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Agenda

Filter Manager Overview

 Legacy Filtering Mechanisms & Issues

 Filter Manager Benefits

 Filter Manager Architecture 

 Features / Functionality

 Project Status & Release Plans

Question and Answer
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The State Of The Filter World

Many products use a file system filter

 Historically, caused much customer pain

 Issues include stability, performance, & interoperability

Examples of products with filter drivers:

 Antivirus products

 Filter watches I/O to and from certain file types (.exe, .doc, etc.) looking for virus signatures

 File replication products 

 File-system-level mirroring

 System Restore 

 Backs up system files when changes are about to be made so that the user can return to the 
original state

 Many more…

 Quota products, backup agents, undelete, encryption products, etc.

We’ve come a long way in addressing issues with filter drivers:

 Improved documentation

 Plug-fests

 AV certification program

 However, 7% of OCA crashes are still attributed directly to 3rd party filter drivers
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Legacy Filter Mechanisms - Typical I/O Path

NtReadFile() / NtWriteFile(), ...

I/O Manager
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FAT NTFS RDR

Filter Driver (e.g. Anti-Virus)

IRP + Fast-I/O Interfaces

Filter Driver (e.g. Replication)

Other Filter Drivers (e.g. Quotas, Encryption, Other)



5

Architecture Of (Legacy) File System Filters

Kernel-mode drivers

Attach to locally mounted volumes (e.g. C: )and/or to redirectors 
(e.g. RDR/WebDAV)

 Attach to file system driver control device objects

 “Walk” list of mounted volumes in an unsafe manner

 Intercept mount volume requests

 Poll for redirector load

Intercept IRPs and fast-i/o requests issued by I/O Manager to File 
System Driver (FSD)

Perform filter-specific processing prior to dispatching request to FSD 
and/or post-completion of request processing by FSD

 Often impact control flow

 Often massage returned data/metadata

May generate new I/O Request Packets (IRPs) as part of processing
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Why You Should Hate Your Filter

Reliability

 A bug in your driver will cause a blue-screen or deadlock

Performance

 You’re on the path of all I/O

Development and maintenance cost

 Complex code

 Hard to develop, test, debug, maintain

 Must revise with each OS version and/or service packs

Not your core competency

Not your core value add to the customer
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Motivation For Filter Manager

Many problems with current model (legacy filters)

 Poor control over stack ordering (load order groups)

 No unload support

 Stack limit issues

 Complex interfaces (“fast-io” and IRPs)

 Reentrancy issues

 Inefficiencies due to redundant work in filters

 Ad-hoc (reinvented) methods for common tasks

 Attach to mounted volumes and redirectors

 Generate IRPs

 Obtain file/path name

 Maintain filter contexts per object (volume, stream, other)

 Manage buffers

 Substantial Performance Degradation

Expect even more problems with new functionality e.g.  TxF (Transactional 
NTFS) support



8

Filter Manager Benefits

Callback based rather than chained dispatch routines

 Helps solve many stack overflow issues

 Ability for system to add new operation types w/o breaking existing filters

Uniform interface for all operations

 Fast I/O, IRP, callbacks are all intercepted in the same manner

Isolation from gnarly IRP processing rules

 Filter Manager does this processing on behalf of the filters

Dynamic load/unload (Ability to unload)

Non re-entrant filter initiated I/O 

Efficient pass through

Deterministic Load Order (ease interoperability/testing)

Efficient context management

A library of value-add APIs

 File name management

 IO cancellation and queuing

 Buffer Management

Efficient and secure user/kernel communication

Support for TxF
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...Other Legacy Filters AND Filter Manager Instances...

I/O Path with The Filter Manager

NtReadFile() / NtWriteFile(), ...

I/O Manager
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FAT NTFS RDR

Filter Manager Instance

IRP + Fast-I/O Interfaces

Legacy 3rd Party Filter Driver(s) (e.g. Replication)

Filter Manager Instance

Mini-Filter

Mini-Filter

Mini-Filter

Mini-Filter

Mini-Filter

Consistent Invocation 

(packet/call-back mechanism)

Other legacy & filter manager instances...
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Filter Manager Architecture

Legacy file system filter

Manages the complexity of I/O system through new interfaces and 

library routines

Has kernel and user-mode interfaces

Supports multiple loaded mini-filters and multiple instances per volume

Coexists with other legacy filter drivers (until they are all phased out)
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Minifilter Development

Just another kernel mode driver

Register with filter manager in DriverEntry()

Leverage filter manager to attach to volumes (local and remote)

Utilize filter manager to process only I/O operations of interest (specify 
appropriate callbacks)

Determine control flow easily and efficiently

Utilize available library functions for commonly required functionality such as:

 obtaining file name/path

 synchronize post-processing of I/O operations

 queue and manage per-object context

 other …

Be able to unload/upgrade driver in field w/o requiring reboot

Leverage filter manager provided efficient user/kernel 
communication mechanism

Interoperate correctly with transactional file system support
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Callback Model

Mini-filter registers only for operations in which it is interested through 

FLT_REGISTRATION structure

 Register pre-operation callback and/or post-operation callback

FLT_CALLBACK_DATA replaces the IRP

 FLT_CALLBACK_DATA->Iopb contains parameters for this operation, similar 

to IO_STACK_LOCATION

 No management of FLT_CALLBACK_DATA needed, i.e., no more 

IoSkipCurrentIrpStackLocation(), IoSetCompletionRoutine()

 Common structure for all types of operations:

Irp, FastIo, and FsFilter
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Instances And Altitudes

Instance: Instantiation of a filter on a 

volume at a particular altitude

Support multiple instances of a mini-

filter on a volume

Altitude determines relative stack 

position

Volume,

e.g., “c:\”

AntiVirus Filter
(Altitude: “300”)

Encryption Filter

(Altitude: “100”)

Volume,

e.g.,

“LanmanRedirector”

AntiVirus Filter
(Altitude: “300”)

Encryption Filter

(Altitude: “100”)

Conceptual IO Flow

Conceptual IO Flow

MiniSpy Filter
(Altitude: “200”)

MiniSpy Filter

(Altitude: “400”)
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Loading Filter

FltRegisterFilter()

 Register with Filter Manager

 All callback information in FLT_REGISTRATION structure

FltStartFiltering()

 Begin enumeration of existing volumes in system

 InstanceSetup() callback is called for mini-filter to see if it wants to attach
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Unloading Filter

Through FilterUnload() callback, mini-filter is allowed to accept or deny 

the unload request

To unload, Filter Manager synchronizes the safe removal of all mini-filter 

instances through a series of notifications

 InstanceQueryTeardown() – allows filter to fail the teardown request for given 

instance

 InstanceTeardownStart() – Notifies filter that teardown process is beginning 

for given instance

 InstanceTeardownComplete() – Notifies filter teardown process has finished 

for given instance
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Managing IO Processing

Mini-filter communicates control flow choice through callback 

return value

In pre-operation, filter can:

 Pass through the operation –FLT_PREOP_SUCCESS_NO_CALLBACK

 Ask to see operation completion –

FLT_PREOP_SUCCESS_WITH_CALLBACK

 Pend the operation – FLT_PREOP_PENDING

 Ask to have completion synchronized to current thread –

FLT_PREOP_SYNCHRONIZE

 Complete the operation – FLT_PREOP_COMPLETE
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Managing IO Processing

In postOperation, mini-filter can:

 Do its work and continue completion processing –

FLT_POSTOP_FINISHED_PROCESSING

 Pend the completion processing –

FLT_POSTOP_MORE_PROCESSING_REQUIRED

For pended IOs, continue processing with 

FltCompletePendedPreOperation() or 

FltCompletePendedPostOperation()
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Other Filter Manager Support

Queuing Support

Buffer Manipulation (locking/swapping)

Context Management

File Name Management

I/O Generation
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Filter Manager’s User-mode Library

Provides common functionality for user-mode applications that work with 

filter drivers

Application must link with filterlib.dll

Include header files fltUser.h and fltUserStructures.h

Load and unload mini-filters

 FilterLoad(), FilterUnload()

Open handles to filters or instances to get information

 FilterCreate(), FilterInstanceCreate()

 FilterGetInformation(), FilterInstanceGetInformation()
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Filter Manager’s User-mode Library

Enumerate filters, instances, and volumes

 FilterFindFirst(), FilterFindNext()

 FilterVolumeFindFirst(), FilterVolumeFindNext()

 FilterInstanceFindFirst(), FilterInstanceFindNext()

 FilterVolumeInstanceFindFirst(), FilterVolumeInstanceFindNext()

Open handle to communication port

 FilterConnectCommunicationPort()

Add and remove mini-filter instances

 FilterAttach(), FilterAttachAtAltitude()

 FilterDetach()
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Fltmc.exe Control Program

Command line utility for common filter management operations

 Load and unload mini-filters

 Attach/detach mini-filters to/from volumes

 Enumerate mini-filters, instances, volumes

“fltmc help”

 Displays help information for utility
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Debugging Resources

Fltkd.dll debugger extension

 !fltkd.help will list all the available commands

 For more specific help on a single command, issue that command with no 

parameters

 !cbd: Filter Manager equivalent to !irp

 !volumes, !filters: List all volumes/filters in system

 !volume, !filter, !instance: Give detail on a specific object

 Ignore version warning, turn off with “.noversion” command

Run with debug fltmgr.sys

 Lots of ASSERT to catch common errors
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Filter Verifier

Enable through verifying mini-filter via Driver Verifier with “I/O 

Verification“ option

Verification starts when a filter registers with the Filter Manager

Validates all Filter Manager API calls by mini-filter

 Validates parameters and calling context

Verifies all the special return values from mini-filter’s pre/post 

callback routines

Ensures mini-filter changed the parameters in the callback data in a 

coherent/consistent manner

More to come in future
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Project Status / Release Plan / Miscellaneous

All existing Microsoft filters converted to minifilter model for Longhorn

Minifilters and Legacy filters will coexist – however, goal is to strongly 

encourage all filters to be converted to minifilter model

Filter Manager to be released in 

 Longhorn

 Windows Storage Server

 Windows Server 2003 SP1

 WinXP SP2

 Support for Windows 2000 (release plans being finalized)

IFS Kit update for Windows Server 2003 SP1, Windows XP Service 

Pack 2 and the Longhorn driver kit will contain filter manager libraries, 

headers, and samples

For more information, contact rajeevn@microsoft.com
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Call To Action

Port your legacy filter to the mini-filter model

Send us feedback on the filter manager including any additional support 

that may benefit your product/mini-filter
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