
RESEARCH CONTRIBUTIONS

Lloyd Fosdick
Guest Editor

Faster Methods for
Random Sampling

JEFFREY SCOTT VITTER

ABSTRACT: Several new methods are presented for
selecting n records at random without replacement from a
file containing N records. Each algorithm selects the records
for the sample in a sequential manner--in the same order
the records appear in the file. The algorithms are online in
that the records for the sample are selected iteratively with
no preprocessing. The algorithms require a constant amount
of space and are short and easy to implement. The main
result of this paper is the design and analysis of Algorithm D,
which does the sampling in O(n) time, on the average;
roughly n uniform random variates are generated, and
approximately n exponentiation operations (of the form a b,
for real numbers a and b) are performed during the
sampling. This solves an open problem in the literature.
CPU timings on a large mainframe computer indicate that
Algorithm D is significantly faster than the sampling
algorithms in use today.

1. INTRODUCTION
Many computer science and statistics applications
call for a sample of n records selected randomly with-
out replacement from a file containing N records
or for a random sample of n integers from the set
{1, 2, 3 NI. Both types of random sampling are
essentially equivalent; for convenience, in this paper
we refer to the former type of sampling, in which rec-
ords are selected. Some important uses of sampling in-
clude market surveys, quality control in manufactur-

Some of this research was done while the author was consulting for the IBM
Pale Alto Scientific Center, Support was also provided in part by NSF Research
Grant MCS-81-05324, by an IBM research contract, and by ONR and DARPA
under Contract N00014-83.K-0146 and ARPA Order No. 4786. An extended
abstract of this research appears in [10].

©1984ACMO001.0782/84/0700-0703 75¢

ing, and probabilistic algorithms. Interest in this subject
stems from work on a new external sorting method
called BucketSort that uses random sampling for pre-
processing [7].

One way to select the n records is to generate an
independent random integer k between I and N and to
select the kth record if it has not already been selected;
this process is repeated until n records have been se-
lected. (If n > N/2 , it is faster to select the N - n
records not in the sample.) This is an example of a
nonsequential algorithm because the records in the sam-
ple might not be selected in linear order. For example,
the 84th record in the file may be selected before the
16th record in the file is selected. The algorithm re-
quires the generation of O(n) uniform random variates,
and it runs in O(n) time if there is enough extra space
to check in constant time whether the kth record has
already been selected. The checking can be done in
O(N) space using a bit array or with O(n) pointers using
hashing techniques (e.g,, [2, 6]}. In either case, the
space required may be prohibitive.

Often, we want the n records in the sample to be in
the same order that they appear in the file so that they
can be accessed sequentially, for example, if they re-
side on disk or tape. In order to accomplish this using a
nonsequential algorithm, we must sort the records by
their indices after the sampling is done. This requires
O(n log n) time using a comparison-based sorting algo-
rithm like quicksort or heapsort; address-calculation
sorting can reduce the sorting time to O(n), on the aver-
age, but it requires space for O(n) pointers. Nonsequen-
tial algorithms thus take nonlinear time, or their space
requirements are very large and the algorithm is some-
what complicated.

July 1984 Volume 27 Number 7 Communications of the ACM 703

Research Contributions

More importantly, the n records cannot be output in
sequential order online: It takes O(n) time to output the
first element since the sorting can begin only after all n
records have been selected.

The alternative we take in this paper is to investigate
sequential random sampling algorithms, which select
the records in the same order that they appear in the
file. The sequential sampling algorithms in this paper
are ideally suited to online use since they iteratively
select the next record for the sample in an efficient
way. They also have the advantage of being extremely
short and simple to implement.

The measure of performance we use for the algo-
rithms is CPU time, not I /O time. This is reasonable for
records stored on random-access devices like RAM or
disk since all the algorithms take O(n) I /O time in this
case. It is reasonable for tape storage as well since many
tape drives have a fast-forward speed that can quickly
skip over unwanted records. In terms of sampling n
integers out of N, the I /O time is insignificant because
there is no file of records being read.

The main result of this paper is the design and analy-
sis of a fast new algorithm, called Algorithm D, which
does the sequential sampling in O(n) time, on the aver-
age. This yields the optimum running time up to a
constant factor, and it solves the open problem listed in
exercise 3.4.2-8 in [6]. Approximately n uniform ran-
dom variates are generated during the algorithm, and
roughly n exponentiation operations (of the form a b =

exp(b In a), for real numbers a and b) are performed.
The method is much faster than the previously fastest-
known sequential algorithm, and it is faster and simpler
than the nonsequential algorithms mentioned above.

In the next section, we discuss Algorithm S, which
up until now was the method of choice for sequential
random sampling. In Section 3, we state and analyze
three new methods (Algorithms A, B, and C); the main
result, Algorithm D, is presented in Section 4. The na-
ive implementation of Algorithm D requires the genera-
tion of approximately 2n uniform random variates and
the computation of roughly 2n exponentiation opera-
tions. One of the optimizations given in Section 5 re-
duces both counts from 2n to n. The analysis in Section
6 shows that the running time of Algorithm D is linear
in n. The performance of Algorithm S and the four new
methods is summarized in Table I.

Section 7 gives CPU timings for FORTRAN 77 imple-
mentations of Algorithms S, A, C, and D on a large
mainframe IBM 3081 computer system; the running
times of these four algorithms (in microseconds) are
approximately 16N (Algorithm S), 4N (Algorithm A),
8n 2 (Algorithm C), and 55n (Algorithm D). In Section 8,
we draw conclusions and discuss related work. The
Appendix gives the Pascal-like versions of the FOR-
TRAN programs used in the CPU timings. A summary
of this work appears in [10].

2. ALGORITHM S
In this section, the sequential random sampling method
introduced in [3, 4] is discussed. The algorithm sequen-

TABLE I: Performance of Algorithms

Algorithm
Average Average
Uniform
Random Running

Time Variates

S (N + 1)n O(N)
n + l

A n O(N)

B n O(n ~ log Iog(-~))

C n(n + 1) O(n 2)
2

D : n O(n)

tially processes the records of the file and determines
whether each record should be included in the sample.
When n records have been selected, the algorithm ter-
minates. If m records have already been selected from
among the first t records in the file, the (t + 1)st record
is selected with probability

n - m (2-1) 1 - t

In the implementation below, the values of n and N
decrease during the course of execution. All of the algo-
rithms in this paper follow the convention that n is the
number of records remaining to be selected and N is the
number of records that have not yet been processed. (This is
different from the implementations of Algorithm S in
[3, 4, 6] in which n and N remain constant, and auxil-
iary variables like m and t in (2-1) are used.) With this
convention, the probability of selecting the next record
for the sample is simply n/N. This can be proved di-
rectly by the following short but subtle argument: If at
any given time we must select n more records at ran-
dom frofn a pool of N remaining records, then the next
record should be chosen with probability n /N .

The algorithms in this paper are written in an Eng-
lish-like style used by the majority of papers on random
sampling in the literature. In addition, Pascal-like im-
plementations are given in the Appendix.

ALGORITHM S. This method sequentially selects n rec-
ords at random from a file containing N records,
where 0 _< n ~ N. The uniform random variates gener-
ated in Step $1 must be independent of one another.

S1. [Generate U.] Generate a random variate U that
is uniformly distributed between 0 and 1.

S2. [Test.] If NU > n, go to Step $4.

$3. [Select.] Select the next record in the file for the
sample, and set n := n - 1 and N := N - 1. If
n > 0, then return to Step $1; otherwise, the
sample is complete and the algorithm terminates.

S4. [Don't select.] Skip over the next record (do not
include it in the sample), set N := N - 1, and
return to Step $1. |

704 Communications of the ACM July 1984 Volume 27 Number 7

Research Contributions

Before the algorithm is run, each record in the file
has the same chance of being selected for the sample.
Furthermore, the algorithm never runs off the end of
the file before n records have been chosen: If at some
point in the algorithm we have n -- N, then each of the
remaining n recgrds in the file will be selected for the
sample with probability one. The average number of
uniform random variates generated by Algorithm S is
(N + 1) n / (n + 1), and the average running time is O(N).
Algorithm S is studied further in [6].

3. T H R E E N E W S E Q U E N T I A L A L G O R I T H M S
We define S(n, N) to be the random variable that counts
the number of records to skip over before selecting the
next record for the sample. The parameter n is the
number of records remaining to be selected, and N is
the total number of records left in the file. In other
words, the (S(n, N) + 1)st record is the next one se-
lected. Often we will abbreviate S(n, N) by S in which
case the parameters n and N will be implicit.

In this section, three new methods (Algorithms A, B,
and C) for sequential random sampling are presented
and analyzed. A fourth new method (Algorithm D),
which is the main result of this paper, is described and
analyzed in Sections 4 and 5. Each method decides
which record to sample next by generating S and by
skipping that many records. The general form of all
four algorithms is as follows:

Step 1. Generate a random variate S(n, N}.

Step 2. Skip over the next S(n, N) records in the file
and select the following one for the sample.
Set N : = N - S(n, N) - 1 and n := n - 1.
Return to Step 1 if n > 0.

The four methods differ from one another in how they
perform Step 1. Generating S involves generating one or
more random variates that are uniformly distributed
between 0 and 1. As in Algorithm S in the last section,
all uni form variates are assumed to be independen t of one
another.

The range of S(n, N) is the set of integers in the
interval 0 ___ s < N - n. The distribution function F(s) =
ProblS -< s}, for 0 _< s ___ N - n, can be expressed in two
ways:

F(s) = 1 (N - s - 1) n (N - n) +~-~
- Nn = 1 - N ~ . t • (3 - 1}

{We use the notation a b to denote the "falling power"
a(a - 1) . . . (a - b + 1) = a!/{a - b)!.) We have F(s) = 0
for s < 0 and F(s) = 1 for s _> N - n. The two formulas
in (3-1} follow by induction from the relation

1 - F(s) = ProblS > s}

= P r o b l S > s - 1 1 - N _ s

= (l - F (s - 1)) 1 N - " (3-2)

n/N cg(s)

• o o o e • o f(s)
@

* o o o * * , h(s)

O

o

o • •

o . . .

° : i i i 8 8 , . , I • * 1

N/n N - n N

FIGURE 1. The probability funcUon f(s) = ProbIS = s} is graphed
as a function of s. The mean and standard deviation of S are both
approximately N/n. The quantities cgls) and his) that are used in
Algorithm D are also graphed for the case in which the random
variable X is integer-valued.

The expression n / (N - s) is the probability that the
(s + 1)st record is selected for the sample, given that the
first s records are not selected. The probability function
/(s) = Prob{S = s}, for 0 <_ s <_ N - n, is equal to F(s) -
F(s - 1). Substituting (3-1), we get the following two
expressions for/(s), 0 _< s _< N - n:

n (N - s - 1) a=l n (N - n) ~ (3-3)
f(s) = ~ (N - 1) n=l = N (N - 1) ~

When s < 0 or s > N - n, we define f{s) = O. An
alternate derivation of (3-3} follows from the combina-
torial identity

The expected value ~(S) is equal to

N - n
3Y(S) = • sf(s} - n + 1 ' (3-4)

and the variance var(S) is equal to

var(S) = Y~ sZf(s) - _~(S) 2 = {N + 1)(N - n)n
(n + 2}(n + 1} 2

(3-5}

Both the expected value and the standard deviation of S
are = N / n . The probability function f(s) is graphed in
Figure 1.

3.1 A l g o r i t h m A
This is, by far, the simplest of the four methods. It is
based on the observation that f(s) is equal to the differ-
ence F(s) - F(s - 1). We can generate S by setting it
equal to the min imum value s such that U -< F(s),
where U is uniformly distributed on the unit interval.

July 1984 Volume 27 Number 7 Communications o[the ACM 7115

Research Contributions

By (3-1), we have

U _< 1 (N - n) ~2"
N~+I ,

(N - n) ~
_ < I - U .

N+~2

The random variable V = 1 - U is uniformly distrib-
uted as U is, so we can generate V directly, as in the
following algorithm.

ALGORITHM A. This method sequentially selects n
records at random from a file containing N records,
where 0 -< n ~ N. The uniform random variates gener-
ated in Step A1 must be independent of one another.

A1. [Generate V.] Generate a random variate V that
is uniformly distributed between 0 and 1.

A~.. [Find minimum s.] Search sequentially for the
minimum value s _ 0 so that (N - n) ~+~ <_ N~+~V "
Set S := s.

A3. [Select the (S + 1)st record.] Skip over the next
S(n, N) records in the file and select the follow-
ing one for the sample. Set N := N - S(n, N) - 1
and n := n - 1. Return to Step A1 if n > 0. |

Steps A1-A3 are iterated n times, once for each se-
lected record in the sample. In order to generate S, the
inner loop implicit in Step A2 is executed O(S + 1)
times; each loop takes constant time. The total time
spent executing Step A2 is O(Y,I~/~,(S + 1)) = O(N). The
total time is thus O(N).

Algorithms S and A both require O(N) time, but the
number n of uniform variates generated by Algorithm
A is much less than (N + 1) n / (n + 1), which is the
average number of variates generated by Algorithm S.
Depending on the implemetation, Algorithm A can be
four to eight times faster.

Algorithm A is similar to the one proposed in [3],
except that in the latter method, the minimum s > 0
satisfying U <_ F(s) is found by recomputing F(s) from
scratch for each successive value of s. The resulting
algorithm takes O(nN) time. As the authors in [3] noted,
that algorithm was definitely slower than their imple-
mentation of Algorithm S.

3.2 Algorithm B (Newton's Method}
In Step A2 of Algorithm A, the minimum value s
satisfying U <_ F(s) is found by means of a sequential
search. Another way to do that is to find the
"approximate root" s of the equation

F(s) ~ U, (3-6)

by using a variant of Newton's interpolation method.
This resultant method is called Algorithm B.

Since F(s) does not have a continuous derivative, we
use in its place the dif ference func t ion

AF(s) = r(s + 1) - r(s) = f(s + 1).

Newton's method can be shown to converge for this
situation. The method requires O(log log S) iterations to

find the approximate root s of (3-6) when s is large.
Each iteration involves the computation of F(s) and
AF(s), for some value s. The evaluation of F(s) requires
O(n) time, and AF(s) = f(s + 1) can be computed from
F(s) in constant time using (3-1) and (3-3). Thus, the
time per selected record is O(n log log S) for large S. The
total sampling time is bounded by O(Y.I~_I~_, t log log S).
Using the constraint that Y,l~t~, S _< N - n, it is easy to
show that ~l_~t_~, t log log S is maximized when each S
is approximately N / n . Hence, the total running time for
Algorithm B is O(n2(l + log l og (N/n))) in the worst case.
It can be shown that the average running time is not
better than the worst-case time by more than a
constant factor.

We can obtain a higher order convergence in the
search for the minimum s by replacing Newton's
method with an interpolation scheme that uses higher
order differences AkF(s) = Ak-1F(s + 1) -- Ak-IF(s). Each
difference AkF(s), for k > 1, can be computed in
constant time from Ak-IF(s) using the formula

AkF(s) = -- 7_ S -- Ak-IF(s)" (3-7)

Algorithm B does not seem to be of practical interest,
especially when compared to Algorithms A and D, so
further details are omitted.

3.3 Algorithm C (Independence Method)
Let U1, U2 U, be independent and uniformly dis-
tributed random variables on the unit interval. The dis-
tribution function F(s) = Prob[S _< s} can be expressed
algebraically as

F(s) = 1 - I I N - s - k

-- 1 - I1 (1 - Fk(S + 1)), (3-8)
l ~ k < _ n

where we let Fk(X) = Prob{(N - k + !)Uk <-- X} = x / (N --
k + 1) be the distribution function of the random vari-
able (N - k + 1)Uk. By independence, we have

II (1 - Fk(s + 1))
1-.k-<n

= [I Prob{(N - k + 1)Uk > s + 1}
l~_k<_n

. oblmin + > s + 11
J

Substituting this back into (3-8), we get

= 1 - Problm.in { (N - k + 1)Uk} > S + 1] F(s)
I]<_k<~_ _ 1 !

= Problmin_ _, { (N - k + 1)Uk} _ < s + 11

= Prob{[min { (N - k + 1,Uk}] < S}. (3-9,

(The notation t x l , which is read "floor of x," denotes
the largest integer _< x.) This shows that S has the same
distribution as the floor of the minimum of the n inde-
pendent random variables NU1, (N - 1)U2 (N - n
+ 1)U,. The following algorithm makes use of this fact
to generate S.

706 Communications of the ACM July 1984 Volume 27 Number 7

Research Contributions

ALGORITHM C (Independence Method). This method se-
quentially selects n records at random from a file con-
taining N records where 0 _< n _< N. The uniform ran-
dom variates generated in Step C1 must be independent
of one another.

C1. [Generate Uk, 1 -< k -< n.] Generate n independ-
ent random variates U1, U2 U,, each uni-
formly distr ibuted between 0 and 1.

C2. [Find minimum.] Set S := tminlsL,{(N - k +
1)Uk}J. IfS = N - n + 1, set S to an arbi t rary
value between 0 and N - n. (We can ignore this
test if the random number generator used in
Step C1 can only produce numbers less than 1.)

C3. [Select the (S + 1)st record.] Skip over the next
S(n, NO records in the file and select the following
one for the sample, Set N := N - S(n, N) - 1 and
n := n - 1. Return to Step C1 if n > 0. I

Steps C1-C3 are i terated n times, once for each se-
lected record. The selection of the j th record in the
sample, where 1 _< j _< n, requires the generation of
n - j + 1 independent uniform random variates and
takes O(n - j + 1) time. Hence, Algorithm C requires
n + (n - 1) + . . . + 1 = n(n + 1)/2 uniform variates,
and it runs in O(n 2) time.

4. ALGORITHM D (REJECTION METHOD)
It is interesting to note that if the term (N - k + 1)Uk in
(3-9) is replaced by NUk, the resulting expression would
be the distribution function for the min imum of n real
numbers in the range from 0 to N. That distribution is
the continuous counterpart of S, and it approximates S
well. One of the key ideas in this section is that we can
generate S in constant t ime by generating its continu-
ous counterpart and then "correcting" it so that it has
exactly the desired distr ibution function F(s).

Algorithm D has the general form described at the
beginning of Section 3. The random variable S is gener-
ated by an application of von Neumann 's rejection-ac-
ceptance method to the discrete case. We use a random
variable X that is easy to generate and that has a distri-
bution which approximates F(s) well. For simplicity, we
assume that X is either a continuous or an integer-
valued random variable. Let g(x) denote the density
function of X if X is continuous or else the probabili ty
function of X if X is integer-valued. We choose a con-
stant c >_ 1 so that

f(ixJ} <_ cg(x), (4-1)

for all x in the domain of g(x).
In order to generate S, we generate X and a random

variate U that is uniformly distr ibuted on the unit in-
terval. If U > f{LXJ)/cg(X) (which occurs with low prob-
ability), we reject LXI and start all over by generating a
new X and U. When the condition U <_ f(tXJ)/cg(X) is
finally satisfied, then we accept i X / a n d make the as-
signment S := LXJ. A modification of the following
lemma is proven in [6].

LEMMA 1
The random variate S generated by the above procedure has
distribution (3-1}.

The comparison U > f(LXJ)/cg(X) that is made in or-
der to decide whether LXJ should be rejected involves
the computat ion of f(iX3), which by (3.3) requires
O(min{n, LXJ + 1}) time. Since the probabil i ty of rejec-
tion is very small, we can avoid this expense most of
the time by substituting for f(s) a more quickly com-
puted function h(s) such that

h(s) <_ f(s). (4-2)

With high probability, we will have U <_ h(LXJ)/cg(X).
When this occurs, it follows that U <_ f{tXJ}/cg(X}, so we
can accept LXJ and set S := LXJ. The value of f(LXJ)
must be computed only when U > h(LXJ)/cg(X}, which
happens rarely. This technique is sometimes called a
squeeze method since we have h(ixJ) ~ f(LxJ) ~ cg{x}.
Typical values of the functions f(s), cg(s), and h(s) are
graphed in Figure 1 for the case in which X is an inte-
ger-valued random variable.

When n is large with respect to N, the rejection tech-
nique may be slower than the previous algorithms in
this section due to the overhead involved in generating
X, h(tXJ), and g(X}. For large n, Algorithm A is the
fastest sampling method. The following algorithm uti-
lizes a constant a that specifies where the tradeoff is: If
n < aN, the rejection technique is used to do the sam-
pling; otherwise, if n _> aN, the sampling is done by
Algorithm A. The value of a depends on the part icular
computer implementation. Typical values of a can be
expected to be in the range 0.05-0.15. For the imple-
mentat ion described in Section, 7, we have a ~ 0.07.

ALGORITHM D (Rejection Method). This method se-
quential ly selects n records at random from a file con-
taining N records, where 0 ~ n _< N. At any given point
in the algorithm, the variable n stores the number of
records that remain to be selected for the sample, and
N stores the number of (unprocessed) records left in the
file. The uniform random variates generated in Step D2
must be independent of one ano ther The functions g(x}
and h(s) and the constant c >_ 1 depend on the current
values of n and N, and they must satisfy (4-1) and (4-2).
The constant a is in the range 0 ___ a _< 1.

D1. [Is n >_ aN?] If n _> aN, use Algorithm A to do the
sampling and then terminate the algorithm.
(Otherwise, we use the rejection technique of
Steps D2-D5.)

D2. [Generate U and X.] Generate a random variate
U that is uniformly distr ibuted between 0 and 1
and a random variate X that has density function
or probabili ty function g(x).

D3. [Accept?] If U <_ h(LXl)/cg(X), then set S := LXJ
and go to Step D5.

D4. [Accept? 1 If U <_ f(LXl)/cg(X), then set S := LXJ.
Otherwise. return to Step D2.

D5. [Select the (S + 1)st record.] Skip over the next
S(n, N) records in the file and select the follow-
ing one for the sample. Set N := N - S(n, N) - 1
and n := n - 1. Return to Step D2 if n > 0. I

July 1984 Volume 27 Number 7 Communications of the ACM ?07

Research Contributions

Choosing the Parameters
Two good ways (namely, (4-3) and (4-5)) for choosing
the parameters X, c, g(x), and h(s) are presented below.
Discovering these two ways is the hard part of this
section; once they are determined, it is easy to prove
Lemmas 2 and 3, which show that (4-3) and (4-5) satisfy
conditions (4-1) and (4-2).

The first way works better when n 2 / N is small, and
the second way is better when n 2 / N is large. An easy
rule for deciding which to use is as follows: If n 2 / N ~_ fl,
then we use Xl, cl, gl(x), and hi(s); else if n2 /N > fl,
then X2, c2, g2(s), and h2(s) are used. The value of the
constant fl is implementat ion-dependent . We show in
Section 5 that in order to minimize the average number
of uniform variates generated by Algorithm D, we
should set fl ~ 1.The running times of the FORTRAN
implementat ions discussed in Section 7 are minimized
by fl ~ 50.

Our first choice of the parameters is

(n[x\"-'
~ 1 - ~) , i f 0 - < x ~ N ;

gl(x) !
1. 0, otherwise;

N
c~= N - n + 1 ' (4-3)

(, s ;1
1 , i f O < s < N - n ;

hi(s) = N - n + l - -

I . 0, otherwise.

The random variable X~ with density gl(x) has the beta
distribution scaled to the interval [0, N] and with param-
eters a = 1 and b = n. It is the continuous counterpart
of S, as ment ioned in the beginning of this section: The
value of X1 can be thought of as the smallest of n real
numbers chosen independent ly and uniformly from the
interval [0, N].

We can generate X1 very quickly with only one uni-
form or exponential random variate. Let Z1, Z2 Z,
denote n independent and uniformly chosen real num-
bers from the interval [0, N]. We define Gl(x) to be the
distribution function of X1. By independence, we have

G~(x) = Prob{X, _< x}

= 1 - Prob{Xl > x}

= 1 - H Prob{Zk>X}
l~_k<_n

= 1 - (,-;y
It is well known that we can generate a random variate
X1 with distr ibution Gl(x) by setting

X1 := G~q(U) or X1 := G71(e-r),

where U is uniformly distr ibuted on the unit interval
and Y is exponential ly distributed. By algebraic manip-
ulation, we get

G-fl(y) = N(1 - (1 - y)I/"}.
Since 1 - U is uniformly distr ibuted when U is, we can
generate X1 by setting

X I : = N (1 - U ~/") or X~ : = N (1 - e - Y / ") . (4-4)

The following lemma shows that the definitions in
(4-3) satisfy requirements (4-1) and (4-2).

LEMMA 2.
The choices of gl(x), cl, and h~(s) in (4-3) satisfy the
relation

hi(s) <-f(s} <- clgl(s + 1).

Note that since gl(x) is a nonincreasing function, this
immediate ly implies {4-1}.

PROOF
The proof is straightforward. First we prove the second
inequality. We have

n (N - s - 1) "-1
f(s) - N (N - 1) 'az2-

n (N - s - 1) v-=!
- N - n + 1 N a=t

- N - n + l n(
- N - n + 1 ffl 1 - - - = clg,(s + 1).

The "~" term in the above derivat ion follows because
N - s - l - k N - s - 1

-< , for 0_< k_< n - 2. The first
N - k N

inequali ty can be proved in the same way:

n N s - n + l
h~(s) = - ~ • - - n + T

n (N - s - 1 ~
< -- = f(s).
- N (N - 1) "-~

The "<__" term follows since

N - s - n + l < N N S - l - k
N - n + l - Z T - - ~ . , f o r 0 _ < k _ < n - 2 . I

The second choice for the parameters is

n-l(1 n t' g 2 (s) - ~ 1 ~ - - , s >_ 0;

n N - 1
C 2 = - - - - ;

n - - 1 N

{ (1
h2(s) = N ~,1 --

0, otherwise.

The random variable X2 with probabil i ty function g2(s)
has the geometric distribution. Its range of values is the
set of nonnegative integers.

We can generate X2 quickly with a single uniform or
exponential random variate by setting

(4-5)

i f O < _ s < _ N - n ;

?08 Communications of the ACM July 1984 Volume 27 Number 7

Research Contributions

X2:=l(InU)/In(l N- I)]
or (4-6)

×.

where U is uniformly distributed on the unit interval
and Y is exponentially distributed. This is easy to
prove: Let p denote the fraction (n - 1)/(N - 1). We
have X2 = s if and only if s ~ (In U)/ln(1 - p) < s + 1,
which is equivalent to the condition (1 - p)5 _> U > (1 -
p)~+l, and this occurs with probability ga(s) = p(1 - p)L

The following lemma shows that (4-5) satisfies re-
quirements (4-1) and (4-2).

LEMMA 3.
The choices g2(s), c2, and h2(s) in (4-5) satisfy the relation

h2(s) -- f(s) ~ c2g2(s)

PROOF
This proof is along the lines of the proof of Lemma 2.
To prove the first inequality, we note that

n (N - n) ~- n (N - n y
f(s} - ~ (N 1} ~- <- -N \ N - 1 /

n ~ N N ~ FJ - = c . x . (s) .

The first inequality can be proved in the same way:

n (N - s - n + 1) s n (N - n) ~
= - < - - - f (s) . | h.(s} ~ N ~ s - N (N - 1) -~

5. OPTIMIZING ALGORITHM D
In this section, four modifications of the naive imple-
mentation of Algorithm D are given that can improve
the running time significantly. In particular, the last
two modifications cut the number of uniform random
variates generated and the number of exponentiation
operations performed by half, which makes the algo-
rithm run twice as fast, Two detailed implementations
utilizing these modifications are given in the Appendix.

5.1 W h e n to Tes t n _> a N
The values of n and N decrease each time S is gener-
ated in Step D5. If initially we have n / N ~ a, then
during the course of execution, the value of n / N will
probably be sometimes < a and sometimes _> a. When
that is the case, it might be advantageous to modify
Algorithm D and do the "Is n >_ aNT ' test each of the n
times S must be generated. If n < aN, then we generate
S by doing Steps D2-D4; otherwise, steps A1 and A2 are
executed. This can be implemented by changing the
"go to" in Step D5 so that it returns to Step D1 instead
of to D2, and by the following substitution for Step DI:

D1. [Is n >_ aN?] If n >- aN, then generate S by exe-
cuting Steps A1 and A2 of Algorithm A, and go
to Step D5. (Otherwise, S will be generated by
Steps D2-D4.)

When n / N ~ c~, the time required to do the n - 1 extra
"Is n -> aN?" tests will be compensated for by the de-
creased time for generating S; if n / N ~e a, this modifica-
tion will cause a slight increase in the running time
(approximately 1-2 percent). An important advantage
of this modification when X~ is used for X in the rejec-
tion technique is to guard against "worst case" behav-
ior, which happens when the value of N decreases
drastically and becomes roughly equal to n as a result
of a very large value of S being generated; in such cases,
the running time of the remainder of the algorithm will
be quite large, on the average unless the modification is
used.

The implementations of Algorithm D in the Appen-
dix use a slightly different modification, in which a "Is
n _> aN?" test is done at the start of each loop until the
test is true, after which Algorithm A is called to finish
the sampling. The resulting program is simpler than the
first modification, and it still protects against worst-case
behavior.

5.2 Th e Spec ia l Case n -" 1
The second modification speeds up the generation of S
when only one record remains to be selected. The ran-
dom varible S(1, N) is uniformly distributed among the
integers 0 ~ s-< N - 1; thus when n = 1 we can
generate S directly by setting S := LNUJ, where U is
uniformly distributed on the unit interval. (The case
U -- 1 happens with zero probability so when we have
U = 1, we can assign S arbitrarily.) This modification
can be applied to all the sampling algorithms discussed
in this paper.

5.3 R e d u c i n g the Number of Uniform R a n d o m
V a r i a t e s G e n e r a t e d

The third modification allows us to reduce the number
of uniform random variates used in Algorithm D by
half. Each generation of X as described in (4-4) and (4-6)
requires the generation of an independent uniform ran-
dom variate, which we denote by V. (In the case in
which an exponential variate is used to generate X, we
assume that the exponential variate is generated by
first generating a uniform variate, which is typically
the case.) Except for the first time X is generated, the
variate V (and hence X) can be computed in an inde-
pendent way using the values of U and X from the
previous loop, as follows: During Steps D3 and possibly
D4 of the previous inner loop, it was determined that
either U _< y~, yl < U _< y2, or y2 < U, where y~ =
h(LXJ)/cg(X) and y2 = f(LXJ)/cg(X). We compute V for
the next loop by setting

t U , if U ~ yl; yl

U yl , if yl < U _< y2; (5-1) V := y2 yl

U y2 if y2 "< U.
1 y2

The following lemma can be proven using the defini-
tions of independence and of V:

July 1984 Volume 27 Number 7 Communications of the ACM ?00

Research Contributions

LEMMA 4.
The value V computed via (5-1) is a uniform random variate
that is independent of all previous values of X and of
whether or not each X was accepted.

5.4 Reducing the Number of Exponentiation
Operations

An exponentiation operation is the computation of the
form a b = exp(b In a), for real numbers a and b. It can
be done in constant time using the library functions
EXP and LOG. For simplicity, each computation of exp
or In is regarded as "half" an exponentiation operation.

First, the case in which X1 is used for X is considered.
By the last modification, only one uniform random
variate must be generated during each loop, but each
loop still requires two exponentiation operations: one
to compute Xa from V using (4-4) and the other to
compute

h a (L X l J) _ N - n + l (N - n - I X a] + l N ;)n-a
clgl(X1) N -I~- n 7-1 N - ~ "

We can cut down the number of exponentiations to
roughly one per loop in the following way: Instead of
doing the test U <- hl(tXad)/cagl(X~), we use the equiva-
lent test

(N)1/{.-1)
N U

- n + l
N - n - [XaJ + 1 N

< • (5-2)
- N - n + l N - X a

If the test is true, which is almost always the case,
we set V' to the quotient of the LHS divided by the
RHS; the resulting V' has the same distribution as the
(n - 1)st root of a uniform random variate. Since n
decreases by 1 before the start of the next loop, we can
generate the next value of X1 without doing an expo-
nentiation by setting

Xa := N(1 - V') (5-3)

(cf., (4-4)). Thus, in almost all cases, only one exponen-
tiation operation is required per loop. Another impor-
tant advantage of using the test (5-2) instead of the test
U <- ha(tX1l)/caga(XO is that the possibility of floating
point underflow is eliminated.

When X2 is used for X, we have a similar situation,
though not quite as favorable. The computation of X2
from V requires two In operations (which counts as one
exponentiation operation, as explained above). Another
exponentiation operation in each loop is required to
compute

h2(X2) _ (.N - n - X2 + l N - ln)X="
c2g2(X2) X X2 N

The number of exponentiations can be cut down to
about 1.5 per loop, as follows: Instead of doing the test
U ~ h2(X2)/c2g2(X2), w e u s e the equivalent test

l n U ~ X 2 x In 1 / ~ -

If the test is true, which is almost always the case, we
set V' to the difference of the LHS minus the RHS; the
resulting V' has the same distribution as the natural
logarithm of a uniform random variate. We can gener-
ate the next value of X2 by setting

X2 := V' In 1 ~ (5-5)

(cf., (4-6)). The common term ln(1 - (n - 1)/(N - 1)) in
(5-4) and (5-5) need only be computed once per loop, so
the total number of In operations is roughly three per
loop (which counts as 1.5 exponentiation operations per
loop).

The modification discussed in this section is an effi-
cient alternative to using (5-1) for computing V, for the
case U ~ ya. When we have U > ya, which happens
with very low probability, it is quicker to generate V by
calling a random number generator than it is to use a
technique similar to (5-1).

6. ANALYSIS OF ALGORITHM D
In this section, we prove that the average number of
uniform random variates generated by Algorithm D and
the average running time are both O(n). We also discuss
how the correct choice of Xa or X2 during each iteration
of the algorithm can further improve performance.

6.1 Average Number V (n , IV) of Uniform Random
Variates

The average number of uniform random variates gener-
ated during Algorithm D is denoted by V(n, N}. We use
V'(n, N} to denote the average number of uniform var-
iates for the modified version of the algorithm in which
each variate X is computed from the previous values of
U and X. Theorems 1 and 2 show that V(n, N} and V'(n,
N) are approximately equal to 2n and n, respectively.

THEOREM 1
The average number V(n, N} of uniform random variates
used by the unmodified Algorithm D is bounded by

2nN , i f n < a N ;
V(n,N)_< N - n + 1

n, if n ~_ aN.

(6-1)

When n < aN, we have V(n, N) ~ 2n(1 + n/N}. The
basic idea of the proof is that U and X must be gener-
ated roughly 1 + n / N times, on the average, in order to
generate each of the n values of S. Thus, approximately
2n(1 + n/N} variates are needed for the sampling. The
difficult part of the following proof is accounting for the
fact that the values of n and N change during the
course of execution.

PROOF
It is assumed that Xa, ga(x), ca, and ha(s), which are
defined in (4-3), are used for X, g(x), c, and h(s) in
Algorithm D. If n _> aN, then Algorithm A is used, and
exactly n uniform random variates are generated.

110 Communications of the ACM July 1984 Volume 27 Number 7

Research Contributions

For the n < aN case, (6-1) is derived by induction
on n. In order to generate S, the average number of
times Steps D2-D4 are executed is 1/(1 - r), where r is
the probabili ty of rejection. The probabili ty of rejection
is r = f0 N g(t)(1 - f(t)/(cg(t))) dt = 1 - 1/c. By substitu-
tion, each generation of S requires an average of 1/(1 -
r) = c iterations, which corresponds to 2c uniform ran-
dom variates. If n = 1, we have c = 1, so LXI is accepted
immediate ly and we have V(1, N) = 2. Now let us
assume that (6-1) is true for samples of size n - 1; we
will show that it remains true for n sampled records.
By (6-1) and (3-3), we have

2N
V(n, IV) <_ + Y, f(s)V(n - 1, N - s - 1)

N - n + 1 O<s~N-n

2N
- N - n + l

+ y, n (N - s - 1) a = 2 2 (n - 1) (N - s - 1)
0-~s--N-. N (N - 1) "-1 N - s - n + 1

2N 2n(n - 1)

N - n + 1 + N ~

Y~ (N - s - 1) (N - s - 1) "-2
O~-s~-N-n

2N 2n(n - 1)
- - .] _ - -

N - n + 1 N"

~N (N-s) " -1- X (N - s - 1) "-2)
0 _ < S - - n 0 ~ 5 < _ N - n

2N 2 n (n - 1)
- + N-" N - n + l

_ N "-~) (N + 1) u (n - 1) ! - - - + (n - 2) !
n n - 1

2nN
- N - n "

This completes the proof of Theorem 1. |

THEOREM 2
The average number V'(n, N} of uniform random variates
used by Algorithm D with the second and third modifica-
tions described in the previous section is bounded by

f nN if n < aN;
V'(n, N) _< N - n + 1 ' (6-2)

n, if n >_ aN.

PROOF
We need only consider the case n < c~N. By the last
modification, the variate X is generated using a uniform
random variate V computed from the previous values of
U and X. Thus, the first i teration requires the genera-
tion of the two uniform random variates U and V, but
each successive loop requires only the generation of U.
By the second modification, the last i terat ion does not
require any random variates to be generated. Thus, the
number of uniform random variates that must be gen-
erated is exactly 1/2 V(n, N). The theorem follows from
(6-1). B

In our derivation of (6-1) and (6-2), we assumed that
X1 was used for X throughout Algori thm D. We can do
better if we sometimes use X2 for X. We showed above
that we need an average of c i terations to generate each
successive S. For Xl, we have cl = N / (N - n + 1)
1 + n/N; for X2, we have c2 = (n/(n - 1))((N - 1)/N)
1 + 1/n. Thus, we could use X1 when n2/N <_ fl, and
we could use X2 when n2/N > fl, where/8 = 1.

The following intuit ive argument indicates that this
might reduce V'(n, N) to

V'(n, N)

I n (1 + N), i fn2/N<_l, n<aN;

n 1 + , i f n 2 / N > l , n < a N ; (6-3)

I n , if n >_ aN.

The informal justification of (6-3) is based on the obser-
vation that the ratio n / N usually does not change much
during the execution of Algorithm D. At the expense of
mathematical rigor, we will make the simplifying as-
sumption that n / N remains constant during execution.
The value of n2/N = n(n/N) decreases l inearly to 0 as n
decreases to 0. If init ially we have n2/N ~ 1 and n <
aN, then n2/N will always be _< 1 during execution, so
X1 will be used throughout Algorithm D; thus, V'(n, N)

n(1 + n/N), as in Theorem 2. If instead we have n2/N
> 1 and n < aN initially, then X2 will be used for X the
first n - N / n t imes S is generated, after which we will
have n2/N ~- 1. The random variable X1 will be used
for X the last N / n times S is generated. Hence, the total
number of uniform random variates is approximately

N N
= n - - - + H . - H N / , , + - - + 1

n n

n 2
= n + l + l n - - .

N

(The symbol H, denotes the nth harmonic number 1 +
1/2 + . . - + 1/n.) This completes the argument.

6.2 A v e r a g e E x e c u t i o n T i m e T (n , IV)

T(n, N) is used to represent the average total running
time of Algorithm D. As shown in Table II, we can

TABLE I1: Times per Step for Algorithm D.

Step Time per Step

D1 d~
D2 d2
D3 da
D4 d4 • min{n, LXJ + 1 }
D5 ds

July 1984 Volume 27 Number 7 Communications of the ACM 711

Research Contributions

bound the time it takes to execute each step of Algo-
ri thm D exactly once by the quantities d~, d2, d3,
d4.min{n, [XJ + 1}, and ds, where each di is a positive
real-valued constant.

If initially we have n / N > a, then Algorithm A is
used to do the sampling, and the average running time
T(n, N) can be bounded closely by d~ + d'N + d" n, for
some constants d" and G'. The following theorem
shows that T(n, N) is at most l inear in n.

THEOREM 3.
The average running time T(n, N) of Algorithm D is
bounded by

T(n, N)

nN (d2 + d3 + 3d4) + dsn, d l + N _ n + 1

<- if n < aN; (6-4)

d~ + d'N + din, if n > aN.

PROOF
All that is needed is the n < aN case of (6-4), in which
the rejection technique is used. We assume that X~,
gl(x), ci, and hi(s) are used in place of X, g(x), c, and h(s)
throughout Algorithm D. Steps D2 and D3 are each
executed c times, on the average, when S is generated.
The proof of Theorem 1 shows that the total contribu-
tion to T(n, N) from Steps D1, D2, D3, and D5 is
bounded by

nN
dl + (d2 + d3) + dsn.

N - n + 1

The tricky part in this proof is to consider the contri-
bution to T(n, N) from Step D4. The t ime for each exe-
cution of Step D4 is bounded by d4 .rain{n, I.X1J + 1}
d4(I.X~J + 1). Step D3 is executed an average of C1 t imes
per generation of S. The probabili ty that U > hfftX])/
Clgl(X) in Step D3 (which is the probabil i ty that Step D4
is executed next) is 1 - h~(I.XJ)/clg~(X). Hence, the t ime
spent executing Step D4 in order to generate S is
bounded by

I~N (cgl(x)/hl{x) ~ dx Cl 3o d4(x + 1}gl(x) 1 -

fo jo = cld4 (x + 1)gl(x) dx - d4 (x + 1)h~(x) dx.

The first integral is

cld4(..~(Xl) + 1) = Cld4
N + n + l

n + l

The second integral equals

d 4 N + 2
c~ n + l

The difference of the two integrals is bounded by

3d4Q

The proof of Theorem 1 shows that the total contribu-
tion of Step D4 to T(n, N) is at most

nN
3nd4cl : 3d4

N - n + l "

This completes the proof of Theorem 3. |

We proved the time bound (6-4) using X1 for X
throughout the algorithm. We can do better if we in-
stead use X1 for X when n2/N <_ fl and X2 for X when
n2/N > ft. We showed in Section 6.1 that the value
fl ~ 1 minimizes the average number of uniform var-
iates generated. The value of fl that optimizes the aver-
age running time of Algorithm D depends on the com-
puter implementat ion. For the FORTRAN implementa-
tion described in Section 7, we have fl -~ 50.

The constants di, for 2 < i < 5, have different values
when X2 is used for X than when X~ is used. In order to
get an intuit ive idea of how much faster Algori thm D is
when we use X~ and X2, let us assume that the values of
the constants di are the same for X2 as they are for X1. If
we bound the time for Step D4 by d4n rather than by
d4(LXlJ + 1) as we did in the proof of Theorem 3, we
can show that when n2/N < fl the t ime required to
generate S using X1 for X is at most

N (d 2 + d a + 2 d 4 n _ ~) + d s . (6-5)
N - n + l

Similarly, we can prove that the t ime required to gen-
erate S when n 2/N >/3 using X2 for X is bounded by
roughly

n - 1 N + ds. (6-6)

(The proof that Step D4 takes ~ 6d4(N - 1)/(n(n - 1))
t ime to generate each S requires intr icate approxima-
tions.) The bounds (6-5) and (6-6) are equal when n2/N
~ fl, for some constant 1 _< fl _< v'3. For simplicity, let us
assume that fl ~ 1 (which means that d4 << d2 + da +
ds). By an informal argument similar to the one at the
end of the last section, we can show that the running
time of Algorithm D is reduced to

d l + n 1 + ~ 2 + d a + d , ~ +dsn,

T(n, N)

if n2/N <_ fl, n < aN;

d l + n(1 + 1 +ln--(nn2/N!)(d2+da)+ dsn

(+d4 + 1 + 6 l n N + N ,

if na/N > fl, n K aN;

d~ + d'N+d'.'n, if n>--aN.

(6-7)

7. E M P I R I C A L C O M P A R I S O N S

Algorithms S, A, C, and D have been implemented in
FORTRAN 77 on an IBM 3081 mainframe computer in

712 Communications of the ACM July 1984 Volume 27 Number 7

Research Contributions

TABLE II1: Average CPU Times (IBM 3081)

Average Execution Time
Algorithm (microseconds)

S =17N
A =4N
C =8n 2
D =55n

order to get a good idea of the limit of their perform-
ance. The FORTRAN implementations are direct trans-
lations of the Pascal-like versions given in the Appen-
dix. The average CPU times are listed in Table III.

For example, for the case n = 103, N = 108, the CPU
times were 0.5 hours for Algorithm S, 6.3 minutes for
Algorithm A, 8.3 seconds for Algorithm C, and 0.052
seconds for Algorithm D. The implementation of Algo-
rithm D that uses X1 for X is usually faster than the
version that uses X2 for X, since the last modification in
Section 5 causes the number of exponentiation opera-
tions to be reduced to roughly n when X~ is used, but to
only about 1.5n when X2 is used. When X~ is used for X,
the modifications discussed in Sectic~n 5 cut the CPU
time for Algorithm D to roughly half of what it would
be otherwise.

These timings give a good lower bound on how fast
these algorithms run in prdctice and show the relative
speeds of the algorithms. On a smaller computer, the
running times can be expected to be much longer.

8. CONCLUSIONS AND FUTURE WORK
We have presented several new algorithms for sequen-
tial random sampling of n records from a file containing
N records. Each algorithm does the sampling with a
small constant amount of space. Their performance is
summarized in Table I, and empirical timings are
shown in Table III. Pascal-like implementations of sev-
eral of the algorithms are given in the Appendix.

The main result of this paper is the design and analy-
sis of Algorithm D, which runs in O(n) time, on the
average; it requires the generation of approximately n
uniform random variates and the computation of
roughly n exponentiation operations. The inner loop of
Algorithm D that generates S gives an optimum aver-
age-time solution to the open problem listed in Exercise
3.4.2-8 of [6]. Algorithm D is very efficient and simple
to implement, so it is ideally suited for computer imple-
mentation.

There are a couple other interesting methods that
have been developed independently. The online se-
quential algorithms in [5] use a complicated version of
the rejection-acceptance method, which does not run
in O(n) time. Preliminary analysis indicates that the
algorithms run in O(n + N/n) time; they are linear in n
only when n is not too small, but not too large. For
small or large n, Algorithm D should be much faster.

J. L. Bentley (personal communication, 1983) has pro-
posed a clever two-pass method that is not online, but
does run in O(n) time, on the average. In the first pass,

a random sample of integers is generated by truncating
each element in a random sample of cn uniform real
numbers in the range [0, N + 1), for some constant c >
1; the real numbers can be generated sequentially by
the algorithm in [1]. If the resulting sample of truncated
real numbers contains m ~ n distinct integers, then
Algorithm S (or better yet, Algorithm A) is applied to
the sample of size m to produce the final sample of size
n; if m < n, then the first pass is repeated. The parame-
ter c > 1 is chosen to be as small as possible, but large
enough to make it very unlikely that the first pass must
be repeated; the optimum value of c can be determined
for any given implementation. During the first pass, the
m distinct integers are stored in an array or linked list,
which requires space for O(m) pointers; however, this
storage requirement can be avoided if the random
number generator can be re-seeded for the second pass,
so that the program can regenerate the integers on the
fly. When re-seeding is done, assuming that the first
pass does not have to be repeated, the program requires
m + cn random number generations and the equivalent
of about 2cn exponentiation operations. For maximum
efficiency, two different random number generators are
required in the second pass: one for regenerating the
real numbers and the other for Algorithm S or A. The
second pass can be done with only one random number
generator, if during the first pass 2cn - 1 random var-
iates are generated instead of cn, with only every other
random variate used and the other half ignored. FOR-
TRAN 77 implementations of Bentley's method (using
Algorithm A and two random number generators for
the second pass) on an IBM 3081 mainframe run in
approximately 105n microseconds. The amount of code
is comparable to the implementations of Algorithm D in
the Appendix.

Empirical study indicates that round-off error is in-
significant in the algorithms in this paper. The random
variates S generated by Algorithm D pass the standard
statistical tests. It is shown in [1] that the rule (4-4) for
generating X1 works well numerically. Since one of the
ways Algorithm D generates S is by first generating X1,
it is not surprising that the generated S values are also
valid statistically.

The ideas in this paper have other applications as
well. Research is currently underway to see if the re-
jection technique used in Algorithm D can be extended
to generate the kth record of random sample of size n
from a pool of N records in constant time, on the aver-
age. The generation of S(n, N) in Algorithm D handles
the special case k = 1; iterating the process as in Algo-
rithm D generates the index of the kth record in O(k)
time. The distribution of the index of the kth record is
an example of the negative hypergeometric distribu-
tion. One possible approach to generating the index in
constant time is to approximate the negative hypergeo-
metric distribution by the beta distribution with param-
eters a = k and b = n - k + 1 and normalized to the
interval [0, N]. An alternate approximation is the nega-
tive binomial distribution. Possibly the rejection tech-
nique combined with a partitioning approach can give
the desired result.

July 1984 Volume 27 Number 7 Communications of the ACM 713

Research Contributions

When the number N of records in the file is not
known a priori and when reading the file more than
once is not allowed or desired, none of the algorithms
mentioned in this paper can be used. One way to sam-
ple when N is unknown beforehand is the Reservoir
Sampling Method, due to A. G. Waterman, which is

listed as Algorithm R in [6]. It requires N uniform ran-
dom variates and runs in O(N) time. In [9, 10], the
rejection technique is applied to yield a much faster
algorithm that requires an average of only O(n + n
ln(N/n)) uniform random variates and O(n + n ln(N/n))
time.

w h i l e n > 0 d o
b e g i n
i f N x R A N D O M () < n t h e n

b e g i n

Select the next record in the file for the s a m p l e ;
n : = n - 1
e n d

e lse Skip over the next record (do not include it in the sample);
N : = N - 1
end;

ALGORITHM S: All variables have type integer.

top := N - orig_r~;

for n := orig_r~ d o w n t o 2 d o
b e g i n
{ S t e p A1 }
V := R A N D O M ();

{ S t ep A2 }
S := O;
quot : = top~N;
w h i l e quot > V d o

b e g i n

S := S + 1;

top := top - 1;

N := N - 1;

quot := quot x t o p / N
end;

{ S t ep A3 }

Skip over the next S records and select the following one fo r the sample;
N : = N - 1

end;

{ Specia l case n = 1 }

S := T R U N C (N x R A N D O M ()1;
Skip over the n e x t S r e c o r d s and se lec t the following one for the s a m p l e ;

ALGORITHM A: The variables V and quot have type real All other variables have type integer.

APPENDIX
This section gives Pascal-like implementations of Algo-
rithms S, A, C, and D. The FORTRAN programs used in
Section 7 for the CPU timings are direct translations of
the programs in this section.

Two implementations of Algorithm D are given: the
first uses X1 for X, and the second uses X2 for X. The
first implementation is recommended for general use.
These two programs use a non-standard Pascal con-
struct for looping. The statements within the loop ap-

714 Communications of the ACM July 1984 Volume 27 Number 7

Research Contributions

limit := N - or/g_n + 1;

for n := orig_n d o w n t o 2 d o
begin
{ Steps C1 and C2 }
min_X := limit;
for malt := N d o w n t o limit d o

begin
X := malt x R A N D O M ();
i f X < min_X t h e n min_X := X
end;

S := TRUNC(min. .X);

{ Step C3 }
Skip over the next S records and select the following one for the sample;
N : = N - S - 1 ;
limit := limit - S
end;

{ Spec ia l case n = 1 }

s := TRUNC(N × RANDOM());
Skip over the next S records and select the following one for the sample;

ALGORITHM C: The variables X and min_X have type real. All other variables have type integer.

pear between the reserved words loop and end loop;
the execution of the statement break loop causes the
flow of control to exit the current innermost loop.

Liberties have been taken with the syntax of identi-
fier names, for the sake of readability. The × symbol is
used for multiplication. Parentheses are used to enclose
null arguments in calls to functions (like RANDOM)
that have no parameters.

Variables of type real should be double precision so
that round-off eri'or will be insignificant, even when N
is very large. Roughly logloN digits of precision will
Suffice. Care should be taken to assure that intermedi-
ate calculations are done in full precision. Variables of
type integer should be able to store numbers up to
value N.

The code for the random number generator
RANDOM is not included. For the CPU timings in Sec-
tion 7, we used a machine-independent version of the
linear congruential method, similar to the one given in
[8]. The function RANDOM takes no arguments and
returns a double-precision uniform random variate in
the interval [0, 1). Both implementations of Algorithm
D assume that the range of RANDOM is restricted to the
open interval (0, 1). This restriction can be lifted for the
first implementation of Algorithm D with a couple sim-
ple modifications, which will be described later.

Algorithm D
Two implementations are given for Algorithm D below:
Xa is used for X in the first, and X2 is used for X in the
second. The optimizations discussed in Section 5 are

used. The first implementation given below is preferred
and is recommended for all ranges of n and N; the
second implementation will work well also, but is
slightly slower for the reasons given in Section 7,
especially when n is small. The range for the random
number function RANDOM is assumed to be the open
interval (0, 1).

As explained in Sections 4 and 5, there is a constant
a that determines which of Algorithms D and A should
be used for the sampling: If n < aN, then the rejection
technique is faster; otherwise, Algorithm A should be
used. This optimization guards against "worst-case"
behavior that occurs when n = N and when X1 is used
for X, as explained in Section 5. The value of a is
typically in the range 0.05-0.15. For the IBM 3081
implementation discussed in Section 7, we have a
0.07. Both implementations of Algorithm D use an
integer constant alpha_inverse > 1 (which is initialized to

l / a) and an integer variable threshold (which is
always equal to alpha_inverse × n).

Sections 4 and 6 mention that there is a constant fl
such that if n2/N <_ fl, then it is better to use X1, cl,
gl (x), hnd hi (s) in Algorithm D; otherwise, X2, c2, g2(s),
and h2(s) should be used. The value of fl for the IBM
3081 implementation discussed in Section 7 in fl ~ 50.
If maximum efficiency is absolutely necessary, it is
recommended that the two programs be combined: X2
should be used for X until the condition nZ/N <_ fl
becomes true, after which Xa should be used for X.
There should be no need to continue testing the
condition once it becomes true.

]uly 1984 Volume 27 Number 7 Communications of the ACId 715

Research Contributions

V_prime := E X P (L O G (R A N D O M ())/n);
quantl := N - n + 1; quant2 := quantl /N;
threshold := alpha_inverse × n;

whi le (n > 1) a n d (threshold < N) do
beg in
loop

{ Step D2: Generate U and X }
loop

X := N × (1.0 - V_prime);
S := TRUNC(X) ;
if S < quantl t h e n b r e a k loop;
V_prime := E X P (L O G (R A N D O M ())/n)

end loop;
y := R A N D O M ()/quant2; { U is the value returned by R A N D O M }

{ Step D3: Accept? }
LHS := E~XP(LOG(y)/(n - 1));
RHS := ((quantl - S) / quan t l) x (N / (N - X));
f f LHS < RHS t h e n

beg in { Accept S, since U < h([XJ) /cg(X) }
V_prime := L H S / R H S ;
b r e a k loop
end;

{ Step D4: Accept? }
f i n - 1 > S t h e n

b e g i n bottom := N - n; limit := N - S e n d
else beg in bottom := N - S - 1; limit := quantl end;
for top := N - 1 d o w n t o limit do

beg in y := y × top~bottom; bottom := bottom - 1 end;
f f E X P (L O G (y) / (n - 1)) < N / (N - X) t h e n

b e g i n { Accept S, since U < f (LXJ) / cg (X) }
V_prime := E X P (L O G (R A N D O M ()) / (n - 1));

b r e a k loop
end;

V_prime := E X P (L O G (R A N D O M ()) /n)
e n d loop;

{ Step Db: Select the (S + 1)st record }
Skip over the next S records and select the following one for the sample;
N := N - S - 1 ; n : = n - 1 ;
quantl := quantl - S; quant2 : - quantl /N;
threshold := threshold - alpha_inverse
end;

if n > 1 t h e n Call Algorithm A to finish the sampling
else beg in { Special case n = 1 }

S := T R U N C (N × V_prime);
Skip over the next S records and select the following one for the sample
end;

ALGORITHM D: Using Xl for X.

716 Communications of the ACM July 1984 Volume 27 Number 7

Research Contributions

V_prime := L O G (R A N D O M ());
quantl := N - n + 1;
threshold := alpha_inverse x n;

whi le (n > 1) a n d (threshold < N) do
beg in
quant2 : : (quantl - 1) / (N - 1); quant3 := LOG(quant2);
loop

{ Step D2: Generate U and X }
loop

S := TRUNC(V_prime/quant3);
if S < quantl t h e n b r e a k loop;
V_prime := L O G (R A N D O M ())

end loop;

if n
else

{ X is equal to S }

LHS := L O G (R A N D O M ()); { U is the value returned by R A N D O M }

{ Step D3: Accept? }
RHS := S x (LOG((quantl - S) / (N - S)) - quant3);
i f LHS < RHS t h e n

beg in { Accept S, since U < h(LXJ)/cg(X) }
V_prime := LHS - RHS;
b r e a k loop
end;

{ Step D4: Accept? }
y := 1.0;
i f n - l > S t h e n

beg in bottom : : N - n; limit := N - S e n d
else beg in bottom :-- N - S - 1; limit := quantl end;
for top := N - 1 d o w n t o limit do

beg in y := y x top~bottom; bottom := bottom - 1 end;
V_prime : : L O G (R A N D O M ());

i f quant3 < - (L O G (y) + L H S) / S t hen
b r e a k loop { Accept S, since U < f (LXJ) / ca (X) }

end loop;

{ Step Db: Select the (S + 1)st record }
Skip over the next S records and select the following one for the sample;
N : : N - S - 1 ; n : - n - 1 ;
quantl := quantl - S ;
threshold := threshold- alpha_inverse
end;

> 1 t h e n Call Algorithm A to finish the sampling
beg in { Special case n = 1 }
S := T R U N C (N × R A N D O M ());
Skip over the next S records and select the following one for the sample
end;

ALGORITHM D: Using X= for X.

July 1984 Volume 27 Number 7 Communications of the ACM 717

Research Contributions

U s i n g X1 for X
The var iab les U, X, V_prime, LHS, RHS, y, a n d quant2
h a v e type real. T he o t h e r va r i ab le s h a v e type integer.
The p rog ram above can be modi f i ed to a l low R A N D O M
to r e t u r n the v a l u e 0.0 by r ep lac ing all exp res s ions of
t he form EXP(LOG(a)/b) by a 1/b

The va r i ab le V_prime (w h i c h is u sed to gene ra t e X) is
a lways set to the n t h root of a u n i f o r m r a n d o m var ia te ,
for the c u r r e n t v a l u e of n. T h e va r i ab l e s quantl, quant2,
a n d threshold equa l N - n + 1, (N - n + 1) /N, a n d
alpha_inverse x N, respec t ive ly , for t he c u r r e n t va lues
of N a n d n.

U s i n g X2 for X
T h e va r i ab le s U, V_prime, LHS, RHS, y, quant2, a n d
quant3 h a v e type real. T h e o t h e r va r i ab l e s h a v e type
integer. Let x > 0 be the smal l e s t poss ib le n u m b e r re-
t u r n e d by RANDOM. T h e integer va r i ab l e S m u s t be
large e n o u g h to s tore - (loglox)N.

The va r i ab l e V_prime (w h i c h is u sed to gene ra t e X) is
a lways set to the n a t u r a l l o g a r i t h m of a u n i f o r m ran-
d o m var ia te . T h e va r i ab le s quantl, quant2, quant3, a n d
threshold equa l N - n + 1, (N - n) / (N - 1), ln((N - n) /
(N - 1)), a n d alpha_inverse × n, for t he c u r r e n t va lues of
N a n d n.

Acknowledgmen t s T h e a u t h o r w o u l d l ike to t h a n k
Phi l He ide lbe r ge r for i n t e r e s t i ng d i scuss ions on ways to
r e d u c e the n u m b e r of r a n d o m va r i a t e s g e n e r a t e d in
A l g o r i t h m D f rom two pe r loop to one pe r loop. T h a n k s
also go to the two a n o n y m o u s re fe rees for t h e i r he lp fu l
c o m m e n t s .

REFERENCES
1. Bentley, J.L. and Saxe, J.B. Generating sorted lists of random

numbers. ACM Trans. Math. Softw. 6, 3 (Sept. 1980), 359-364.

2. Ernvall, J. and Nevalainen, O. An algorithm for unbiased random
sampling. Comput. J. 25, 1 (January 1982), 45-47.

3. Fan, C.T., Muller, M.E., and Rezucha, I. Development of sampling
plans by using sequential (item-by-item) selection techniques and
digital computers. Am. Stat. Assn. J. 57 (June 1962), 387-402.

4. Jones, T.G. A note on sampling a tape file. Commun. ACM, 5, 6 (June
1962), 343.

5. Kawarasaki, J. and Sibuya, M. Random numbers for simple random
sampling without replacement. Keio Math. Sem. Rep No. 7 (1982), 1-
9.

6. Knuth, D.E. The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms. Addison-Wesley, Reading, MA (second edition, 1981).

7. Lindstrom, E.E. and Vitter, J.S. The design and analysis of
BucketSort for bubble memory secondary storage. Tech. Rep. CS-83-
23, Brown University, Providence, RI, (September 1983). See also
U.S. Patent Application Provisional Serial No. 500741 (filed June 3,
1983).

8. Sedgewick, R. Algorithms. Addison-Wesley, Reading, MA (1983).
9. Vitter, J.S. Random sampling with a reservoir. Tech. Rep. CS-83-17,

Brown University, Providence, RI, (July 1983).
10. Vitter, J.S. Optimum algorithms for two random sampling problems.

In Proceedings of the 24th IEEE Symposium on Foundations of Computer
Science, Tucson, AZ (November 1983), 65-75.

CR Categories and Subject Descriptors: C.3 [Mathematics of
Computing]: Probability and Statistics--probabalistic algorithms, random
number generation, statistical software; G.4]Mathematics of Computing]:
Mathematical Software--algorithm analysis

General Terms: Algorithms, Design, Performance, Theory
Additional Key Words and Phrases: random sampling, analysis of

algorithms, rejection method, optimization

Received 8/82; revised 12/83; accepted 2/84

Author's Present Address: Jeffrey S. Vitter, Assistant Professor of
Computer Science, Department of Computer Science, Box 1910, Brown
University, Providence, RI 02912; jsv.brown @ CSNet-Relay

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

CORRIGENDUM: Human Aspects of Computing

Izak Benbasa t a n d Yair Wand . C o m m a n d a b b r e v i a t i o n b e h a v i o r in h u m a n - c o m p u t e r i n t e rac t ion . Commun. A C M 27,
4 (Apr. 1984), 376-383. Page 380: Table II s h o u l d read:

TABLE II. Data on Abbreviation Behavior*

Average Weighted
No. of Command No. of Percent Distribution of No. of

Characters Name Times Characters Used Characters Average
in Command Used Used for Group

1 2 3 4 5 6 7 8

4 VARY 86 5 7 3 85 3.69
4 RUSH 280 5 20 4 71 3.41
4 SORT 5 0 0 0 100 4.00
4 HELP 25 0 0 0 100 4.00
4 EXIT 12 0 25 0 75 3.50
4 STOP 3 0 0 0 100 4.00 3.52

5 POINT 442 27 4 17 1 51 3.46
5 ORDER 27 7 0 7 0 85 4.56
5 NAMES 28 0 0 7 0 93 4.86 3.60

6 SELECT 87 0 0 15 0 0 85 5.55
6 REPORT 596 0 0 62 0 0 37 4.09
6 CANCEL 35 0 0 14 0 0 86 5.57 4.34

7 COLUMNS 10 0 0 40 0 20 0 40 - - 5.00 5.00

8 QUANTITY 404 40 1 14 17 12 0 0 17 3.45
8 SIMULATE 520 1 0 88 0 0 0 0 11 3.51 3.48

• Excludes users who did not use abbreviations.

718 Communications of the ACM July 1984 Volume 27 Number 7

