

Featherweight Threads for

Communication

KC Sivaramakrishnan
Lukasz Ziarek

Suresh Jagannathan

CSD TR #11-018
October 2011

Featherweight Threads for Communication

KC Sivaramakrishnan Lukasz Ziarek Suresh Jagannathan
Purdue University

{chandras, lziarek, suresh}@cs.purdue.edu

Abstract
Message-passing is an attractive thread coordination mechanism
because it cleanly delineates points in an execution when threads
communicate, and unifies synchronization and communication. To
enable greater performance, asynchronous or non-blocking exten-
sions are usually provided, that allow senders and receivers to pro-
ceed even if a matching partner is unavailable. However, realizing
the potential of these techniques in practice has remained a difficult
endeavor due to the associated runtime overheads.

We introduce parasitic threads, a novel mechanism for express-
ing asynchronous computation, aimed at reducing runtime over-
heads. Parasitic threads are implemented as raw stack frames within
the context of its host — a lightweight thread. Parasitic threads
are self-scheduled and migrated based on their communication pat-
terns. This avoids scheduling overheads and localizes interaction
between parasites.

We describe an implementation of parasitic threads and illus-
trate their utility in building efficient asynchronous primitives. We
present an extensive evaluation of parasitic threads in a large col-
lection of benchmarks, including a full fledged web-server. Eval-
uation is performed on two garbage collection schemes — a stop-
the-world garbage collector and a split-heap parallel garbage col-
lector — and shows that parasitic threads improve the performance
in both cases.

1. Introduction
Asynchrony is a well known technique for extracting additional
throughput from programs by allowing conceptually separate com-
putations to overlap their executions. Typically programmers lever-
age asynchrony to mask high latency computations or to achieve
greater parallelism. Asynchrony can either be realized through spe-
cialized primitives (i.e. asynchronous sends in Erlang or MPI), al-
lowing the primitive action to execute asynchronously with the
computation that initiated the action, or in a more general form
through threads.

Threads, in all their various forms (native [5], asyncs [6],
sparks [18], and others [9, 24]), provide a conceptually simple
language mechanism for achieving asynchrony. Threads, unlike
specialized asynchronous primitives, are general purpose: they act
as vessels for arbitrary computation. Unfortunately, harnessing
threads for asynchrony typically comes at a cost. Instead of uti-
lizing threads where conceptually asynchrony could be leveraged,
programmers must often reason about whether the runtime cost of
creating a thread, thread scheduling, and any synchronization the
thread may perform outweigh the benefit of performing the desired
computation asynchronously. It is precisely for this reason that
specialized primitives are typically the de facto standard for most
programming languages.

[Copyright notice will appear here once ’preprint’ option is removed.]

e1 e2 en. . . .

Sync1

Syncn

Sync2

T0

T0

(a) Synchronous

e1 e2 en

Sync1 SyncnSync2

. . . .

Suspend

Resume

T1 T2 Tn

T0

T0

(b) Asynchronous

Figure 1: Implementation of chooseAll

However, we observe that in a language like Concurrent ML
(CML) [26], with first class events, as well as in other functional
language runtimes [7], asynchrony achieved through threads pro-
vides a powerful yet simple mechanism for constructing runtime
abstractions. To illustrate, consider the steps involved in the con-
struction of a language abstraction, in CML terms a combinator,
chooseAll , which conceptually synchronizes between multiple
threads, gathering a value from each.

v a l chooseAll : ’a event list -> ’a list event

Given a list of events — computations which contain a synchro-
nization mechanism — chooseAll returns an abstraction that col-
lects all of the results of the individual events, when invoked. No-
tice that the events from which chooseAll was constructed can
be executed in any order. An abstraction such as chooseAll is
typically used to build collective communication operations like
scatter, gather, reduce, etc. Consider implementing chooseAll by
synchronously mapping over the list of events and collecting each
of their results in order, one by one. Figure 1a illustrates the be-
havior of this synchronous encoding. The dotted box represents the
execution of chooseAll . The thread T0 , executing chooseAll ,
collects the result of the events one by one, and finally resumes
execution with the aggregate.

Though this simple construction captures the desired behavior, it
obviously suffers from performance bottlenecks. Since each of the
events in the list can embody a complex computation, they can take
arbitrarily long to execute. For example, if the first event in the list
takes the longest time to complete, the rest of the events will stall
until its completion. This halts progress on threads that might be
waiting for one of the events in the list to complete.

1 2011/10/20

In order to allow for greater concurrency, we might consider
spawning lightweight threads to execute each of the events in the
list and then aggregate the results of the various computations. The
execution of such an abstraction is presented in Figure 1b. Here, the
thread T0 executing chooseAll is suspended until all the results
are gathered. New lightweight threads T1 to Tn are created to
execute corresponding events. Each lightweight thread will place
the result of the event it executes in its corresponding slot in the
result list. After all of the threads have completed execution, T0 is
resumed with the result of chooseAll .

Even though semantically equivalent to the synchronous im-
plementation, this solution will actually perform worse in many
scenarios than the synchronous solution due to the overheads of
scheduling, synchronization and thread creation costs, even if the
threads are implemented as lightweight entities or one/many-shot
continuations. The most obvious case where performance degra-
dation occurs, is when each of the events encodes a very short
computation. In such cases, it takes longer to allocate and sched-
ule the thread than it takes to complete the event. However, there is
more at play here, and even when some events are long running, the
asynchronous solution incurs additional overheads. We can loosely
categorize these overheads into three groups:

• Synchronization costs: The creation of a burst of lightweight
threads within a short period of time increases contention for
shared resources such as channels and scheduler queues.

• Scheduling costs: Besides typical scheduling overheads, the
lightweight threads that are created internally by the asyn-
chronous primitive might not be scheduled prior to threads
explicitly created by the programmer. In such a scenario, the
completion of a primitive, implicitly creating threads for asyn-
chrony, is delayed. In the presence of tight interaction between
threads, such as synchronous communication, if one of the
threads is slow, progress is affected in all of the transitively
dependent threads.

• Garbage collection costs: Creating a large number of threads
in short period of time increases allocation and might subse-
quently trigger a collection. This problem becomes worse in a
parallel setting, when multiple mutators might be allocating in
parallel.

In this paper, we explore a novel threading mechanism, called
parasitic threads, that reduces costs associated with lightweight
threading structures. Parasitic threads allow the expression of arbi-
trary asynchronous computation, while mitigating typical thread-
ing costs. Parasitic threads are especially useful to model asyn-
chronous computations that are usually short-lived, but can also be
arbitrarily long. Consider once again our chooseAll primitive.
It takes an arbitrary list of events, so at any given invokation of
chooseAll we do not know apriori if a particular event is short or
long lived.

An implementation of chooseAll using parasitic threads is de-
scribed in Section 2.3.2. Such an implementation, abstractly, delays
creating threads unless a parasite performs a blocking action. In
practice, this alleviates scheduling and GC costs. Even when para-
sites block and resume, they are reified into an entity that does not
impose synchronization and GC overheads. If the computation they
encapsulate is long running, they can be inflated to a lightweight
thread anytime during execution.

Importantly, in the implementation of chooseAll with parasitic
threads, if all of the events in the list are available before the exe-
cution of chooseAll , none of the parasites created for executing
individual events will block. In addition to an implementation of
chooseAll , we show how parasitic threads can be leveraged at

the library level to implement a library of specialized asynchronous
primitives. We believe parasitic threads are a useful runtime tech-
nique to accelerate the performance of functional runtime systems.

This paper makes the following contributions:

• The design and implementation of parasitic threads, a novel
threading mechanism that allows for the expression of a logical
thread of control using raw stack frames. Parasitic threads can
easily be inflated into lightweight threads if necessary.

• A formal semantics governing the behavior of parasitic threads.
• A case study leveraging the expressivity of parasitic threads to

implement a collection of asynchronous primitives, and illus-
trating the performance benefits of parasitic threads through a
collection of micro-benchmarks.

• A detailed performance analysis of runtime costs of parasitic
threads over a large array of benchmarks, including a full-
fledged web server. The performance analysis is performed on
two distinct GC schemes to illustrate that the parasitic threads
are beneficial irrespective of the underlying GC.

The rest of the paper is organized as follows: in Section 2, we
present our base runtime system and the design of parasitic threads.
In Section 3, we provide a formal characterization of parasitic
threads and show their semantic equivalence to classic threads. We
discuss salient implementation details in Section 4. We present a
case study illustrating the utility of parasitic threads in the con-
struction of asynchronous primitives 5. We present our experiment
details and results in Section 6. Related work and concluding re-
marks are given in Section 7 and Section 8 respectively.

2. System Design

In this section, we describe the salient details for the design of
parasitic threads and relevant characteristic of our runtime system.
We envision parasitic threads to be used as a fundamental build-
ing block for constructing asynchronous primitives. With this in
mind, we introduce an API for programming with parasitic threads,
and show how to construct an efficient chooseAll primitive intro-
duced earlier.

2.1 Base System

Our runtime system is built on top of lightweight (green) threads,
synchronous communication, and leverages a GC. Our threading
system multiplexes many lightweight threads on top of a few ker-
nel threads. We leverage one kernel thread for each processor or
core for a given system. The kernel threads are also pined to the
processor. Hence, the runtime views a kernel thread as a virtual
processor. The number of kernel threads is determined statically
and is specified by the user. Kernel threads are not created during
program execution, instead, all spawn primitives create lightweight
threads.

Threads communicate in our system through synchronous mes-
sage passing primitives based on PCML [25], a parallel definition
of CML. Threads may perform sends or receives to pass data be-
tween one another. Such primitives block until a matching com-
munication partner is present. Our system supports two different
GC schemes; a stop-the-world collector with parallel allocation
and a split-heap parallel GC scheme. Necessary details about both
GC designs, with respect to parasites and their implementation are
given in Section 4.

2 2011/10/20

P1

S1E

1

S2 T1S3

P1

S1 E S2 T1S3

P2

R1

2

R2 T2

P2

S1 E

T2S1 R1 R2E

Figure 2: Blocking and unblocking of parasitic threads.

2.2 Parasitic Threads

Our runtime supports two kinds of threads: hosts and parasites.
Host threads map directly to lightweight threads in the runtime.
Parasitic threads 1 can encapsulate arbitrary computation, just like
host threads. However, unlike a regular thread, a parasitic thread
executes using the execution context of the host which creates the
parasite. Parasitic threads are implemented as raw frames living
within the stack space of a given host thread. A host thread can
hold an arbitrary number of parasitic threads. In this sense, a par-
asitic thread views its host in much the same way as a user-level
thread might view a kernel-level thread that it executes on. A par-
asite becomes reified when it performs a blocking action (e.g., a
synchronous communication operation, or I/O). Reified parasites
are represented as stack objects on the heap. Reified parasites can
resume execution once the conditions that caused it to block no
longer hold. Thus, parasitic threads are not scheduled using the lan-
guage runtime; instead they self-schedule in a demand-driven style
based on flow properties dictated by the actions they perform.

Our system supports synchronous message passing over chan-
nels as well as user-defined blocking events. During synchronous
communication, the parasite which initiates the synchronous com-
munication blocks and is reified (either sending or receiving on a
channel), if a matching communication is not already available. It is
subsequently unblocked by the thread that terminates the protocol
by performing the opposite communication action (i.e. a matching
send or receive). Similarly, a parasite may block on an event (such
as I/O). This parasite is available to execute once the I/O event is
triggered. Once the conditions that prevent continued execution of
the parasite becomes resolved, the parasite enters a suspended state,
and can be resumed on the host.

In the following figures, host threads are depicted as rounded
rectangles, parasitic threads are represented as blocks within their
hosts, and each processor as a queue of host threads. The parasite
which is currently executing on a given host and its stack is repre-
sented as a block with solid edges; other parasites are represented
as blocks with dotted edges. Reified parasites are represented as
shaded blocks. Host threads can be viewed as a collection of par-
asitic threads all executing within the same stack space. When a
thread is initially created it contains one such parasitic computa-
tion, namely the expression it was given to evaluate when it was
spawned.

Figure 2 shows the steps involved in a parasitic communication,
or blocking event. Initially, the parasite S1 performs a blocking ac-
tion on a channel or event, abstractly depicted as a circle. Hence, S1
blocks and is reified. The thread T1 which hosted S1 continues ex-
ecution by switching to the next parasite S2 . S1 becomes runnable

1 An initial characterization of parasitic threads was presented in unpub-
lished form in [27].

t y p e ’a par
t y p e ready_par
v a l s p a w n P a r a s i t e : (unit -> unit) -> unit
v a l r e i f y : (’a par -> unit) -> ’a
v a l p r e p a r e : (’a par * ’a) -> ready_par
v a l a t t a c h : ready_par -> unit
v a l i n f l a t e : unit -> unit

Figure 3: Parasitic thread management API.

S2spawnParasite(f)

S1 S2f()

S1 S2reify(f)

S1 S2f()

S1,V attach() S2

v S1 S2

S1 S2inflate()

S1 S2T2 T1

T1

Figure 4: Behavior of parasite API.

when it is unblocked. Part 2 of the figure shows the parasite R1
on the thread T2 invoking an unblocking action. This unblocks S1
and schedules it on top of R1 . Thus, the parasitic threads implic-
itly migrate to the point of synchronization. This communication
driven migration benefits further interaction between S1 and R1 ,
if any, by keeping them thread local.

2.3 An API for Parasitic Threads

Parasites are exposed as a library to be utilized to build higher level
asynchronous abstractions. Figure 3 shows an interesting subset of
the parasite API. The primitives exposed by the parasite API are
similar to continuations, but differ from continuations in that the
scheduling and migration of parasitic threads is implicitly defined
by the control flow abstractions aka the parasite API. Figure 4
illustrates the behavior of the primitives.

Unlike host threads, parasitic threads are implemented as raw
stack frames. The expression spawnParasite(f) pushes a new
frame to evaluate expression f , similar to a function call. We
record the stack top at the point of invocation. This corresponds
to the caller’s continuation and is a de facto boundary between the
parasite and its host (or potentially another parasite). If the parasite
does not block, the computation runs to completion and control
returns to the caller, just as if the caller made a non-tail procedure
call.

A parasite can voluntarily block by invoking reify(f) . This
applies f on the reference to the parasite, similar to a call-cc
invocation. The function f can be used to block the parasite on an
event. Once the parasite has been reified, the control immediately
switches to the next parasite on the host stack. Reified parasites are
represented as stack objects on the heap, reachable from the global
resource the parasite is blocked on.

Parasites are also value carrying and can be assigned a value
with the help of prepare . Such parasites are said to have been
prepared. When a parasite resumes execution, it is provided with
this prepared value. Prepared parasites can be resumed with the
attach primitive. A host invoking attach on a prepared parasite,
copies the parasitic stack on top of its current stack and switches to
the newly attached parasite. The newly attached parasite resumes

3 2011/10/20

execution with the value it was prepared with. When a parasite runs
to completion, the control returns to the parasite residing below as
if a non-tail call has returned.

2.3.1 Inflation

Although parasites are envisioned to be used as short-lived threads,
they can encode arbitrarily long computations, as the programming
model places no restriction on the closure spawned as a parasite.
Executing multiple long running computations on the same stack is
unfavorable as it serializes the executions. Parasitic threads provide
two options to upgrade the parasite to a full fledged thread:

• Synchronously by invoking inflate primitive in the parasite
that needs to be inflated.

• Asynchronously inflate a reified parasite by spawning a new
host that attaches the reified parasite

If there are potential fast and slow branches in a parasitic com-
putation, on hitting the slow branch, the parasite can be upgraded
to a host thread using the inflate primitive. The newly created host
is placed on a different processor, if available, for parallel execu-
tion. Programmers also have the option of installing timer inter-
rupts to inflate parasites on an interrupt. We observe that the timer
interrupt scheme works well in practice, although some unfortu-
nate parasites might be inflated. However, the exact requirements
of different programming models built on top of parasites might
be different. Hence, we leave it to the programmer to choose the
appropriate inflation policy.

2.3.2 Implementing chooseAll

Figure 5 shows how the chooseAll primitive introduced in Sec-
tion 1 is implemented using the parasitic thread API. In order to
represent the new event combinator, CML event datatype is ex-
tended with one more constructor CHOOSE ALL . From the perspec-
tive of the event combinators such as wrap and guard, chooseAll
is treated similar to choose. The interesting behavior of chooseAll
is during synchronization. In the following code snippet, we de-
fine a function syncOnChooseAll , which will be invoked to syn-
chronize on a chooseAll event. We assume the existence of an
atomic fetch and add instruction — fetchAndAdd (r, count)
— which atomically increments the reference r by count , and
returns the original value of r .

The basic idea of the implementation is to use parasitic threads
for synchronizing on each of the constituent events. The reference
c is used as a condition variable to indicate the completion of
synchronization of all events in the list. The array a is used as
a temporary store to collect the results.

The current parasite is first reified at line 7 and its reference is
captured in p. The task of spawning the parasites for synchroniza-
tion on each event is performed in the loop function. After spawn-
ing the parasites, at the end of the loop, the current parasite switches
to the next parasite on its stack at line 21.

Each of the spawned parasites synchronize on its corresponding
event at line 24 and invoke the finish function defined at line 9.
Here, the result of synchronization is stored in the array a . The
parasite also atomically decrements the counter c . If it is the
last parasite to finish synchronization, it prepares the suspended
parasite p with the result and invokes attach. This returns control to
the suspended parasite with the result of synchronizing on each of
the events. This implementation is safe for execution in a parallel
context. Inflation on timer interrupt is turned on so that a long
running parasite is automatically inflated to a host and runs in
parallel.

1 fun syncOnChooseAll(l : ’a event list) =
2 l e t
3 v a l c = ref(List.length l)
4 v a l a = Array.tabulate
5 (List.length l, f n _ => NONE)
6 i n
7 r e i f y (f n p =>
8 l e t
9 fun finish(v,i) =

10 (Array.update(a,i,SOME v);
11 i f (fetchAndAdd(c,~1) = 1) t h e n
12 l e t
13 v a l res =
14 Array.foldr
15 (f n (e,l) => valOf(e)::l) [] a
16 v a l rdy_p = p r e p a r e (p,res)
17 i n
18 a t t a c h (rdy_p)
19 end
20 e l s e ())
21 fun loop ([],_) = ()
22 | loop (e::el,i) =
23 (s p a w n P a r a s i t e
24 (f n () => finish(s y n c e,i))
25 ; loop(el,i+1))
26 i n
27 loop (l,0)
28 end)
29 end

Figure 5: Implementation of chooseAll using parasitic thread API

3. Formal Semantics
We define our system formally through the use of a formal opera-
tional semantics and model host threads in terms of sets of stacks
and parasites as stacks. Transitions in our formalism are defined
through stack based operations. Our semantics is defined in terms
of a core call-by-value functional language with threading and
communication primitives. New threads of control, or host threads,
are explicitly created through a spawn primitive. To model para-
sitic thread creation we extend this simple language with a prim-
itive spawnParasite and inflate which inflates a parasite into
a host. Therefore, computation in our system is split between host
threads, which behave as typical threads in a language runtime, and
parasitic threads, which behave as asynchronous operations with
regard to their host.

We formalize the behavior of parasitic threads in terms of an op-
erational semantics expressed using a CEK machine [19]. A typical
CEK machine is small-step operational definition that operates over
program states. A state is composed of an expression being evalu-
ated, an environment, and the continuation of the expression. The
continuation is modeled as a stack of frames.

3.0.3 Language

In the following, we write k̄ to denote a set of zero or more elements
and /0 as the empty set. We write x : l to mean the concatenation of
x to a sequence l where . denotes an empty sequence. Evaluation
rules are applied up to commutativity of parallel composition (‖).
Relevant domains and meta-variables used in the semantics are
shown in Figure 6.

In our semantics, we use stack frames to capture intermediate
computation state, to store environment bindings, to block com-
putations waiting for synchronization, and to define the order of
evaluation. We define eight unique types of frames: return frames,

4 2011/10/20

argument frames, function frames, receive frames, send frames,
send value frames, and receive and send blocked frames. The re-
turn frame pushes the resulting value from evaluating an expres-
sion on to the top of the stack. The value pushed on top of the
stack gets propagated to the frame beneath the return frame (see
Figure 7 Return Transitions). The receive and send blocked
frames signify that a thread is blocked on a send or receive on
a global channel. They are pushed on top of the stack to prevent
further evaluation of the given parasitic computation. Only a com-
munication across a global channel can pop a blocked frame. Once
this occurs, the parasitic thread can resume its execution. Argument
and function frames enforce left-to-right order of evaluation. order.
Similarly, the send and send value frames define the left to right
evaluation of the send primitive.

Our semantics is defined with respect to a global mapping (T)
from thread identifiers (t) to thread states (s). A thread is a pair
composed of a thread identifier and a thread state. A thread state (s)
is a CEK machine state extended with support for parasitic threads.
Therefore, a thread is a collection of stacks, one for each parasitic
thread. A concrete thread state can be in one of three configurations:
a control state, a return state, or a halt state. A control state is
composed of an expression (e), the current environment (r) — a
mapping between variables and values, the current stack (k), as
well as a set of parasitic computations (k̄). A return state is simply
a collection of parasitic computations (k̄). The halt state is reached
when all parasitic threads in a given thread have completed. A
thread, therefore, is composed of a collection of parasitic threads
executing within its stack space. When a thread transitions to a
control state, one of the thread’s parasites is chosen to be evaluated.
A thread switches evaluation between its various parasitic threads
non-deterministically when it transitions to a return state.

3.1 CEK Machine Semantics

The rules given in Figure 7 and Figure 8 define the transitions of the
CEK machine. There are three types of transitions: control transi-
tions, return transitions, and global transitions. Control and return
transitions are thread local actions, while global transitions affect
global state. We utilize the two types of local transitions to distin-
guish between states in which an expression is being evaluated from
those in which an expression has already been evaluated to a value.
In the latter case, the value is propagated to its continuation. Global
transitions are transitions which require global coordination, such
as the creation of a new channel or thread, or a communication ac-
tion.

There are six rules which define global transitions given in Fig-
ure 8. Rule (Local Evaluation) states that a thread with thread
state s can transition to a new state s′ if it can take a local transition
from s to s′. This rule subsumes thread and parasite scheduling,
and defines global state change in terms of operations performed
by individual threads. The second rule, (Channel), defines the cre-
ation of a new global channel. The (Spawn) rule governs the cre-
ation of a new thread; this rule generates a unique thread identifier
and begins the evaluation of the spawned expression (e) in the par-
ent thread’s (t) environment (r).

Notably there is no rule which deals with communication across
a shared channel (c) by two threads. Instead we migrate either the
sender of the receiver to one of the threads. The two rules (Migrate
Left) and (Migrate Right) capture the behavior of the API calls
reify and attach defined in Section 2.3. Notice that both rules
effectively do a reification of a parasite and then attach that parasite
to the other thread. Inflation is similar to the rule for spawning a
thread, except the stack associated with the parasite which calls
inflate is removed from its current host thread and added to a newly
created host thread.

There are seven rules which define local control transitions. Be-
cause the definition of these rules are standard, we omit their ex-
planation here, with the exception of the last rule (Parasite). This
rule models the creation of a new parasitic thread within the cur-
rent thread. The currently evaluating parasitic thread is added back
to the set of parasites with a unit return value pushed on its stack.
The expression is evaluated in a new parasitic thread constructed
with the environment of the parent and an empty stack. Thread ex-
ecution undertakes evaluation of the expression associated with this
new parasite.

There are eight rules which define local return transitions. These
rules, like local control transitions, are mostly standard. We com-
ment on the three rules that involve thread and parasite manage-
ment. Rule (Halt Thread) defines thread termination via a transi-
tion to a halt state. A thread transitions to a halt state if it has no
active parasites and its stack is empty except for a return frame. Par-
asites themselves are removed by the (Parasite Halt) rule. The
return value of a thread is thus defined as the last value produced
by its last parasite. The lifetime of a thread is bounded by the para-
sites which inhabit it. Rule (Local Communication) is similar to
the global communication rule, but is defined as a local transition
when both communicating parties reside in the same thread. The
transition pops off both blocked frames for the communicating par-
asitic threads. It also pushes new return frames, the value being sent
on to the receiver’s stack and the unit value on top of the sender’s
stack.

4. System Implementation
We have implemented our system in Multi-MLton, a parallel ex-
tension of MLton [21], a whole-program, optimizing compiler for
Standard ML (SML) [20]. MLton can compile ML programs to
both native code as well as C; the results described in this paper are
based on code compiled to C and then passed to gcc version 4.4.0.
Multi-MLton extends MLton with multi-core support, library prim-
itives for efficient lightweight thread creation and management, as
well as ACML [31], an optimized composable asynchronous mes-
sage passing extension to SML. In this section, we present insights
to the implementation of parasitic threads and their implementation
within MLton.

4.1 Thread Scheduler

Our implementation is targeted at high performance SMP plat-
forms. The implementation supports m host threads running on top
of n processors, where m ≥ n. Each processor runs a single Posix
thread that has been pinned to the corresponding processor. Hence,
kernel threads are viewed as virtual processors by the runtime sys-
tem. Each processor hosts a local scheduler to schedule the host
threads. Host threads are spawned in a round-robin fashion on the
processors to facilitate load balancing, and are pinned to their re-
spective schedulers. Host threads are preemptively scheduled. Par-
asitic threads are self scheduled and implicitly migrate to the host
stack it communicates with. Bringing the sender and the receiver to
the same host stack benefits the cache behavior.

4.2 Host Threads

Each host thread has a contiguous stack, allocated on the MLton
heap. The host stacks have a reserved space beyond the top of the
stack, such that frames can be pushed by bumping the stack top
pointer. This reserved space is key to quickly resuming suspended
parasites. Our experimental results show that parasitic stacks are
almost always smaller than the free space in the host stack and
can thus be copied to the host stack without need to grow the

5 2011/10/20

e ∈ Exp ::= x | v | e(e) | spawn(e) | parasiteSpawn(e)
| Chan() | send(e,e) | recv(e) | inflate(e)

v ∈ Val ::= unit | (λx.e,r) | c | κ

κ ∈ Constant
c ∈ Channel
x ∈ Var
t ∈ ThreadID
r ∈ Env = Var→ Value
k ∈ Cont = Frame∗
v ∈ Value = Unit +Closure+Channel+Constant

(λx.e,r) ∈ Closure = LambdaExp×Env

retdve ∈ RetFrame = Value
argde,re ∈ ArgFrame = Exp×Env

f undve ∈ FunFrame = Value
recvde ∈ RecvFrame = Empty

svalde,re ∈ SValFrame = Exp×Env
senddve ∈ SendFrame = Value

rblockdve ∈ RBlockFrame = Value
sblockdv1,v2e ∈ SBlockFrame = Channel×Value

T ∈ GlobalMap = ThreadID→ ThreadState
s ∈ ThreadState = ControlState+ReturnState+HaltState

〈e,r,k, k̄〉 ∈ ControlState = Exp×Env×Cont×Cont∗
〈k̄〉 ∈ ReturnState = Cont∗

halt(v) ∈ HaltState = Value

Figure 6: Domains for the CEK machines extended with threads and parasites.

Control Transitions

(Constant) 〈κ,r,k, k̄〉 −→ 〈retdκe : k‖k̄〉
(Variable) 〈x,r,k, k̄〉 −→ 〈retdr(x)e : k‖k̄〉
(Closure) 〈λx.e,r,k, k̄〉 −→ 〈retdλx.e,re : k‖k̄〉
(Application) 〈(e1e2),r,k, k̄〉 −→ 〈e1,r,argde2,re : k, k̄〉
(Send) 〈send(e1,e2),r,k, k̄〉 −→ 〈e1,r,svalde2,re : k, k̄〉
(Receive) 〈recv(e),r,k, k̄〉 −→ 〈e,r,recvde : k, k̄〉
(SpawnParasite) 〈parasiteSpawn(e),r,k, k̄〉 −→ 〈e,r, .,(retdunite : k)‖k̄〉

Return Transitions

(ThreadHalt) 〈retdve : .‖ /0〉 −→ halt(v)
(ParasiteHalt) 〈retdve : .‖k̄〉 −→ 〈k̄〉
(Argument) 〈retdve : argde,re : k‖k̄〉 −→ 〈e,r, f undve : k, k̄〉
(Function) 〈retdve : f undλx.e,re : k‖k̄〉 −→ 〈e,r[x 7→ v],k, k̄〉
(SendValue) 〈retdce : svalde,re : k‖k̄〉 −→ 〈e,r,senddce : k, k̄〉
(SendBlock) 〈retdve : senddce : k‖k̄〉 −→ 〈sblockdc,ve : k‖k̄〉
(ReceiveBlock) 〈retdce : recvde : k‖k̄〉 −→ 〈rblockdce : k‖k̄〉
(LocalCommunication) 〈(rblockdce : k1)‖(sblockdc,ve : k2)‖k̄〉 −→ 〈(retdve : k1)‖(retdunite : k2)‖k̄〉

Figure 7: Local evaluation defining both control and return transitions.

stack. When the host stack runs out of reserved space, it grows by
allocating a new, larger stack object. Host stacks are also re-sized
as needed during garbage collection.

4.2.1 Exception Safety in Parasites

Exceptions in MLton are intertwined with the structure of the stack.
Exceptions are also stack local and are not allowed to escape the
host thread. Since parasitic operations copy frames across hosts
stacks, there is a potential for parasitic exceptions to be raised in
a context that is not aware of it. We will describe how parasites
were made safe for exceptions.

In MLton, every host thread has a pointer to the top handler
frame in the currently executing host stack. Every handler frame
has a link to the next handler frame, represented as an offset. With
this formulation, when exceptions are thrown, control can switch to
the top handler in constant time, with subsequent handlers reached
through the links. During program execution, whenever the handler

frames are popped, the thread’s top-handler pointer is updated to
point to the new top handler. How do we ensure that this structure
is maintained for parasitic operations?

Just like host threads, exceptions are not allowed to escape para-
sitic threads and are handled by the default handler. When a para-
site is reified and moved out of the stack, the offset of the top han-
dler from the bottom of the parasitic stack is stored in the parasitic
meta-data. The handlers installed by the parasite are also captured
as a part of the parasitic stack. Control returns to the parasite resid-
ing below the reified parasite as a non-tail-call return. Importantly,
the default handler of the reified parasite is popped. This resets the
thread’s top-handler pointer to the next valid handler in the host
stack.

When the reified parasite eventually resumes execution on an-
other host stack, the handler offset stored in the parasite meta-data
is used to set the thread’s top-handler pointer to the top most han-
dler in the attached parasite. This is a constant time operation.

6 2011/10/20

Global Transitions

(LocalEvaluation)
s−→ s′

〈T [t 7→ s]〉 −→ 〈T [t 7→ s′]〉

(Channel)
c fresh

〈T [t 7→ 〈Chan(),r,k, k̄〉]〉 −→ 〈T [t 7→ 〈retdce : k‖k̄〉]〉

(Spawn)
t′ fresh

〈T [t 7→ 〈spawn(e),r,k, k̄〉]〉 −→ 〈T [t 7→ 〈retdunite : k‖k̄〉,t′ 7→ 〈e,r, ., /0〉]〉

(MigrateLeft)

s1 = 〈rblockdce : k1‖k̄1〉,s2 = 〈sblockdc,ve : k2‖k̄2〉
s′1 = 〈k̄1〉,s′2 = 〈sblockdc,ve : k2‖rblockdce : k1‖k̄2〉
〈T [t1 7→ s1t2 7→ s2]〉 −→ 〈T [t1 7→ s′1t2 7→ s′2]〉

(MigrateRight)

s1 = 〈rblockdce : k1‖k̄1〉,s2 = 〈sblockdc,ve : k2‖k̄2〉
s′1 = 〈rblockdce : k1‖sblockdc,ve : k2‖k̄1〉,s′2 = 〈k̄2〉
〈T [t1 7→ s1t2 7→ s2]〉 −→ 〈T [t1 7→ s′1t2 7→ s′2]〉

(Inflate)
t′ fresh

〈T [t 7→ 〈inflate(e),r,k, k̄〉]〉 −→ 〈T [t 7→ 〈k̄〉,t′ 7→ 〈e,r,k, /0〉]〉

Figure 8: Global evaluation rules defined in terms of thread states (T).

When parasites are inflated, the top-handler pointer in the newly
created host is updated to point to the top-handler in the parasite.

4.3 Interaction with Garbage Collector

Just like host threads in the language runtime, the garbage collector
must be aware of parasitic threads and the objects they reference.
Parasites either exist as a part of a host stack or reified as a separate
heap object. If the parasites are a part of the host, the garbage
collector treats the parasites as regular frames while tracing. Reified
parasites are represented in the GC as stack objects, and from a
GC stand point are indistinguishable from host stacks. Hence, the
garbage collection algorithms trace reified parasites as if they were
host stacks.

4.3.1 Split-Heap Parallel GC

We provide a short description of the split-heap parallel GC in order
to describe interesting parasitic interactions. The split-heap parallel
GC is inspired from Doligez’s GC for a multi-threaded implemen-
tation of ML [8]. Each processor has a local heap, that can have
no pointers from other local heaps. This invariant allows collection
of local heaps in parallel with other processors. Since ML tends to
allocate lot of temporaries, the local heaps act as a private nursery,
eliminating the need to perform synchronization for local collec-
tions. In order to share data between cores, a common shared heap
is also present to which transitive closures of objects are copied on
demand. Our experimental results show that this implementation
improves the performance of our runtime system.

Since parasites migrate to the point of synchronization, we see
parasitic closures copied between the local heaps. We observe that
parasitic stacks and closures are small enough that inter-heap par-
asitic communication does not affect the scalability of the system.
Parasitic migration also ensures that subsequent communication ac-
tions, if any, are local to the processor.

Since the only form of thread migration in our system is through
parasitic communication, host stacks are never moved to the shared
heap. Due to this invariant, host stacks in the local heap might
be reachable from shared heap references, and hence by other
processors. Even though the host stacks in a local heap might

be reachable, the contents of the stack are never read by other
processors.

Pinning host stacks to the local heaps, keeps most of our allo-
cations local. This improves performance since the local garbage
can be collected concurrently with respect to operations on the
other processors. Stop-the-world collection is only performed in the
shared heap. Experimental results show that the split-heap parallel
GC in general performs better than the stop-the-world collector.

5. Case Study : Building Asynchronous
Primitives

In this section, we will illustrate the utility of parasites in the
construction of efficient asynchronous primitives. We also present
micro-benchmark measurements for common asynchronous pro-
gramming patterns, to illustrate the benefits of the parasitic thread
design. This section is a summary of the lessons learnt in the imple-
mentation of Asynchronous CML (ACML) [31] utilizing parasitic
threads. Asynchronous CML (ACML) extends CML with com-
posable asynchronous events and is the core of the Multi-MLton
programing model [12]. ACML2 leverages parasitic threads perva-
sively, though we only touch on a few of patterns that are applicable
to asynchronous primitives in general.

5.1 Unified Scheduler

With two underlying threading systems (hosts and parasites), we
need to abstract away the differences in the thread management
API. In particular, host threads in Multi-MLton are built on top
of one-shot continuations, which is completely separate from the
scheduling policy, while the parasitic thread API combines control
flow abstractions with parasitic scheduling and migration.

The goal of abstracting the scheduler is to expose both kinds of
thread creation mechanisms while unifying the scheduler abstrac-
tions, so as to ease the development asynchronous communica-
tion primitive. For example, with such a scheduler, the programmer

2 To download please visit:
http://sss.cs.purdue.edu/projects/multiMLton/mML/Download.html

7 2011/10/20

does not have to separately handle the situations where two para-
sites communicate and when two hosts communicate, and can treat
them uniformly. With this in mind, we have implemented a sched-
uler that exposes both spawnHost and spawnParasite, and unifies
the other scheduler idioms such as ready, switch, etc,. Being able
to simply define such a scheduler illustrates that parasitic threads
can easily replace host threads, and vice versa. We believe such
unified scheduler will be utilized by any library that leverages both
host and parasitic threads.

5.2 Lazy thread creation

The most common use case of parasitic threads is to model asyn-
chronous short-lived computation, that might potentially block on a
global resource, to be resumed at a later time. For example, ACML
defines an asynchronous version of CML sendEvt, the aSendEvt ,
which when synchronized on performs the send asynchronously.
Abstractly, a thread is created to perform this potentially blocking
action, such that even if the newly created thread blocks, the origi-
nal thread can continue execution.

Notice that if the asynchronous computation does not block,
there is no need to create a separate thread. In general, it is diffi-
cult to assert if an asynchronous action will block when synchro-
nized. If we polled for satisfiability, the state of the system might
change between polling and actual synchronization. In addition, the
asynchronous action might be composed of multiple blocking sub-
actions, all of which might not expose a polling mechanism.

Parasites provide a mechanism to lazily create a thread if needed.
We distinguish ourselves from previous work on lazy thread cre-
ation in Section 7. For a short-lived computation that does not
block, the overhead of parasites is the cost of a non-tail call and
overheads of mechanisms in place for parasitic reification and in-
flation. Whereas, spawning a host thread for a short-lived, non-
blocking computation is the cost of allocating and collecting the
host thread object, typically enqueueing and dequeueing from the
scheduler, and finally switching to the thread. Our empirical mea-
surements show that for a non-blocking, short-lived computation,
in the time that takes to create 1 host thread, we can create 46 par-
asites.

Configuration Norm. runtime
sendEvt 1
aSendEvt on Host 4.96
aSendEvt on Parasite 1.05

Table 1: Comparison of cost of aSendEvt implemented over hosts
and parasites

To illustrate the differences in a potentially blocking compu-
tation, we implemented a single producer, single consumer pro-
gram, where the producer repeatedly sends messages to the con-
sumer. We compared the performance of sendEvt (synchronous)
versus aSendEvt (asynchronous) implemented over host and para-
sitic threads.

The results, presented in Table 1, show that aSendEvt encoded
with parasites have a worse case overhead of only 5% over their
synchronous counterparts. Not surprisingly, in this micro bench-
mark, there was no profitable parallelism to extract.

5.3 Inflation

Just like asserting the blocking behavior of asynchronous compu-
tations, it is difficult to estimate the running time of an arbitrary
asynchronous computation. A long lived asynchronous computa-
tion may be run on a different core, if available, for parallelism.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

X
 ti

m
es

 s
pe

ed
up

Cores

Host
Par + no infl

Par + infl

Figure 9: Speedup of parasitic threads with and without inflation
compared to host threads

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Producers

Host
Parasite

Figure 10: Runtime performance of chooseAll primitive imple-
mented with host and parasitic threads.

Parasites are automatically inflated if they are long lived. As de-
scribed earlier 2.3.1, parasites can inflate either synchronously or
asynchronously on a timer interrupt. For a good runtime behav-
ior, we also assign a penalty-count to the underlying host thread,
which spawned the long running parasite. A host with penalty-
count greater than zero, will spawn the next parasite as a host, and
decrement penalty-count. The idea is that such a host will spawn
more long running parasites. Instead of spawning such computa-
tions as parasites and then inflating them, we eagerly spawn them
as hosts. Since parasites and hosts are semantically equivalent, and
are treated uniformly by the scheduler, they can be interchanged.
We have found that a penalty-count of 10 works well in practice
over a wide range of benchmarks.

To provide a better intuition, we implemented a micro-benchmark
that spawns a large number of long running computations. Each
threads computes a tight-loop. We compare the runtime perfor-
mance of spawning the computation as a host thread and parasite
with and without inflation. Figure 9 shows the speedup of different
configurations relative to the runtime of host threads on a single
core. We see that, without inflation, parasites offer no parallelism
and hence do not scale. With inflation, parasites perform identically
to host threads.

5.4 Choice

Communication primitives that abstractly coordinate over multi-
ple channels express a common communication pattern. Examples
range from CML’s choice primitive, MPI’s group communication
primitives such as scatter and gather, to our chooseAll . In sec-
tion. 2.3.2, we illustrated how such a primitive, chooseAll, could
possibly be modified for increased asynchrony with the help of par-
asitic threads.

To measure the benefit of using parasites instead of host threads
for the implicit threads of chooseAll, we implemented a multiple

8 2011/10/20

producer, single consumer benchmark, where the consumer uses
chooseAll to receive the value from the producers. Each producer
uses a private channel to send 100,000 messages to the consumer.
We varied the number of producers and measured the runtime per-
formance. Results are shown in Figure 10. We observe that parasitic
threads perform 2X faster than the host thread implementation on
2 cores.

5.5 Putting it all together

Although we presented only micro benchmarks thus far in this
section, we measure the real impact of utilizing parasitic threads,
with the help of a full-fledged web-server implemented on top of
ACML using parasitic threads. The results of this implementation
is presented in the following section.

6. Results
Our experiments were run on a 16-way AMD Opteron 865 server
with 8 processors, each containing two symmetric cores, and 32 GB
of total memory, with each CPU having its own local memory of 4
GB. Access to non-local memory is mediated by a hyper-transport
layer that coordinates memory requests between processors. MLton
uses 64-bit pointer arithmetic, SSE2 instructions for floating point
calculations, and is IEEE floating point compliant. Multi-MLton
is extended from the base MLton version 20100608. Multi-MLton
backend generates C files that were compiled with gcc 4.4.0.

6.1 Benchmarks

Our benchmarks are parallel version of programs in MLton’s
benchmark suite. The benchmarks were made parallel with the
help of ACML. The details of the benchmarks are provided below:

• Mandelbrot: a Mandelbrot set generator.
• K-clustering: a k-means clustering algorithm, where each stage

is spawned as a server.
• Barnes-Hut: an n-body simulation using Barnes-Hut algo-

rithm.
• Count-graphs: computes all symmetries (automorphisms)

within a set of graphs.
• Mergesort: merge-sort algorithm to sort one million numbers.
• TSP: a divide-and-conquer solution for traveling sales man

problem.
• Raytrace: a ray-tracing algorithm to render a scene.
• Mat-mult: a dense matrix multiplication of two 500 X 500

matrices.
• Sieve-primes: a streaming implementation of sieve of Eratos-

thenes that generates first 3000 prime numbers. Each stage in
the sieve is implemented as a lightweight thread.

• Par-tak: The highly recursive function Tak function, where
every recursive call is implemented as a lightweight threads that
communicates result back to the caller over a channel. This is
designed as a stress test for the runtime system.

• Par-fib: Parallel Fibonacci function implemented with lightweight
threads to stress test the runtime system. Results are presented
for calculating the 27th Fibonacci number.

• Swerve: A highly parallel concurrent web-server entirely writ-
ten in CML, fully compliant with HTTP/1.1. Parts of swerve
were rewritten using ACML to allow for greater concurrency
between interacting sub-components. Workloads were gener-
ated using Httperf — a standard tool for profiling web-server

performance. For our results, 20,000 requests were issued at
2500 connections per second.

Every benchmark was tested on four different configurations:
stop-the-world GC, stop-the-world GC with parasites, shared-heap
parallel GC, and shared-heap parallel GC with parasitic threads.
The parasitic versions of the benchmarks utilize asynchronous
communication between the threads, as well as parasites for im-
plicit threads created by ACML. The non-parasitic versions use
synchronous communication, since implementing asynchronous
communication over host threads is expensive, as previously shown
in Section 5.2. The benchmarks were run with same maximum heap
size for each of the configurations.

6.2 Threads and Communication

We have collected thread and communication statistics that provide
insights into the behavior of our programs, and also illustrate the
key to the benefits of parasites. Thread and communication statis-
tics for parasitic (Par) and non-parasitic (NPar) versions are tabu-
lated in Table 2. These statistics were collected for stop-the-world
GC version running on 16 cores. The statistics collected here were
similar on the shared-heap parallel GC as well as running on dif-
ferent number of cores.

The number of hosts (# Hosts) show that our benchmarks are
highly concurrent and amenable to parallel execution. The num-
ber of hosts created in parasitic versions is smaller than the non-
parasitic versions. This is due to the fact many of the original host
threads are created as parasites in the parasitic versions. On aver-
age, parasitic stacks are also much smaller than the host stacks.
Also, not all parasites are even reified and simply run to comple-
tion as a non-tail call. The cumulative effect of these on the para-
sitic version is the decreased cost of scheduling and management
(allocation and collection).

Parasitic stacks are almost always smaller than the reserved space
available in the host stacks. Hence, when parasites are attached to
hosts, the hosts need not grow the stacks in order to fit in the par-
asites. We measured the number of instances where parasite being
attached happened to be larger than the reserved space (# Force
stack growth), and forces stack growth on the host. Apart from Par-
fib, none of the benchmarks need to force stack growths more than
twice. In Par-fib, except the proto-thread, all of the threads cre-
ated are parasitic, a few of which get inflated during the execution.
Since all computation is encapsulated in parasitic threads, we see
an increased number of stack growths corresponding to parasite mi-
gration. Parasitic stack measurements are unavailable for Raytrace
since no parasites were reified. Parasitic closure size is the size of
the parasitic stack including the transitive closure. This shows the
average bytes copied for inter-processor parasitic communication.

The number of communications performed (# Comm) shows
that the benchmarks are also communication intensive. For channel
communication, a sender matching with a receiver is considered as
one communication action. The number of communications per-
formed is the same for the parasitic versions of the benchmarks,
and only the nature of the communication varies (Synchronous vs.
Asynchronous). Since the benchmarks are communication inten-
sive, asynchronous communication allows for greater concurrency
between the communicating threads, and hence, exhibits better par-
allel performance.

The number of hosts for the non-parasitic version of Par-fib could
not be obtained, since the program did not complete execution as it
runs out of memory. The Par-fib program creates a very large num-
ber of threads, most of which are alive throughout the lifetime of
the program. We observed that even for smaller Fibonacci numbers,

9 2011/10/20

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

(a) Mandelbrot

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

(b) K-clustering

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

(c) Barnes-hut

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10 12 14 16

(d) Count-graphs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

(e) Mergesort

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 0 2 4 6 8 10 12 14 16

(f) TSP

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10 12 14 16

(g) Ray-trace

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

(h) Matrix-multiply

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12 14 16

(i) Sieve-Primes

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12 14 16

(j) Par-tak

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2 4 6 8 10 12 14 16

(k) Par-fib

Key

Stop-the-world GC
Stop-the-world GC + Parasites

Split-heap parallel GC
Split-heap parallel GC + Parasites

Figure 11: Speedup relative to optimized serial execution. Number of cores is on the x-axis, with relative speedup on the y-axis.

10 2011/10/20

Benchmark # Host # Host # Par. # Comm. Avg host Avg par. # Force Avg par.
(Par) (NPar) stack size stack size stack closure

(bytes) (bytes) growth (bytes)
Mandelbrot 4083 6161 3306 4083 3463 155 1 328
K-clustering 771 1098 51402 51402 1804 136 0 240
Barnes-hut 8327 8327 24981 8075 1782 140 1 288
Count-graphs 153 153 148 516 3982 148 0 278
Mergesort 300 200260 2894734 2698766 1520 184 0 290
TSP 2074 4122 6143 4095 1304 303 1 528
Raytrace 580 590 24 256 4997 NA 0 NA
Matrix-multiply 528 528 512017 251001 2082 120 0 238
Sieve-primes 10411 12487 4872669 4946374 1738 139 0 243
Par-tak 122960 297338 175423 297361 1120 178 0 371
Par-fib 1 NA 466253 635621 1402 302 45087 463
Swerve 83853 110534 195534 367529 2692 160 2 405
Mean 19503 58327 766886 772090 2324 179 3758 334
Median 1423 6161 113413 151202 1793 155 0 290
SD 40211 101780 1526043 1516267 1217 64 13015 97

Table 2: Thread and communication statistics for Stop-the-world GC running on 8 cores

the non-parasitic version of Par-fib spent most of its time perform-
ing GC. Not only did the parasitic version of Par-fib run, but scaled
as the number of cores were increased.

6.3 Scalability

Speedup results are presented in Figure 11. Baseline is a version of
the programs optimized for serial execution, without the overhead
of threading wherever possible. In general, we see that the para-
sitic versions perform better than their corresponding non-parasitic
versions, and shared-heap parallel GC shows better scalability on
increasing number of cores. We also noticed that shared-heap par-
allel GC performs slower than the stop-the-world versions (Sieve-
primes and Mat-mult), if the amount of shared data is large. Here,
shared-heap parallel GC suffers the cost of copying the transitive
closure of the objects from the local heap to the shared heap, when
only a small portion of the closure is actually accessed in parallel.
Even here, parasitic versions perform better. We believe transitive
closure lifting cost can be alleviated by lifting parts of the closure
on demand. Parasitic threads also exhibit good scalability in the
highly concurrent Par-tak and Par-fib benchmarks. As mentioned
earlier, the speedup for the non-parasitic version of Par-fib is not
presented as the program did not successfully run to completion.

6.4 Swerve

Swerve is designed as a collection of sub-components such as file
processor, network processor, connection manager, etc. CML com-
munication abstractions are utilized for inter-component interac-
tion. This construction easily lends itself for multi-core execution.
We evaluated the performance of swerve on three configurations;
a parallel CML (PCML) implementation, an ACML implementa-
tion using host threads, and an ACML implementation using par-
asites. The parallel CML version uses synchronous communica-
tion for interaction between different sub-components. By utilizing
asynchronous communication, overall concurrency in the system is
increased.

We utilized Httperf to measure the reply rate of different con-
figurations by repeatedly accessing a 10KB file. We issued con-
nections at a rate of 2500 connections per second. In each case,
swerve was run on 16 cores. The PCML implementation scaled
up to 1610 replies per second. As expected, naively spawning
lightweight threads for asynchrony in the ACML version using
host threads, suppressed the benefits of increased concurrency in
the program due to communication overheads. Swerve with ACML

implemented on hosts scaled up to 1580 replies per second. By mit-
igating the overheads of asynchrony, swerve with parasites scaled
was able to scale better and offered up to 2230 replies per second.

7. Related Work
There are a number of languages and libraries which support vary-
ing kinds of message-passing styles. Systems such as MPI [17, 30]
support per-processor static buffers, while CML [26], Erlang [2],
F# [29], and MPJ [3] allow for dynamic channel creation. Al-
though MPI supports two distinct styles of communication, both
asynchronous and synchronous, not all languages provide primitive
support for both. For instance, Erlang’s fundamental message pass-
ing primitives are asynchronous, while CML’s primitives are syn-
chronous. We described how parasites can be utilized to improve
the performance of ACML, which supports both synchronous and
asynchronous communication. We believe the benefits of parasitic
threads can be leveraged regardless of the underlying fundamental
message passing primitive used.

There has been much interest in lightweight threading models
ranging from using runtime managed thread pools such as those
found in C# [28] and the Java util.concurrent package [16], to
continuation-based systems found in functional languages such as
Scheme [15, 22], CML [26], Haskell [11], and Erlang [2]. Parasitic
threads can be viewed as a form of lightweight threading, though
there are a number of key differences. In addition to describing
a non-local control flow abstraction, scheduling and migration are
an integral part of parasitic threads. This makes parasites ideal for
short-lived computation, by avoiding the scheduler overheads and
localizing the thread interactions.

Worker pool models for executing asynchronous tasks have been
explored in languages like F#, for latency masking in I/O opera-
tions. However, this model is not effective for implementing tightly
interacting asynchronous tasks. In the worker pool model, even a
short-lived asynchronous computation is not started immediately,
but only when a worker is free, and hence delaying transitively de-
pendent tasks. This model also suffers from contention on the task
queues in a parallel setting. Finally, the amount of concurrency is
limited by the number of workers in the pool of threads.

Previous work on avoiding thread creation costs have focused
on compiler and runtime techniques for different object repre-
sentations [9, 22] and limiting the computations performed in a
thread [14, 15]. The most similar among the previous work to par-
asitic threads is Lazy Threads [10], which allow encoding arbitrary

11 2011/10/20

computation in a potentially parallel thread. The lazy threads start
off as regular function calls, just like parasites. The key difference
of this work to parasites is that when a lazy thread blocks, it is not
reified, and is left in the host stack, right on top of its parent. Any
subsequent function calls made by the parent is executed in a new
stack, and the system thus has spaghetti stacks.

Lazy threads assume that blocking is rare, whereas the common
case in a parasitic thread is blocking on a synchronous communica-
tion. Leaving the parasites on the host would be detrimental to the
performance since even if one parasite blocks, all subsequent se-
quential function calls and parasite creation on the host will have to
be run on a separate thread. Parasite also support implicit migration
to the point of synchronization, and helps to localize interactions,
which is not possible if the parasites are pinned to the hosts.

Parasites also share some similarity to dataflow [13, 23] lan-
guages, insofar as they represent asynchronous computations that
block on dataflow constraints; in our case, these constraints are
manifest via synchronous message-passing operations. Unlike clas-
sic dataflow systems, however, parasites are not structured as nodes
in a dependency graph, and maintain no implicit dependency rela-
tionship with the thread that created it. CML [26] supports buffered
channels with mailboxes. While parasites can be used to encode
asynchronous sends, unlike buffered channels, they provide a gen-
eral solution to encode arbitrary asynchronous computation.

Work sharing and work stealing [1, 4] are well-known techniques
for load balancing multi threaded tree-structured computations, and
has been used effectively in languages like Cilk [9] to improve
performance. Work sharing is a push model while work stealing is
a pull model, and each model has its pros and cons. In our system,
host threads are scheduled by work sharing, by eagerly spawning in
a round-robin fashion, while parasites are implicitly stolen during
channel communication.

8. Conclusions
This paper describes a novel threading mechanism called para-
sites that enables lightweight asynchronous computation. The key
distinguishing feature of parasites is its ability to execute using
the resources of a host thread. Parasitic threads are exposed as a
threading library for building higher level abstractions, encapsu-
lating demand-driven scheduling and migration. This mechanism
enables higher-level programmability without imposing additional
scheduling and thread management overheads. Performance eval-
uation of parasitic threads on two different GC schemes illustrate
that parasitic threads are beneficial irrespective of the underlying
GC schemes.

References
[1] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. Adaptive

Work Stealing with Parallelism Feedback. In PPoPP, pages 112–120,
2007.

[2] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams.
Concurrent Programming in Erlang. Prentice-Hall, 2nd edition, 1996.

[3] Mark Baker and Bryan Carpenter. Mpj: A proposed java message
passing api and environment for high performance computing. In
IPDPS, pages 552–559, 2000.

[4] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multi-
threaded Computations by Work Stealing. J. ACM, pages 720–748,
1999.

[5] David R. Butenhof. Programming with POSIX threads. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[6] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and

Vivek Sarkar. X10: an object-oriented approach to non-uniform clus-
ter computing. In OOPSLA, 2005.

[7] Avik Chaudhuri. A concurrent ml library in concurrent haskell. In
ICFP, 2009.

[8] Damien Doligez and Xavier Leroy. A concurrent, generational
garbage collector for a multithreaded implementation of ml. In POPL,
1993.

[9] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Im-
plementation of the Cilk-5 Multithreaded Language. In PLDI, pages
212–223, 1998.

[10] Seth Copen Goldstein, Klaus Erik Schauser, and David E. Culler. Lazy
threads: implementing a fast parallel call. J. Parallel Distrib. Comput.,
1996.

[11] Tim Harris, Simon Marlow, , and Simon Peyton Jones. Haskell on a
Shared-Memory Multiprocessor. In Haskell Workshop, pages 49–61,
2005.

[12] Suresh Jagannathan, Armand Navabi, KC Sivaramakrishnan, and
Lukasz Ziarek. Design rationale for multi-mlton. In ML Workshop,
2010.

[13] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Ad-
vances in Dataflow Programming Languages. ACM Comput. Surv.,
pages 1–34, 2004.

[14] Laxmikant Kale. Charm++. In Encyclopedia of Parallel Computing
(to appear). Springer Verlag, 2011.

[15] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T: A High-
Performance Parallel Lisp. In PLDI, pages 81–90, 1989.

[16] Doug Lea. Concurrent Programming in Java(TM): Design Principles
and Pattern. Prentice-Hall, 2nd edition, 1999.

[17] Guodong Li, Michael Delisi, Ganesh Gopalakrishnan, and Robert M.
Kirby. Formal Specification of the MPI-2.0 Standard in TLA+. In
PPoPP, pages 283–284, 2008.

[18] Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime
support for multicore haskell. In ICFP, 2009.

[19] M. Matthias Felleisen and Dan Friedman. Control operators, the
SECD Machine, and the λ-calculus. In Formal Description of Pro-
gramming Concepts III, pages 193–217, 1986.

[20] Robin Milner, Mads Tofte, and David Macqueen. The Definition of
Standard ML. MIT Press, 1997.

[21] MLton. http://www.mlton.org.
[22] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy Task

Creation: A Technique for Increasing the Granularity of Parallel Pro-
grams. In LFP, pages 185–197, 1990.

[23] Rishiyur Nikhil and Arvind. Implicit Parallel Programming in pH.
Morgan-Kaufmann, 2001.

[24] Chuck Pheatt. Intel threading building blocks. J. Comput. Small Coll.,
2008.

[25] John Reppy, Claudio V. Russo, and Yingqi Xiao. Parallel concurrent
ml. In ICFP, 2009.

[26] John H. Reppy. Concurrent Programming in ML. Cambridge Univer-
sity Press, 1999.

[27] KC Sivaramakrishnan, Lukasz Ziarek, Raghavendra Prasad, and
Suresh Jagannathan. Lightweight asynchrony using parasitic threads.
In DAMP, 2010.

[28] C# Language Specification. http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-334.pdf.

[29] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F#.
Apress, 2007.

[30] Hong Tang and Tao Yang. Optimizing Threaded MPI Execution on
SMP Clusters. In ICS, pages 381–392, 2001.

[31] Lukasz Ziarek, KC Sivaramakrishnan, and Suresh Jagannathan. Com-
posable asynchronous events. In PLDI, 2011.

12 2011/10/20

