.  For the FORTRAN implementa-  
tion described in Section 7, we have fl -~ 50. 

The constants di, for 2 < i < 5, have different values 
when X2 is used for X than when X~ is used. In order to 
get an intuit ive idea of how much faster Algori thm D is 
when we use X~ and X2, let us assume that the values of 
the constants di are the same for X2 as they are for X1. If 
we bound the time for Step D4 by d4n rather  than by 
d4(LXlJ + 1) as we did in the proof of Theorem 3, we 
can show that when n2/N < fl the t ime required to 
generate S using X1 for X is at most 

N ( d 2 + d a + 2 d 4 n _ ~ ) + d s .  (6-5) 
N - n + l  

Similarly, we can prove that the t ime required to gen- 
erate S when n 2/N >/3 using X2 for X is bounded by 
roughly 

n - 1 N + ds. (6-6) 

(The proof that Step D4 takes ~ 6d4(N - 1)/(n(n - 1)) 
t ime to generate each S requires intr icate approxima- 
tions.) The bounds (6-5) and (6-6) are equal when n2/N 
~ fl, for some constant 1 _< fl _< v'3. For simplicity, let us 
assume that fl ~ 1 (which means that d4 << d2 + da + 
ds). By an informal argument similar to the one at the 
end of the last section, we can show that the running 
time of Algorithm D is reduced to 

d l + n  1 + ~  2 + d a + d , ~  +dsn, 

T(n, N) 

if n2/N <_ fl, n < aN; 

d l +  n(1 + 1 +ln--(nn2/N!)(d2+da)+ dsn 

( +d4 + 1 + 6  l n N +  N , 

if na/N > fl, n K aN; 

d~ + d'N+d'.'n, if n>--aN. 

(6-7) 

7.  E M P I R I C A L  C O M P A R I S O N S  

Algorithms S, A, C, and D have been implemented  in 
FORTRAN 77 on an IBM 3081 mainframe computer  in 
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TABLE II1: Average CPU Times (IBM 3081) 

Average Execution Time 
Algorithm (microseconds) 

S =17N 
A =4N 
C =8n 2 
D =55n 

order to get a good idea of the limit of their perform- 
ance. The FORTRAN implementations are direct trans- 
lations of the Pascal-like versions given in the Appen- 
dix. The average CPU times are listed in Table III. 

For example, for the case n = 103, N = 108, the CPU 
times were 0.5 hours for Algorithm S, 6.3 minutes for 
Algorithm A, 8.3 seconds for Algorithm C, and 0.052 
seconds for Algorithm D. The implementation of Algo- 
rithm D that uses X1 for X is usually faster than the 
version that uses X2 for X, since the last modification in 
Section 5 causes the number of exponentiation opera- 
tions to be reduced to roughly n when X~ is used, but to 
only about 1.5n when X2 is used. When X~ is used for X, 
the modifications discussed in Sectic~n 5 cut the CPU 
time for Algorithm D to roughly half of what it would 
be otherwise. 

These timings give a good lower bound on how fast 
these algorithms run in prdctice and show the relative 
speeds of the algorithms. On a smaller computer, the 
running times can be expected to be much longer. 

8. CONCLUSIONS AND FUTURE WORK 
We have presented several new algorithms for sequen- 
tial random sampling of n records from a file containing 
N records. Each algorithm does the sampling with a 
small constant amount of space. Their performance is 
summarized in Table I, and empirical timings are 
shown in Table III. Pascal-like implementations of sev- 
eral of the algorithms are given in the Appendix. 

The main result of this paper is the design and analy- 
sis of Algorithm D, which runs in O(n) time, on the 
average; it requires the generation of approximately n 
uniform random variates and the computation of 
roughly n exponentiation operations. The inner loop of 
Algorithm D that generates S gives an optimum aver- 
age-time solution to the open problem listed in Exercise 
3.4.2-8 of [6]. Algorithm D is very efficient and simple 
to implement, so it is ideally suited for computer imple- 
mentation. 

There are a couple other interesting methods that 
have been developed independently. The online se- 
quential algorithms in [5] use a complicated version of 
the rejection-acceptance method, which does not run 
in O(n) time. Preliminary analysis indicates that the 
algorithms run in O(n + N/n)  time; they are linear in n 
only when n is not too small, but not too large. For 
small or large n, Algorithm D should be much faster. 

J. L. Bentley (personal communication, 1983) has pro- 
posed a clever two-pass method that is not online, but 
does run in O(n) time, on the average. In the first pass, 

a random sample of integers is generated by truncating 
each element in a random sample of cn uniform real 
numbers in the range [0, N + 1), for some constant c > 
1; the real numbers can be generated sequentially by 
the algorithm in [1]. If the resulting sample of truncated 
real numbers contains m ~ n distinct integers, then 
Algorithm S (or better yet, Algorithm A) is applied to 
the sample of size m to produce the final sample of size 
n; if m < n, then the first pass is repeated. The parame- 
ter c > 1 is chosen to be as small as possible, but large 
enough to make it very unlikely that the first pass must 
be repeated; the optimum value of c can be determined 
for any given implementation. During the first pass, the 
m distinct integers are stored in an array or linked list, 
which requires space for O(m) pointers; however, this 
storage requirement can be avoided if the random 
number generator can be re-seeded for the second pass, 
so that the program can regenerate the integers on the 
fly. When re-seeding is done, assuming that the first 
pass does not have to be repeated, the program requires 
m + cn random number generations and the equivalent 
of about 2cn exponentiation operations. For maximum 
efficiency, two different random number generators are 
required in the second pass: one for regenerating the 
real numbers and the other for Algorithm S or A. The 
second pass can be done with only one random number 
generator, if during the first pass 2cn - 1 random var- 
iates are generated instead of cn, with only every other 
random variate used and the other half ignored. FOR- 
TRAN 77 implementations of Bentley's method (using 
Algorithm A and two random number generators for 
the second pass) on an IBM 3081 mainframe run in 
approximately 105n microseconds. The amount of code 
is comparable to the implementations of Algorithm D in 
the Appendix. 

Empirical study indicates that round-off error is in- 
significant in the algorithms in this paper. The random 
variates S generated by Algorithm D pass the standard 
statistical tests. It is shown in [1] that the rule (4-4) for 
generating X1 works well numerically. Since one of the 
ways Algorithm D generates S is by first generating X1, 
it is not surprising that the generated S values are also 
valid statistically. 

The ideas in this paper have other applications as 
well. Research is currently underway to see if the re- 
jection technique used in Algorithm D can be extended 
to generate the kth record of random sample of size n 
from a pool of N records in constant time, on the aver- 
age. The generation of S(n, N) in Algorithm D handles 
the special case k = 1; iterating the process as in Algo- 
rithm D generates the index of the kth record in O(k) 
time. The distribution of the index of the kth record is 
an example of the negative hypergeometric distribu- 
tion. One possible approach to generating the index in 
constant time is to approximate the negative hypergeo- 
metric distribution by the beta distribution with param- 
eters a = k and b = n - k + 1 and normalized to the 
interval [0, N]. An alternate approximation is the nega- 
tive binomial distribution. Possibly the rejection tech- 
nique combined with a partitioning approach can give 
the desired result. 
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When the number N of records in the file is not 
known a priori and when reading the file more than 
once is not allowed or desired, none of the algorithms 
mentioned in this paper can be used. One way to sam- 
ple when N is unknown beforehand is the Reservoir 
Sampling Method, due to A. G. Waterman, which is 

listed as Algorithm R in [6]. It requires N uniform ran- 
dom variates and runs in O(N) time. In [9, 10], the 
rejection technique is applied to yield a much faster 
algorithm that requires an average of only O(n + n 
ln(N/n)) uniform random variates and O(n + n ln(N/n)) 
time. 

w h i l e  n > 0 d o  
b e g i n  
i f  N x R A N D O M (  ) < n t h e n  

b e g i n  

Select the next  record in the file for the s a m p l e ;  
n : = n - 1  
e n d  

e lse  Skip over the next  record (do not  include it  in the sample); 
N : = N - 1  
end;  

ALGORITHM S: All variables have type integer. 

top :=  N - orig_r~; 

for n :=  orig_r~ d o w n t o  2 d o  
b e g i n  
{ S t e p  A1 } 
V :=  R A N D O M (  ); 

{ S t ep  A2 } 
S :=  O; 
quot : =  top~N; 
w h i l e  quot > V d o  

b e g i n  

S :=  S + 1; 

top :=  top - 1; 

N :=  N -  1; 

quot :=  quot x t o p / N  
end;  

{ S t ep  A3 } 

Skip over the next  S records and select  the following one fo r  the sample; 
N : = N - 1  

end;  

{ Specia l  case  n = 1 } 

S :=  T R U N C ( N  x R A N D O M (  )1; 
Skip over the n e x t  S r e c o r d s  and se lec t  the following one for  the  s a m p l e ;  

ALGORITHM A: The variables V and quot have type real All other variables have type integer. 

APPENDIX 
This section gives Pascal-like implementations of Algo- 
rithms S, A, C, and D. The FORTRAN programs used in 
Section 7 for the CPU timings are direct translations of 
the programs in this section. 

Two implementations of Algorithm D are given: the 
first uses X1 for X, and the second uses X2 for X. The 
first implementation is recommended for general use. 
These two programs use a non-standard Pascal con- 
struct for looping. The statements within the loop ap- 
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limit :=  N -  or/g_n + 1; 

for n := orig_n d o w n t o  2 d o  
begin 
{ Steps C1 and C2 } 
min_X := limit; . . . .  
for  malt := N d o w n t o  limit d o  

begin 
X := malt x R A N D O M (  ); 
i f  X < min_X t h e n  min_X := X 
end; 

S := TRUNC(min. .X);  

{ Step C3 } 
Skip over the next S records and select the following one for the sample; 
N : = N - S - 1 ;  
limit := limit - S 
end; 

{ Spec ia l  case  n = 1 } 

s :=  TRUNC(N × RANDOM( )); 
Skip over the next S records and select the following one for the sample; 

ALGORITHM C: The variables X and min_X have type real. All other variables have type integer. 

pear between the reserved words loop and end loop; 
the execution of the statement break loop causes the 
flow of control to exit the current innermost loop. 

Liberties have been taken with the syntax of identi- 
fier names, for the sake of readability. The × symbol is 
used for multiplication. Parentheses are used to enclose 
null arguments in calls to functions (like RANDOM) 
that have no parameters. 

Variables of type real should be double precision so 
that round-off eri'or will be insignificant, even when N 
is very large. Roughly logloN digits of precision will 
Suffice. Care should be taken to assure that intermedi- 
ate calculations are done in full precision. Variables of 
type integer should be able to store numbers up to 
value N. 

The code for the random number generator 
RANDOM is not included. For the CPU timings in Sec- 
tion 7, we used a machine-independent version of the 
linear congruential method, similar to the one given in 
[8]. The function RANDOM takes no arguments and 
returns a double-precision uniform random variate in 
the interval [0, 1). Both implementations of Algorithm 
D assume that the range of RANDOM is restricted to the 
open interval (0, 1). This restriction can be lifted for the 
first implementation of Algorithm D with a couple sim- 
ple modifications, which will be described later. 

Algorithm D 
Two implementations are given for Algorithm D below: 
Xa is used for X in the first, and X2 is used for X in the 
second. The optimizations discussed in Section 5 are 

used. The first implementation given below is preferred 
and is recommended for all ranges of n and N; the 
second implementation will work well also, but is 
slightly slower for the reasons given in Section 7, 
especially when n is small. The range for the random 
number function RANDOM is assumed to be the open 
interval (0, 1). 

As explained in Sections 4 and 5, there is a constant 
a that determines which of Algorithms D and A should 
be used for the sampling: If n < aN, then the rejection 
technique is faster; otherwise, Algorithm A should be 
used. This optimization guards against "worst-case" 
behavior that occurs when n = N and when X1 is used 
for X, as explained in Section 5. The value of a is 
typically in the range 0.05-0.15. For the IBM 3081 
implementation discussed in Section 7, we have a 
0.07. Both implementations of Algorithm D use an 
integer constant alpha_inverse > 1 (which is initialized to 

l / a )  and an integer variable threshold (which is 
always equal to alpha_inverse × n). 

Sections 4 and 6 mention that there is a constant fl 
such that if n2/N <_ fl, then it is better to use X1, cl, 
gl (x), hnd hi (s) in Algorithm D; otherwise, X2, c2, g2(s), 
and h2(s) should be used. The value of fl for the IBM 
3081 implementation discussed in Section 7 in fl ~ 50. 
If maximum efficiency is absolutely necessary, it is 
recommended that the two programs be combined: X2 
should be used for X until the condition nZ/N <_ fl 
becomes true, after which Xa should be used for X. 
There should be no need to continue testing the 
condition once it becomes true. 
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V_prime := E X P ( L O G ( R A N D O M (  ))/n);  
quantl := N - n + 1; quant2 := quantl /N;  
threshold := alpha_inverse × n; 

whi le  (n > 1) a n d  (threshold < N) do 
beg in  
loop 

{ Step D2: Generate U and X } 
loop 

X := N × (1.0 - V_prime); 
S := TRUNC(X) ;  
if S < quantl t h e n  b r e a k  loop; 
V_prime := E X P ( L O G ( R A N D O M (  ))/n) 

end  loop; 
y := R A N D O M (  )/quant2; { U is the value returned by R A N D O M  } 

{ Step D3: Accept? } 
LHS := E~XP(LOG(y)/(n - 1)); 
RHS := ((quantl - S ) / quan t l )  x ( N / ( N -  X)); 
f f  LHS < RHS t h e n  

beg in  { Accept S, since U < h([XJ) /cg(X)  } 
V_prime := L H S / R H S ;  
b r e a k  loop 
end;  

{ Step D4: Accept? } 
f i n - 1  > S t h e n  

b e g i n  bottom := N - n; limit := N - S e n d  
else beg in  bottom := N - S - 1; limit := quantl end;  
for  top := N -  1 d o w n t o  limit do  

beg in  y := y × top~bottom; bottom := bottom - 1 end;  
f f  E X P ( L O G ( y ) / ( n  - 1)) < N / ( N  - X)  t h e n  

b e g i n  { Accept S, since U < f (LXJ) / cg (X)  } 
V_prime := E X P ( L O G ( R A N D O M (  ) ) / ( n -  1)); 

b r e a k  loop 
end;  

V_prime := E X P ( L O G ( R A N D O M (  )) /n)  
e n d  loop; 

{ Step Db: Select the (S + 1)st record } 
Skip over the next S records and select the following one for the sample; 
N := N - S - 1 ;  n : = n - 1 ;  
quantl := quantl - S; quant2 : -  quantl /N;  
threshold := threshold - alpha_inverse 
end;  

if n > 1 t h e n  Call Algorithm A to finish the sampling 
else beg in  { Special case n = 1 } 

S := T R U N C ( N  × V_prime); 
Skip over the next S records and select the following one for the sample 
end;  

ALGORITHM D: Using Xl for X. 
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V_prime := L O G ( R A N D O M (  )); 
quantl := N - n + 1; 
threshold := alpha_inverse x n; 

whi le  (n > 1) a n d  (threshold < N)  do 
beg in  
quant2 : :  (quantl  - 1 ) / ( N -  1); quant3 := LOG(quant2); 
loop 

{ Step D2: Generate U and X } 
loop 

S := TRUNC(  V_prime/quant3); 
if S < quantl t h e n  b r e a k  loop; 
V_prime := L O G ( R A N D O M ( ) )  

end  loop; 

if n 
else 

{ X is equal to S } 

LHS := L O G ( R A N D O M (  )); { U is the value returned by R A N D O M  } 

{ Step D3: Accept? } 
RHS := S x (LOG((quantl  - S ) / ( N  - S))  - quant3); 
i f  LHS < RHS t h e n  

beg in  { Accept S, since U < h(LXJ)/cg(X) } 
V_prime := LHS - RHS; 
b r e a k  loop 
end;  

{ Step D4: Accept? } 
y := 1.0; 
i f n - l > S t h e n  

beg in  bottom : :  N - n; limit := N - S e n d  
else beg in  bottom :-- N - S - 1; limit := quantl end;  
for  top := N -  1 d o w n t o  limit do 

beg in  y := y x top~bottom; bottom := bottom - 1 end;  
V_prime : :  L O G ( R A N D O M (  )); 

i f  quant3 < - ( L O G ( y )  + L H S ) / S  t hen  
b r e a k  loop { Accept S, since U < f (LXJ) / ca (X)  } 

end  loop; 

{ Step Db: Select the (S + 1)st record } 
Skip over the next S records and select the following one for the sample; 
N : : N - S - 1 ;  n : - n - 1 ;  
quantl := quantl - S ;  
threshold := threshold-  alpha_inverse 
end; 

> 1 t h e n  Call Algorithm A to finish the sampling 
beg in  { Special case n = 1 } 
S := T R U N C ( N  × R A N D O M (  )); 
Skip over the next S records and select the following one for the sample 
end; 

ALGORITHM D: Using X= for X. 
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U s i n g  X1 for X 
The  var iab les  U, X, V_prime, LHS, RHS, y, a n d  quant2 
h a v e  type  real. T he  o t h e r  va r i ab le s  h a v e  type  integer. 
The  p rog ram above  can  be  modi f i ed  to a l low R A N D O M  
to r e t u r n  the  v a l u e  0.0 by  r ep lac ing  all exp res s ions  of 
t he  form EXP(LOG(a)/b) by  a 1/b 

The  va r i ab le  V_prime ( w h i c h  is u sed  to gene ra t e  X) is 
a lways  set  to the  n t h  root  of a u n i f o r m  r a n d o m  var ia te ,  
for the  c u r r e n t  v a l u e  of n. T h e  va r i ab l e s  quantl,  quant2,  
a n d  threshold equa l  N - n + 1, (N - n + 1) /N,  a n d  
alpha_inverse x N, respec t ive ly ,  for t he  c u r r e n t  va lues  
of N a n d  n. 

U s i n g  X2 for  X 
T h e  va r i ab le s  U, V_prime, LHS, RHS, y, quant2, a n d  
quant3 h a v e  type  real. T h e  o t h e r  va r i ab l e s  h a v e  type  
integer. Let x > 0 be  the  smal l e s t  poss ib le  n u m b e r  re- 
t u r n e d  by  RANDOM.  T h e  integer va r i ab l e  S m u s t  be  
large e n o u g h  to s tore  - (loglox)N. 

The  va r i ab l e  V_prime ( w h i c h  is u sed  to gene ra t e  X) is 
a lways  set to the  n a t u r a l  l o g a r i t h m  of a u n i f o r m  ran-  
d o m  var ia te .  T h e  va r i ab le s  quantl,  quant2, quant3, a n d  
threshold equa l  N - n + 1, (N - n ) / (N  - 1), ln((N - n ) /  
(N - 1)), a n d  alpha_inverse × n, for t he  c u r r e n t  va lues  of 
N a n d  n. 
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CORRIGENDUM: Human Aspects of Computing 

Izak Benbasa t  a n d  Yair  Wand .  C o m m a n d  a b b r e v i a t i o n  b e h a v i o r  in  h u m a n - c o m p u t e r  i n t e rac t ion .  Commun. A C M  27, 
4 (Apr. 1984), 376-383.  Page 380: Table  II s h o u l d  read:  

TABLE II. Data on Abbreviation Behavior* 

Average Weighted 
No. of Command No. of Percent Distribution of No. of 

Characters Name Times Characters Used Characters Average 
in Command Used Used for Group 

1 2 3 4 5 6 7 8 

4 VARY 86 5 7 3 85 3.69 
4 RUSH 280 5 20 4 71 3.41 
4 SORT 5 0 0 0 100 4.00 
4 HELP 25 0 0 0 100 4.00 
4 EXIT 12 0 25 0 75 3.50 
4 STOP 3 0 0 0 100 4.00 3.52 

5 POINT 442 27 4 17 1 51 3.46 
5 ORDER 27 7 0 7 0 85 4.56 
5 NAMES 28 0 0 7 0 93 4.86 3.60 

6 SELECT 87 0 0 15 0 0 85 5.55 
6 REPORT 596 0 0 62 0 0 37 4.09 
6 CANCEL 35 0 0 14 0 0 86 5.57 4.34 

7 COLUMNS 10 0 0 40 0 20 0 40 - -  5.00 5.00 

8 QUANTITY 404 40 1 14 17 12 0 0 17 3.45 
8 SIMULATE 520 1 0 88 0 0 0 0 11 3.51 3.48 

• Excludes users who  did not use abbreviations. 
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