
1

Filter Manager

Rajeev Nagar

Lead Program Manager

Core File Services

rajeevn@microsoft.com

2

Agenda

Filter Manager Overview

 Legacy Filtering Mechanisms & Issues

 Filter Manager Benefits

 Filter Manager Architecture

 Features / Functionality

 Project Status & Release Plans

Question and Answer

3

The State Of The Filter World

Many products use a file system filter

 Historically, caused much customer pain

 Issues include stability, performance, & interoperability

Examples of products with filter drivers:

 Antivirus products

 Filter watches I/O to and from certain file types (.exe, .doc, etc.) looking for virus signatures

 File replication products

 File-system-level mirroring

 System Restore

 Backs up system files when changes are about to be made so that the user can return to the
original state

 Many more…

 Quota products, backup agents, undelete, encryption products, etc.

We’ve come a long way in addressing issues with filter drivers:

 Improved documentation

 Plug-fests

 AV certification program

 However, 7% of OCA crashes are still attributed directly to 3rd party filter drivers

4

Legacy Filter Mechanisms - Typical I/O Path

NtReadFile() / NtWriteFile(), ...

I/O Manager

C
a
c
h

e
 M

a
n

a
g

e
r

FAT NTFS RDR

Filter Driver (e.g. Anti-Virus)

IRP + Fast-I/O Interfaces

Filter Driver (e.g. Replication)

Other Filter Drivers (e.g. Quotas, Encryption, Other)

5

Architecture Of (Legacy) File System Filters

Kernel-mode drivers

Attach to locally mounted volumes (e.g. C:)and/or to redirectors
(e.g. RDR/WebDAV)

 Attach to file system driver control device objects

 “Walk” list of mounted volumes in an unsafe manner

 Intercept mount volume requests

 Poll for redirector load

Intercept IRPs and fast-i/o requests issued by I/O Manager to File
System Driver (FSD)

Perform filter-specific processing prior to dispatching request to FSD
and/or post-completion of request processing by FSD

 Often impact control flow

 Often massage returned data/metadata

May generate new I/O Request Packets (IRPs) as part of processing

6

Why You Should Hate Your Filter

Reliability

 A bug in your driver will cause a blue-screen or deadlock

Performance

 You’re on the path of all I/O

Development and maintenance cost

 Complex code

 Hard to develop, test, debug, maintain

 Must revise with each OS version and/or service packs

Not your core competency

Not your core value add to the customer

7

Motivation For Filter Manager

Many problems with current model (legacy filters)

 Poor control over stack ordering (load order groups)

 No unload support

 Stack limit issues

 Complex interfaces (“fast-io” and IRPs)

 Reentrancy issues

 Inefficiencies due to redundant work in filters

 Ad-hoc (reinvented) methods for common tasks

 Attach to mounted volumes and redirectors

 Generate IRPs

 Obtain file/path name

 Maintain filter contexts per object (volume, stream, other)

 Manage buffers

 Substantial Performance Degradation

Expect even more problems with new functionality e.g. TxF (Transactional
NTFS) support

8

Filter Manager Benefits

Callback based rather than chained dispatch routines

 Helps solve many stack overflow issues

 Ability for system to add new operation types w/o breaking existing filters

Uniform interface for all operations

 Fast I/O, IRP, callbacks are all intercepted in the same manner

Isolation from gnarly IRP processing rules

 Filter Manager does this processing on behalf of the filters

Dynamic load/unload (Ability to unload)

Non re-entrant filter initiated I/O

Efficient pass through

Deterministic Load Order (ease interoperability/testing)

Efficient context management

A library of value-add APIs

 File name management

 IO cancellation and queuing

 Buffer Management

Efficient and secure user/kernel communication

Support for TxF

9

...Other Legacy Filters AND Filter Manager Instances...

I/O Path with The Filter Manager

NtReadFile() / NtWriteFile(), ...

I/O Manager

C
a
c
h

e
 M

a
n

a
g

e
r

FAT NTFS RDR

Filter Manager Instance

IRP + Fast-I/O Interfaces

Legacy 3rd Party Filter Driver(s) (e.g. Replication)

Filter Manager Instance

Mini-Filter

Mini-Filter

Mini-Filter

Mini-Filter

Mini-Filter

Consistent Invocation

(packet/call-back mechanism)

Other legacy & filter manager instances...

10

Filter Manager Architecture

Legacy file system filter

Manages the complexity of I/O system through new interfaces and

library routines

Has kernel and user-mode interfaces

Supports multiple loaded mini-filters and multiple instances per volume

Coexists with other legacy filter drivers (until they are all phased out)

11

Minifilter Development

Just another kernel mode driver

Register with filter manager in DriverEntry()

Leverage filter manager to attach to volumes (local and remote)

Utilize filter manager to process only I/O operations of interest (specify
appropriate callbacks)

Determine control flow easily and efficiently

Utilize available library functions for commonly required functionality such as:

 obtaining file name/path

 synchronize post-processing of I/O operations

 queue and manage per-object context

 other …

Be able to unload/upgrade driver in field w/o requiring reboot

Leverage filter manager provided efficient user/kernel
communication mechanism

Interoperate correctly with transactional file system support

12

Callback Model

Mini-filter registers only for operations in which it is interested through

FLT_REGISTRATION structure

 Register pre-operation callback and/or post-operation callback

FLT_CALLBACK_DATA replaces the IRP

 FLT_CALLBACK_DATA->Iopb contains parameters for this operation, similar

to IO_STACK_LOCATION

 No management of FLT_CALLBACK_DATA needed, i.e., no more

IoSkipCurrentIrpStackLocation(), IoSetCompletionRoutine()

 Common structure for all types of operations:

Irp, FastIo, and FsFilter

13

Instances And Altitudes

Instance: Instantiation of a filter on a

volume at a particular altitude

Support multiple instances of a mini-

filter on a volume

Altitude determines relative stack

position

Volume,

e.g., “c:\”

AntiVirus Filter
(Altitude: “300”)

Encryption Filter

(Altitude: “100”)

Volume,

e.g.,

“LanmanRedirector”

AntiVirus Filter
(Altitude: “300”)

Encryption Filter

(Altitude: “100”)

Conceptual IO Flow

Conceptual IO Flow

MiniSpy Filter
(Altitude: “200”)

MiniSpy Filter

(Altitude: “400”)

14

Loading Filter

FltRegisterFilter()

 Register with Filter Manager

 All callback information in FLT_REGISTRATION structure

FltStartFiltering()

 Begin enumeration of existing volumes in system

 InstanceSetup() callback is called for mini-filter to see if it wants to attach

15

Unloading Filter

Through FilterUnload() callback, mini-filter is allowed to accept or deny

the unload request

To unload, Filter Manager synchronizes the safe removal of all mini-filter

instances through a series of notifications

 InstanceQueryTeardown() – allows filter to fail the teardown request for given

instance

 InstanceTeardownStart() – Notifies filter that teardown process is beginning

for given instance

 InstanceTeardownComplete() – Notifies filter teardown process has finished

for given instance

16

Managing IO Processing

Mini-filter communicates control flow choice through callback

return value

In pre-operation, filter can:

 Pass through the operation –FLT_PREOP_SUCCESS_NO_CALLBACK

 Ask to see operation completion –

FLT_PREOP_SUCCESS_WITH_CALLBACK

 Pend the operation – FLT_PREOP_PENDING

 Ask to have completion synchronized to current thread –

FLT_PREOP_SYNCHRONIZE

 Complete the operation – FLT_PREOP_COMPLETE

17

Managing IO Processing

In postOperation, mini-filter can:

 Do its work and continue completion processing –

FLT_POSTOP_FINISHED_PROCESSING

 Pend the completion processing –

FLT_POSTOP_MORE_PROCESSING_REQUIRED

For pended IOs, continue processing with

FltCompletePendedPreOperation() or

FltCompletePendedPostOperation()

18

Other Filter Manager Support

Queuing Support

Buffer Manipulation (locking/swapping)

Context Management

File Name Management

I/O Generation

19

Filter Manager’s User-mode Library

Provides common functionality for user-mode applications that work with

filter drivers

Application must link with filterlib.dll

Include header files fltUser.h and fltUserStructures.h

Load and unload mini-filters

 FilterLoad(), FilterUnload()

Open handles to filters or instances to get information

 FilterCreate(), FilterInstanceCreate()

 FilterGetInformation(), FilterInstanceGetInformation()

20

Filter Manager’s User-mode Library

Enumerate filters, instances, and volumes

 FilterFindFirst(), FilterFindNext()

 FilterVolumeFindFirst(), FilterVolumeFindNext()

 FilterInstanceFindFirst(), FilterInstanceFindNext()

 FilterVolumeInstanceFindFirst(), FilterVolumeInstanceFindNext()

Open handle to communication port

 FilterConnectCommunicationPort()

Add and remove mini-filter instances

 FilterAttach(), FilterAttachAtAltitude()

 FilterDetach()

21

Fltmc.exe Control Program

Command line utility for common filter management operations

 Load and unload mini-filters

 Attach/detach mini-filters to/from volumes

 Enumerate mini-filters, instances, volumes

“fltmc help”

 Displays help information for utility

22

Debugging Resources

Fltkd.dll debugger extension

 !fltkd.help will list all the available commands

 For more specific help on a single command, issue that command with no

parameters

 !cbd: Filter Manager equivalent to !irp

 !volumes, !filters: List all volumes/filters in system

 !volume, !filter, !instance: Give detail on a specific object

 Ignore version warning, turn off with “.noversion” command

Run with debug fltmgr.sys

 Lots of ASSERT to catch common errors

23

Filter Verifier

Enable through verifying mini-filter via Driver Verifier with “I/O

Verification“ option

Verification starts when a filter registers with the Filter Manager

Validates all Filter Manager API calls by mini-filter

 Validates parameters and calling context

Verifies all the special return values from mini-filter’s pre/post

callback routines

Ensures mini-filter changed the parameters in the callback data in a

coherent/consistent manner

More to come in future

24

Project Status / Release Plan / Miscellaneous

All existing Microsoft filters converted to minifilter model for Longhorn

Minifilters and Legacy filters will coexist – however, goal is to strongly

encourage all filters to be converted to minifilter model

Filter Manager to be released in

 Longhorn

 Windows Storage Server

 Windows Server 2003 SP1

 WinXP SP2

 Support for Windows 2000 (release plans being finalized)

IFS Kit update for Windows Server 2003 SP1, Windows XP Service

Pack 2 and the Longhorn driver kit will contain filter manager libraries,

headers, and samples

For more information, contact rajeevn@microsoft.com

25

Call To Action

Port your legacy filter to the mini-filter model

Send us feedback on the filter manager including any additional support

that may benefit your product/mini-filter

26

© 2003 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

27

