Finding Frequent ltems in Data Streams

Graham Cormode

ABSTRACT

The frequent items problem is to process a stream of items and find
all items occurring more than a given fraction of the time. It is one
of the most heavily studied problems in data stream mining, dating
back to the 1980s. Many applications rely directly or indirectly
on finding the frequent items, and implementations are in use in
large scale industrial systems. However, there has not been much
comparison of the different methods under uniform experimental
conditions. It is common to find papers touching on this topic in
which important related work is mischaracterized, overlooked, or
reinvented.

In this paper, we aim to present the most important algorithms
for this problem in a common framework. We have created base-
line implementations of the algorithms, and used these to perform a
thorough experimental study of their properties. We give empirical
evidence that there is considerable variation in the performance of
frequent items algorithms. The best methods can be implemented
to find frequent items with high accuracy using only tens of kilo-
bytes of memory, at rates of millions of items per second on cheap
modern hardware.

1. INTRODUCTION

The frequent items problem is one of the most heavily studied
questions in data streams research. The problem is popular due to
its simplicity to state, and its intuitive interest and value. It is im-
portant both in itself, and as a subroutine within more advanced
data stream computations. Informally, given a sequence of items,
the problem is simply to find those items which occur most fre-
quently. Typically, this is formalized as finding all items whose
frequency exceeds a specified fraction of the total number of items.
Variations arise when the items are given weights, and further when
these weights can also be negative.

This abstract problem captures a wide variety of settings. The
items can represent packets on the Internet, and the weights the
size of the packets. Then the frequent items represent the most
popular destinations, or the heaviest bandwidth users (depending
on how the items are extracted from the flow identifiers). Or, the
items can represent queries made to an Internet search engine, and
the frequent items are now the (currently) popular terms. These

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

Marios Hadijieleftheriou
AT&T Labs—Research, Florham Park, NJ

{graham,mariohy@research.att.com

1530

are not simply hypothetical examples, but genuine cases where al-
gorithms for this problem have been used by large corporations:
AT&T [13] and Google [35] respectively. Given the size of the
data (which is being generated at high speed), it is important to
find algorithms which are capable of processing each new update
very quickly, without blocking. It also helps if the working space
of the algorithm is very small, so that the analysis can happen over
many different groups in parallel, and because small structures are
likely to have better cache behavior and hence further help increase
the throughput.

Obtaining efficient and scalable solutions to the frequent items
problem is also important since many streaming applications need
to find frequent items as a ‘subroutine’ of another, more complex
computation. Most directly, mining frequent itemsets inherently
builds on finding frequent items as a basic building block. Finding
the entropy of a stream requires learning the most frequent items
in order to directly compute their contribution to the entropy, and
remove their contribution before approximating the entropy of the
residual stream [10]. The HSS technique uses hashing to derive
multiple substreams, the frequent elements of which are extracted
to estimate the frequency moments of the stream |[J5].

Other work solves generalized versions of frequent items prob-
lems by building on algorithms for the ‘vanilla’ version of the prob-
lem. Several techniques for finding the frequent items in a sliding
window model operate by keeping track of the frequent items in
many sub-windows [19} |2 29]. The ‘heavy hitters distinct’ prob-
lem, where the count of an item is the number of distinct pairs con-
taining that item paired with a secondary item, is typically solved
extending a frequent items algorithm with distinct counting algo-
rithms [28} |6]. Frequent items have also been applied to models
of probabilistic streaming data [26], and within faster ‘skipping’
techniques [4].

Thus the problem remains an important one to understand and
study in order to produce efficient streaming implementations. It
remains an active area, with a steady flow of new submissions ad-
dressing the problem or variations thereof. However, sometimes
prior work is overlooked or mischaracterized: algorithms first pub-
lished in the eighties have been “rediscovered” two decades later;
existing work is sometimes claimed to be incapable of a certain
guarantee, which in truth it can provide with only minor modifica-
tions; and experimental comparisons often compare against meth-
ods that are less suitable for the given problem than others that are
not included (although where a subset of methods have been com-
pared, the results are broadly in agreement with those we present
here). In this paper, we try to set out clearly and concisely the main
ideas in this area, as well as the common pitfalls.

Our goals are threefold:

e To provide a clear explanation of the most important algo-
rithms for the frequent items problem, and allow comparison
of their properties by using common notation and terminol-
ogy. In doing so, we aim to clarify the historical development
of these algorithms, and clear up some misconceptions.

To provide baseline implementations of many of these al-
gorithms against which future algorithms can be compared,
and on top of which algorithms for different problems can be
built.

To perform a thorough experimental evaluation of the algo-
rithms over a variety of data sets to indicate their perfor-
mance in practice.

2. DEFINITIONS

Definition 1. Given a stream S of n items ¢i ...t,, the fre-
quency of an item ¢ is f; = |{j|¢t; = i}|. The exact ¢-frequent
items comprise the set {i|f; > ¢n}.

Example. The stream S = (a,b,a,c¢,c,a,b,d) has f, = 3, fp =
2, fe = 2, fa = 1. For ¢ = 0.2, the frequent items are a, b and c.

A streaming algorithm which solves this problem must use a lin-
ear amount of space, even for large values of ¢: Given an algo-
rithm that claims to solve this problem, we could insert a set S’ of
N items, where every item has frequency 1. Then, we could also
insert /N copies of item 4. If 4 is then reported as a frequent item
(occurring more than 50% of the time) then ¢ € S, else i € S.
Consequently, since set membership requires (V) space, Q(N)
space is also required to solve the frequent items problem. Instead,
an approximate version is defined based on a tolerance for error €.

Definition 2. Given a stream S of n items, the e-approximate
frequent items problem is to return a set of items F' so that for all
items ¢ € F, fi > (¢ — €)n, and there is no ¢ ¢ F such that
fi > o¢n.

Since the exact (¢ = 0) frequent items problem is hard in gen-
eral, we will use “frequent items” or “the frequent items problem”
to refer to the e-approximate frequent items problem. A related
problem is to estimate the frequency of items on demand:

Definition 3. Given a stream S of n items defining frequencies
fi as above, the frequency estimation problem is to process a stream
so that, given any ¢, an f; is returned satisfying f; < f; < fi + en.

A solution to the frequency estimation problem allows the fre-
quent items problem to be solved (slowly): one can estimate the
frequency of every possible item ¢, and report those i’s whose fre-
quency is estimated above (¢ — €)n. Exhaustively enumerating
all items can be very time consuming (and sometimes impossible;
e.g., when the items can be arbitrary strings). However, all the al-
gorithms we study here solve both the approximate frequent items
problem and the frequency estimation at the same time. Most solu-
tions are deterministic, but we also discuss randomized solutions,
which have a user-specified probability of failure.

Many other variations of the problem have been studied, and in
Section [3] we discuss these and the extent to which they can be
solved by extensions of the described algorithms.

1531

3. FREQUENT ITEMS ALGORITHMS

We divide the algorithms for finding the frequent items into three
classes. Counter-based algorithms track a subset of items from the
inputs, and monitor counts associated with these items. For each
new arrival, the algorithms decide whether to store this item or not,
and if so, what counts to associate with it. A second class are de-
rived from quantile algorithms: we show how the problem of find-
ing (approximate) quantiles allows us to find the frequent items.
Lastly, we discuss sketch algorithms, which are (randomized) lin-
ear projections of the input viewed as a vector, and solve the fre-
quency estimation problem. They therefore do not explicitly store
items from the input. In this presentation, we omit consideration of
a few algorithms based on randomly sampling items from the input,
in order to keep the scope of this study bounded, and because these
algorithms have attracted less interest and fewer applications.

A Note on Dictionary Issues. A common feature of several algo-
rithms is that when given a new item, they test whether it is one
of k being stored by the algorithm, and if so, increment its count.
The cost of supporting this operation depends a lot on the model
of computation assumed. A simple solution is to use a hash table
storing the current set of items, but this means that an otherwise
deterministic solution becomes randomized in its time cost, since it
takes expected O(1) operations to perform this step. Given suitable
hardware, associative memory can be used to answer this in con-
stant time; in fact, making use of such hardware is the subject of
recent work by Bandi et al. [3]]. But in the absence of this hardware,
a dynamic dictionary data structure is needed: for example, Misra
and Gries [34] discuss the use of an AVL tree. In practice, hash-
ing is invariably used, meaning that these deterministic algorithms
have randomized implementations.

3.1 Counter-based Algorithms

Majority Algorithm. The problem of frequent items dates back at
least to a problem first studied by Moore in 1980. It was published
as a ‘problem’ in the Journal of Algorithms in the June 1981 issue,
as follows

[J.Alg 2, P208-209] Suppose we have a list of n num-
bers, representing the “votes” of n processors on the
result of some computation. We wish to decide if there
is a majority vote and what the vote is.

In addition to posing the majority question as a problem, Moore
also invented the MAJORITY algorithm along with Boyer in 1980,
described in a technical report from early 1981 [§]. To them, this
was mostly of interest from the perspective of automatically prov-
ing the correctness of the solution (the details of this were published
in 1991, along with a partial history [9]). In the Dec 1982 Journal
of Algorithms, a solution provided by Fischer and Salzburg was
published [22]. Their proposed algorithm was essentially identi-
cal to MAJORITY, although it was presented differently, and was
accompanied by a proof that the number of comparisons was mini-
mized. MAJORITY can be stated as follows: store the first item and
a counter, initialized to 1. For each subsequent item, if it is the same
as the currently stored item, increment the counter. If it differs, and
the counter is zero, then store the new item and set the counter to
1; else, decrement the counter. After processing all items, the algo-
rithm guarantees that if there is a majority vote, then it must be the
item stored by the algorithm. The correctness of this algorithm is
based on a pairing argument: if every non-majority item is paired
with a majority item, then there should still remain an excess of
majority items. Although not posed as a streaming problem, the

Algorithm 3.1: FREQUENT(k)

Algorithm 3.2: LOSSYCOUNTING(k)

Algorithm 3.3: SPACESAVING(k)

n <« 0;T «— 0; n <« 0;A «— 0; T « 0; n « 0;
for each i : for each i : T« 0;
n«—n+1; n«—mn+1; for each i :
ifieT ifieT n—n+1;
then ¢; — ¢; + 1; then ¢; — ¢; + 1; ifieT
elseif |[T'| < k—1 else 47— TU{ik; then¢; «— ¢; +1;
T —Tu{i}; c; — 14+ A; elseif |T| < k
do o then . do i |2 %A do { then {T —Tu{i}
elseforall j € T A —n/k; ¢ — 1
¢ —ci—1 then forallj € T J < argminger ¢j;
do {ifc; = doifc; <A else ¢ ¢ —cj+1;
then T — T\{j}; then 7' — T\ {5} T —Tu{i\{jh

Figure 1: Pseudocode for counter-based algorithms

algorithm has a streaming flavor: it takes only one pass through
the input (which can be ordered arbitrarily) to find a majority item.
To verify that the stored item really is a majority, a second pass
is needed to simply count the true number of occurrences of the
stored item.

Frequent Algorithm. Twenty years later, two papers were pub-
lished [27, [20] which include essentially the same generalization
of the Majority algorithm to solve the problem of finding all items
in a sequence whose frequency exceeds a 1/k fraction of the total
count. Instead of keeping a single counter and item from the input,
the FREQUENT algorithm stores & — 1 (item,counter) pairs. The
natural generalization of the Majority algorithm is to compare each
new item against the stored items 7", and increment the correspond-
ing counter if it is amongst them. Else, if there is some counter with
count zero, it is allocated to the new item, and the counter set to 1. If
all k£ — 1 counters are allocated to distinct items, then all are decre-
mented by 1. A grouping argument is used to argue that any item
which occurs more than n/k times must be stored by the algorithm
when it terminates. Pseudocode to illustrate this algorithm is given
in Algorithm 3.1} making use of set notation to represent the oper-
ations on the set of stored items 7': items are added and removed
from this set using set union and set subtraction respectively, and
we allow ranging over the members of this set (thus implementa-
tions will have to choose appropriate data structures which allow
the efficient realization of these operations). We also assume that
each item j stored in 7" has an associated counter c¢;. For items
not stored in 7', then c¢; is defined as 0 and does not need to be
explicitly stored.

It is sometimes stated that the FREQUENT algorithm does not
solve the frequency estimation problem accurately, bound on the
true frequency of the items it retains, but this is erroneous. As
observed by Bose et al.[7]], executing this algorithm with k = 1/e
ensures that the count associated with each item on termination is
at most en below the true value.

The papers published in 2002 (which cite [22]]) were in fact re-
discoveries of an algorithm first published in 1982. This n/k gen-
eralization was first proposed by Misra and Gries [34]. Misra and
Gries proposed “Algorithm 3”, which is equivalent to that described
in the previous paragraph. In deference to this early discovery, this
algorithm has been referred to as the “Misra-Gries” algorithm in
more recent work on streaming algorithms. In the same paper, “Al-
gorithm 2” correctly solves the problem but has only speculated
worst case space bounds.

The time cost of the algorithm is dominated by the O(1) dictio-
nary operations per update, and the cost of decrementing counts.
Misra and Gries use a balanced search tree, and argue that the

1532

decrement cost is amortized O(1); Karp ef al. propose a hash table
to implement the dictionary [27]]; and Demaine et al. show how the
cost of decrementing can be made worst case O(1) by representing
the counts using offsets and maintaining multiple linked lists [20].

Lossy Counting. The LOSSYCOUNTING algorithm was proposed
by Manku and Motwani in 2002 [30], in addition to a randomized
sampling-based algorithm and techniques for extending from fre-
quent items to frequent itemsets. The algorithm stores tuples which
comprise an item, a lower bound on its count, and a ‘delta’ (A)
value which records the difference between the upper bound and
the lower bound. When processing the ith item, if it is currently
stored then its lower bound is increased by one; else, a new tuple
is created with the lower bound set to one, and A set to |i/k].
Periodically, all tuples whose upper bound is less than [i/k| are
deleted. These are correct upper and lower bounds on the count of
each item, so at the end of the stream, all items whose count ex-
ceeds n/k must be stored. As with FREQUENT, setting k = 1/e
ensures that the error in any approximate count is at most en. A
careful argument demonstrates that the worst case space used by
this algorithm is O(% log en), and for certain input distributions it
is O(2).

Storing the delta values ensures that highly frequent items which
first appear early on in the stream have very accurate approximated
counts. But this adds to the storage cost. A variant of this algo-
rithm is presented by Manku in slides for the paper [31], which
dispenses with explicitly storing the delta values, and instead has
all items sharing an implicit value of A(z) = |¢/k]. The modified
algorithm stores (item, count) pairs. For each item in the stream,
if it is stored, then the count is incremented; otherwise, it is initial-
ized with a count of 1. Every time A(%) increases, all counts are
decremented by 1, and all items with zero count are removed from
the data structure. The same proof suffices to show that the space
bound is O(% log en). This version of the algorithm is quite simi-
lar to Algorithm 2 presented in [34]; but in [31]], a space bound is
proven. The time cost is O(1) dictionary operations, plus the peri-
odic compress operations which require a linear scan of the stored
items. This can be performed once every O(% log en) updates, in
which time the number of items stored has at most doubled, mean-
ing that the amortized cost of compressing is O(1). We give pseu-
docode for this version of the algorithm in Algorithm [3.2] where
again 1" represents the set of currently monitored items, updated by
set operations, and c; are corresponding counts.

Space Saving. The deterministic algorithms presented thus far all
have a similar flavor: a set of items and counters are kept, and vari-
ous simple rules are applied when a new item arrives. The SPACE-

SAVING algorithm of Metwally et al. [|32] also fits this template.
Here, k (item, count) pairs are stored, initialized by the first k dis-
tinct items and their exact counts. As usual, when the next item in
the sequence corresponds to a monitored item, its count is incre-
mented. But when the next item does not match a monitored item,
the (item, count) pair with the smallest count has its item value re-
placed with the new item, and the count incremented. So the space
required is O (k) (resp. O(1)), and a short proof demonstrates that
the counts of all stored items solve the frequency estimation prob-
lem with error n/k (resp. en). It also shares the nice property
of LOSSYCOUNTING that items which are stored by the algorithm
early in the stream and not removed have very accurate estimated
counts. The algorithm appears in Algorithm [3.3] The time cost is
bounded by the dictionary operation of finding if an item is stored,
and of finding and maintaining the item with minimum count. Sim-
ple heap implementations achieve this in O(log 1/¢) time per up-
date. When all updates are unitary (+1), a faster approach is to bor-
row ideas from the Demaine e? al. implementation of FREQUENT,
and keep the items in groups with equal counts. By tracking a
pointer to the group with smallest count, the find minimum op-
eration takes constant time, while incrementing counts takes O(1)
pointer operations (the “Stream-Summary” data structure in [32]).

3.2 Quantile Algorithms

The problem of finding the ¢-quantiles of a sequence of items
drawn from a totally ordered domain is to find an item ¢ such that it
is the smallest item which dominates ¢n items from the input. We
define the rank of item i as rank(i) = 3, _, f;. So the ¢ quantile
is the ¢ which satisfies rank(?) < ¢n and rank(i + 1) > ¢n. The
approximate version allows en uncertainty in the ranks, i.e., to find
an 4 such that rank(z) < (¢ + €)n and rank(i + 1) > (¢ — €)n.

This problem is more general than frequent items, since a so-
lution to the approximate quantiles problem allows frequent items
to be found, by the following observation: suppose i is a frequent
item with f; > 2en. Then ¢ must be reported as the approximate
¢ quantile for all ¢ in the range rank(i) + € to rank(i + 1) — e,
and by our assumption on f;, this range is non-empty. Similarly,
if the quantile algorithm also produces an estimate of rank(z) with
error at most en, this can be used to solve the frequency estimation
problem, since f (i) = rank(i + 1) — rank(z).

GK Algorithm. The approximate quantiles algorithm of Green-
wald and Khanna [24], usually referred to simply as the GK algo-
rithm is somewhat similar to LOSSYCOUNTING, in that it stores
tuples containing an item from the input, a frequency count g, and
a A value. Here though, the tuples are kept sorted under the total
order of the domain of items. The g value encodes the difference
between the lowest possible rank of the stored item and the previ-
ous stored item; the A value encodes the difference between the
greatest possible rank of the item and lowest possible rank. An es-
timated rank of any item (whether it is stored by the algorithm or
not) can be computed from this information. Every new arrival is
inserted as a new tuple in the sorted order with a g value of 1 and
a A value of |en]. This ensures that the requirements on g and
A are met. Periodically, a “compress” operation removes some tu-
ples: for two adjacent tuples ¢ and ¢ + 1, if g; + gi+1 + Ait1 < en,
then the ¢th tuple is removed, and we set g;+1 < gi+1 + ¢i. It can
be shown that this allows the rank of any item to be estimated with
error at most en, and that (under a slightly formalized version of
the algorithm) the space required is bounded by O(+ log en). The
time cost requires inserting new tuples into a list in sorted order,
and periodically scanning this list to merge some adjacent tuples.
This can be supported in (amortized) time logarithmic in the size
of the data structure.

1533

QDigest. The QDIGEST algorithm was proposed by Suri et al [37]]
in the context of monitoring distributed data. However, it natu-
rally applies to a streaming setting. It assumes that the ordered
domain can be represented as the set of integers {1...U}. Each
tuple stored by QDIGEST consists of a dyadic range and a count.
A dyadic range is a range whose length is a power of two, and
which ends at a multiple of its own length, i.e., can be written as
{j2° — 1...(j + 1)2%}. Each new item i is inserted as a trivial
dyadic range {7} with count 1 (or the count of that range is incre-
mented if it is already present in the data structure). Observe that
every non-trivial dyadic range can be partitioned into two dyadic
ranges of half the length; call the set comprised of a range and its
two half-length subranges a triad. The algorithm enforces the in-
variants that each non-trivial range has an associated count at most
iy 7> and that the sum of counts associated with every triad is at
least loegnU' If the second of these does not hold, then a compress-
ing operation removes the counts associated with the two subranges
and adds them on to the parent range. It is then straightforward to
show that when these invariants hold, the total number of ranges
with non-zero counts is at most O(@). Moreover, the true fre-
quency of an item is at most the sum of counts of the log U ranges
which contain that item, and since their count is bounded, the count
of the trivial range corresponding to an item is at most an en un-
derestimate. Hence, the data structure directly solves the frequency
estimation problem, and further, a walk over the induced tree struc-
ture in time linear in the data structure size extracts all frequent
items.

In implementing this algorithm, the main challenge is to imple-
ment the compress operation so that its cost is minimized and it cor-
rectly restores the required invariants on execution: it is not clear
that the version of compress presented in the original g-digest pa-
per [37] restores the invariant, so alternate versions with additional
properties have been proposed [25} |14]. The time cost of the best
of these is (amortized) O(loglog U).

3.3 Sketches

Here, we use the term ‘sketch’ to denote a data structure which
can be thought of as a linear projection of the input. That is, if we
imagine the stream as implicitly defining a vector whose ¢-th entry
is fi, the sketch is the product of this vector with a matrix. For
the algorithm to use small space, this matrix will be implicitly de-
fined by a small number of bits. The algorithms use hash functions
to define the linear projection. There is sometimes confusion on
this issue, but it is straightforward to interpret the algorithms below
which are defined in terms of using hash functions to map items to
array entries as also defining a (sparse) matrix. Hence, it is mean-
ingful to use both hashing and linear projection terminology to talk
about sketches, and there is no need to draw a distinction between
the two perspectives.

The sketch algorithms solve the frequency estimation problem,
and so need additional data information to solve the frequent items
problem. We outline two sketching approaches below, followed by
methods which augment the stored sketch to find frequent items
quickly.

CountSketch. The first sketch in the sense that we use the term
was the AMS or Tug-of-war sketch due to Alon ef al. [1]]. This was
used to estimate the second frequency moment, Fr = >, f2nt
was subsequently observed that the same data structure could be
used to estimate the inner-product of two frequency distributions,
ie., Y, fifi, for two distributions given (in a stream) by f; and
f{. But this means that if f; is defined by a stream, at query time
we can find the product with f; = 1 and f; = 0 for all j # i.
Then, the true answer to the inner product should be exactly f;.

Algorithm 3.4: COUNTSKETCH(w, d)

C[1,1]...C[d,w] = 0;
forj — 1tod
do Initialize g, hj;
for each 7 :
n<«—mn+1;
do < forj — 1tod
do C[]) 9gj (Z)} - C[jvg](l)vj] + h](l),

Algorithm 3.5: COUNTMIN(w, d)

C[1,1]...C[d,w] = 0;
forj — 1tod

do Initialize g;;

for each i :

n«—mn-+1;
forj — 1tod
do C[j’gj (Z)} — C[jvg](z)] +1

Figure 2: Pseudocode for sketching algorithms

The error guaranteed by the sketch turns out to be eF21 /2 < en
with probability at least 1 — & for a sketch of size O(Z; log 1/6).
The ostensibly dissimilar technique of “Random Subset Sums” [23]]
(on close inspection) turns out to be isomorphic to this instance of
the algorithm.

Maintaining this data structure is slow, since it requires updating
the whole sketch for every new item in the stream. The COUNTS-
KETCH algorithm of Charikar et al. [11] dramatically improves
the speed by showing that the same underlying technique works
if each update only affects a small subset of the sketch, instead
of the entire summary. The sketch consists of a d X w array C
of counters, and two hash functions for each of the d rows, g;
which maps input items onto [w], and h which maps input items
onto {—1,+1}. Each input item ¢ causes h;(i) to be added on
to entry C[j, g;(i)] in row j, for 1 < j < d. The estimate f;
is mediani<;<q h;(2)C[j, g;(7)]. The estimate derived for each
value of j can be shown to be correct in expectation and has vari-
ance depending on F>/w. Using d rows drives down the probabil-
ity of giving a bad estimate, so setting d = log § and w = O(%)
ensures that f; has error at most 5F21 /2 < en with probability at
least 1 — 0. Giving this guarantee requires that each g is picked
from a family of pairwise independent hash functions, and h from
a four-wise independent family. Efficient implementations of such
hash functions are described by Thorup and Zhang [38}|39]]. The to-
tal space used is O(Zz log), and the time per update is O(log)
worst-case. We illustrate the core of the update algorithm in Algo-

rithm [3.4]

CountMin Sketch. The COUNTMIN sketch algorithm of Cor-
mode and Muthukrishnan [18] can be described in similar terms
to COUNTSKETCH. As before, an array of d X w counters is main-
tained, and pairwise independent hash functions g; map items onto
[w] for each row. Each update is mapped onto d entries in the array,
each of which is incremented. Now fi = mini<;<a C[4, 9; ()]
The Markov inequality is used to show that the estimate for each
Jj overestimates by less than n/w, and repeating d times reduces
the probability of error exponentially. So setting d = log% and
w = O(%) ensures that ﬁ has error at most en with probability at
least 1 — 0. Consequently, the space is O(% log %) and the time
per update is O(log §). The update algorithm is shown in Algo-
rithm 331

Finding Frequent Items using a Hierarchy. Sketches allow us to
model the removal of items (to denote the conclusion of a packet
flow; or the return of a previously bought item, say) as an update
with negative weight. Two variations follow: the “strict” version,
where the input is guaranteed at all times to induce non-negative
frequencies, and the “general” case, where the total weight of an
item is allowed to be negative. Only sketch based algorithms have
been shown to adapt to these settings. In the strict case, an approach
based on divide-and-conquer will work: additional sketches are

1534

used to determine which (dyadic) ranges of items are frequent [[18]].
If a range is frequent, then it can be split into multiple subranges,
and the frequency of each subrange estimated from an appropri-
ate sketch, until a single item is returned. More generally, rather
than splitting the range into 2 subranges, we can split into b. This
trades off update time against query time: if all itemss € {1...U},
then [log, U sketches suffice, but each potential range is split into
b > 1 subranges when answering queries. Thus, updates take
O(log, U log #) hashing operations, and O(1) counter updates for
each hash. Typically, moderate constant values of b are used (be-
tween 2 and 256, say); choosing b to be a power of two allows
fast bit-shifts to be used in query and update operations instead
of slower divide and mod operations. This results in COUNTMIN
sketch Hierarchical and COUNTSKETCH Hierarchical algorithms.

Finding Frequent Items using Group Testing. In the general
case, even this fails, and new techniques are needed [17,36]. The
idea of “group testing” in this context [17] randomly divides the
input into buckets so that we expect at most one frequent item in
each group. Within each bucket, the items are divided into groups
so that the “weight” of each group indicates the identity of the fre-
quent item. This can be seen as an extension of the Count-Min
sketch, since the structure resembles the buckets of the sketch, with
additional information on subgroups of each bucket (based on the
binary representation of items falling in the bucket); further, the
analysis and properties are quite close to those of a Hierarchical
Count-Min sketch. For each bucket, we keep additional counts for
the total frequency of all items whose binary representation has the
ith bit set to 1. This increases the space to O(2 log U log §) when
the binary representation takes log U bits. Each update requires
O(log }) hashes as before, and updating O(log U) counters per
hash.

4. EXPERIMENTS
4.1 Setup

We ran several algorithms under a common implementation frame-
work to test as accurately as possible their relative performance. All
algorithms were implemented using C++, and used common sub-
routines for similar tasks (e.g. hash tables) to increase comparabil-
ity. We ran experiments on a 4 Dual Core Intel(R) Xeon(R) 2.66
GHz with 16 GB of RAM running Windows 2003 Server. The code
was compiled using Microsoft’s Visual C++ 2005 compiler and
g++ 3.4.4 on cygwin. We did not observe significant differences
between the two compilers. We report here results obtained using
Visual C++ 2005. The code extended and enhanced the MassDal
implementations [16]]; the new versions can be downloaded from
[12].

For every algorithm we tested a number of implementations, us-
ing different data structures to implement the basic set operations.
For some algorithms the most robust implementation was obvious.

F —— LC —»—LCD —&— SSL —— SSH —=—

F —+— LC —»— LCD —&— SSL —e— SSH —=—

F —— LC —»—LCD —&— SSL —— SSH —=—

25000 . . . 18000 . 700000 .
20000 16000 |- - 600000 .
14000 500000 _
g g 12000 | E
£ 15000 £ @ 400000 R
g £ 10000 | 4 2 L
@ 300000 -
2 10000 2 so00 | 4
R S 200000 -
5000 6000
d 4000 | K 100000 7
0 1 1 1 1 1 000 1 0
08 1 12 14 16 18 2 0.0001 0.001 0.01 0.0001 0.001 0.01
Skew Phi (log scale) Phi (log scale)
(a) Zipf: Speed vs. Skew. (b) Zipf: Speed vs. ¢. (c) Zipf: Size vs. ¢.
F —+— LC —%— LCD —8— SSL —e— SSH —=— f —+— LC —»— LCD —&— SSL —e— SSH —=— F —— LC —»— LCD —&— SSL —— SSH —=—
100 » » T » T 100 -—n » 100 » » . » .
% | - 9 | - SSH, SSL
80 | - 80 | - 80
70 | - 70 | - =
= = IS
2 60 4 £ 60} 4 < 60
= = o
] 50 - g 50 - :g [
& 4} g & 4t g g 40
30 | - 30 | - o
20 - 20 - - 20
10 | 4 10 - 4
1 1 1 1 1 1 0 1 1
0.8 1 12 14 16 18 2 0.0001 0.001 0.01 0.8 1 12 14 16 18 2
Skew Phi (log scale) Skew
(d) Zipf: Recall vs. Skew. (e) Zipf: Recall vs. ¢. (f) Zipf: Precision vs. Skew.
F —— LC —»—LCD —8— SSL —e— SSH —=— F—— LC —»— LCD —&— SSL —e— SSH —=— F —— LC —»—LCD —8— SSL —e— SSH —=—
100 » ») 0.6 - - - - - 0.45 -
90 | SSL,SSH h 04
80 0.35
ez 10 g 03
s 604 w w 025F -
@ 50 z b ER
g 40 E .
< a0t E R 0.15 | i
20 b i 01| 4
10F = 0.05 - -
0 L 0 : : 2 - = 0 = : =
0.0001 0.001 0.01 08 1 12 14 16 18 2 0.0001 0.001 0.01
Phi (log scale) Skew Phi (log scale)

(g) Zipf: Precision vs. ¢.

(h) Zipf: ARE vs. Skew of frequent items.

(i) Zipf: ARE vs. ¢ of frequent items.

Figure 3: Performance of counter-based algorithms on synthetic data

For other algorithms we present here results of competing solu-
tions. We compare counter based algorithms, quantile estimation
algorithms, and sketch algorithms. For counter based algorithms
we examine: FREQUENT using the Demaine er al implementa-
tion technique of linked lists (F), LOSSYCOUNTING keeping sepa-
rate delta values for each item (LCD), LOSSYCOUNTING without
deltas (LC), SPACESAVING using a heap (SSH), and SPACESAV-
ING using linked lists (SSL). For quantile algorithms we exam-
ine: GK (GK) and QDIGEST (QD). Finally, we examine the fol-
lowing sketches: hierarchical COUNTSKETCH (CS), hierarchical
COUNTMIN sketch (CMH), and the Combinatorial Group Testing
variant of COUNTMIN (CGT). We separate these comparisons into
the three categories of algorithms, since each group has different
characteristics. Counter based algorithms solve only the frequent
elements problem. Quantile algorithms are also good for estimat-
ing quantiles, and hence more powerful. Sketches work under both
insertions and deletions and are the only alternative in applications
that need to support deletions. The added functionality of quan-
tile and sketch algorithms comes at a cost; usually, either at the
expense of reduced update throughput, or increased memory con-
sumption. Previous work has not distinguished these classes, lead-

1535

ing to the observation that sketch algorithms require more space
than counter-based algorithms, although the classes really apply to
different scenarios.

We ran experiments using real network traffic and generated data.
The network data set was drawn from 24 hours of traffic from a
backbone router in a major network. We ran experiments using
10 million packets of HTTP traffic, and 10 million packets of all
UDP traffic. We generated data from a skewed distribution (Zipf),
varying the skew from 0.8 to 2 (in order to obtain meaningful dis-
tributions that produce at least one heavy hitter per run). Finally,
we also varied the frequency threshold ¢, from 0.0001 to 0.01. In
our experiments, we set the error guarantee € = ¢, since our results
showed that this was sufficient to give high accuracy in practice.

We compare the efficiency of the algorithms with respect to:

e Update throughput, measured in number of updates per mil-
lisecond.

e Space consumed, measured in bytes.

e Recall, measured in the total number of true heavy hitters
reported over the number of true heavy hitters given by an
exact algorithm.

F —— LC —»—LCD —&— SSL —— SSH —=—

F —+— LC —»— LCD —&— SSL —e— SSH —=—

F —— LC —»—LCD —&— SSL —— SSH —=—

30000 . 100 » » 0.2 .
25000
80
0.15 |- 1
2| E 3
2 0000 ENS
3 S w
< 15000 — @ g(: 0.1 | —
B 8 409 g
S 10000 - 1 o
0.05 |- N
5000 2 = = = | 20
g
0 L 0 0 » &
0.0001 0.001 0.01 0.0001 0.001 0.01 0.0001 0.001 0.01
Phi (log scale) Phi (log scale) Phi (log scale)

(a) HTTP: Speed vs. ¢.

F —— LC —»— LCD —&— SSL —— SSH —=—

(b) HTTP: Precision vs. ¢.

f —+— LC —»— LCD —&— SSL —e— SSH —=—

(c) HTTP: ARE vs. ¢ of frequent items.

F —— LC —»— LCD —&— SSL —— SSH —=—

35000 : 100 ——gg » 0.3 :

30000 50 E 0.25 - 4
g 25000 2\0, 0 02 | —
@ c w
£ 20000 2 T 015 E
3 S [<
5% > 40
= 15000 - o 0.1 |- 1

10000 |-) 20 0.05% .

000 0 L 0
0.0001 0.001 0.01 0.0001 0.001 0.01 0.0001 0.001 0.01
Phi (log scale) Phi (log scale) Phi (log scale)

(d) UDP: Speed vs. ¢.

(e) UDP: Precision vs. ¢.

(f) UDP: ARE vs. ¢ of frequent items.

Figure 4: Performance of counter-based algorithms on real network data

e Precision, measured in total number of true heavy hitters re-
ported over the total number of answers reported. Precision
quantifies the number of false positives reported.

e Average relative error of the reported frequencies. We mea-
sure separately the average relative error of the frequencies
of the true heavy hitters, and the average relative error of the
frequencies of the false positive answers.

For all of the above, we perform 20 runs per experiment (by divid-
ing the input data into 20 chunks and querying the algorithms once
at the end of each run). Furthermore, we ran each algorithm in-
dependently from the others to take advantage of possible caching
effects. We report averages on all graphs, along with the 5th and
95th percentiles as error bars.

4.2 Counter based algorithms

In this section we compare FREQUENT (F), LOSSYCOUNTING
with delta values (LCD), LOSSYCOUNTING without deltas (LC),
SPACESAVING using a heap (SSH), and SPACES AVING using linked
lists (SSL). First we present results for the Zipf generated data. The
default skew parameter, unless otherwise noted, is z = 1.0, and the
default frequency threshold is ¢ = 0.001. Then, we show trends
for the network traffic data.

Space and Time costs. Figures 3(a)] and [3(b)] show the update
throughput of the algorithms as a function of data skew (z) and
increasing frequency threshold (¢) respectively. We can see that
update throughput increases significantly for highly skewed data.
This is expected, since high skew translates to a very small number
of truly frequent items, simplifying the problem. SSL is very fast,
but SSH (the same algorithm, but implemented with a heap) is ap-
preciably slower. This shows how data structure choices can affect
the performance. It is also clear that the range of frequency thresh-
olds (¢) considered did not affect update throughput (notice the log
scale on the horizontal axis). As we see in the subsequent plots,

the summary structures fit within a modern second level cache, so
there is no obvious effect due to crossing memory boundaries here.

Figure plots the space consumed by each structure. In our
implementations of LOSSYCOUNTING, the maximum number of
counters was fixed as a function of ¢, to avoid memory allocation
during stream processing. For the other algorithms, the space used
is directly determined by ¢. So the space consumed is not affected
by skewness for fixed ¢ (hence we omit the plot). Varying ¢ has
a direct effect. Smaller ¢’s imply a significantly larger number
of candidates exceeding the frequency threshold that need to be
maintained. It should be noted here that, for our datasets, a naive
solution that maintains one counter per input item would consume
many megabytes (and this grows linearly with the input size). This
is at least 12 times larger than SSH for ¢ = 0.0001 (which is
the most robust algorithm in terms of space), and over a thousand
times larger than all algorithms for ¢ = 0.01. Clearly, the space
benefit of these algorithms, even for small frequency thresholds is
substantial in practice.

Precision and Recall. Figures and plot recall, computed
as the total number of true frequent items returned over the exact
number of frequent items. The deterministic algorithms guarantee
to return all ¢ frequent items, and possibly some false positives,
so we expect 100% recall, which is observed in the plots. Figures
B®) and plot precision. We also show the 5th and 95th per-
centiles in the graphs as error bars. Precision is the total number of
true answers returned over the total number of answers. Precision
is an indication of the number of false positives returned. Higher
precision means smaller number of false positive answers. There is
a clear distinction between different algorithms in this case. When
using € = ¢, F results in a very large number of false positive an-
swers, while LC and LCD result in approximately 50% false pos-
itives for small skew parameters, but their precision improves as
skewness increases. This is expected since frequent items are easier

1536

[Algo/Skew [08 | 1.0 [12 | 1.6 [20 |

F 0.84 | 0.84 | 0.80 | 0.63 | 0.40
LC 1129 | 693 | 2.13 | 2.16 | 1.52
LCD 1526 | 10.52 | 7.56 | 1.86 | 1.29
SSL 0 0 0 0 0
SSH 0 0 0 0 0

Figure 5: Zipf: ARE vs Skew for false positives.

to identify for highly skewed data where the number of potentially
frequent candidates is small, and there are fewer “almost frequent”
items. Decreasing e relative to ¢ would improve this at the cost of
increasing the space used. However, SSL and SSH yield 100% ac-
curacy in all cases (i.e., no false positives), with about the same or
better space usage. Note that these implement the same algorithm
and so have the same output, only differing in the underlying imple-
mentation of certain data structures. Finally, notice that by keeping
additional per-item information, LCD distinguishes between truly
frequent and potentially frequent items marginally better than LC.

Relative Error. Figures[3(h)]and B()]plot the average relative error
in the frequency estimation of the truly frequent items. The graph
also plots the 5th and 95th percentiles as error bars. All algorithms
except F, have zero estimation error with zero variance. Clearly
sophisticated counter based algorithms are able to track the exact
frequency of the truly frequent items exactly, which is expected. F
yields very large frequency estimation errors for low skew , but the
error drops as the skew increases. The variance is very small in
all cases. On the other hand, estimation error for F increases as ¢
increases.

Figures [5|and [6] show the average relative error in the frequency
estimation of false positive answers. SSL and SSH do not report
any false positives for average and high skew, hence the error is
zero. For the rest of the algorithms it is clear that the estimated
frequencies of non-frequent items are can be far from their true
values. F always returns an underestimate of the true count of any
item, hence its errors are less than 1; LC and LCD always return
overestimates based on a A value, and so yield inflated estimates
of the frequencies of infrequent items.

Network Data. Finally we ran the same experiments on real net-
work traffic. Figures fi(a)] to show results for HTTP traffic,
while Figures to for UDP traffic. In both cases, we track
the most frequent destination IP addresses. We plot everything as
a function of ¢. The trends observed are similar to the ones for
generated data, hence we omit a more detailed analysis for brevity.

Conclusion. Overall, the SPACESAVING algorithm appears con-
clusively better than other counter-based algorithms, across a wide
range of data types and parameters. Of the two implementations
compared, SSH exhibits very good performance in practice. It
yields very good estimates, with 100% recall and precision, con-
sumes very small space and is fairly fast to update (faster than LC
and LCD). Alternatively, SSL is the fastest algorithm with all the
good characteristics of SSH, but consumes twice as much space on
average. If space is not a critical issue SSL is the implementation
of choice.

4.3 Quantile algorithms

Quantile structures are more expensive to update and store com-
pared to counter based algorithms, but they solve a more general
problem. In case that a quantile estimation algorithm needs to
be maintained, it can be used to solve the frequent items problem
as well. In this section we compare the GK and QDigest algo-

[‘Algo/s [[0.0001 | 0.005 [0.001 [0.05 [0.01 |

F 0.86 0.86 | 0.84 | 0.81 | 0.77
LC 3.97 637 | 693 | 478 | 3.40
LCD 0 0 10.52 | 530 | 3.84
SSL 0 0 0 0 0
SSH 0 0 0 0 0

Figure 6: Zipf: ARE vs ¢ for false positives.

rithms. We run the same set of experiments, using a default value
of z =1.0and ¢ = 0.001.

Space and Time Costs. Figures and show the update
throughput of the algorithms. GK is not affected by data skewness,
while QD becomes faster as the data becomes more skewed. In-
creasing frequency thresholds (¢) has a positive effect on update
performance, especially for QD probably due to the reduced struc-
ture size (from 4MB to less than 100KB as ¢ varies). Figures [7(c)]
and plot the space consumed. Notice that data skewness af-
fects the structure size of the quantile algorithms (in contrast with
counting based algorithms). The QD algorithm is able to compress
into a smaller data structure when the data are more skewed, since
more of the total “weight” of the input is stored in a small number
of leaves in the tree. On the other hand the GK algorithm is nega-
tively affected as skew increases. Notice that the size of the quan-
tile structures is up to 7 times larger than the most space inefficient
counter based algorithm. Analytically, this cost is a logarithmic
factor (log U for QD, log(en) for GK), which seems to be the root
cause of the higher cost. Indeed, for small enough values of ¢, QD
begins to approach the size of the naive solution.

Precision, Recall, and Error. We omit the figures for recall, since
both algorithms have 100% recall in all cases. Figures and
plot precision. The precision of GK is very low. The algo-
rithm reports a large number of false positives. The precision of
QD improves as the skew increases and as ¢ increases, but remains
below 80% in all cases. This is not a surprising result, since these
algorithms are not tailored for frequent item identification, and are
being run with € being large relative to ¢; reducing e would improve
precision, but cost yet more in space.

Figures and plot the average relative error in the fre-
quency estimation of the truly frequent items. These quantile esti-
mation algorithms are not very accurate for frequency estimation,
for average data skewness. Finally, Figure[7(D)]|plots the average rel-
ative error in the frequency estimation of false positives. Here, GK
vastly overestimates the frequency of some rare items, and QD also
inflates frequencies somewhat. Straightforwardly, we do not expect
the algorithms to give useful results without increasing the already
high space costs, due to the very large number of false positive an-
swers and the fact that the algorithms are not robust in estimating
frequencies in general.

Conclusion. The algorithms behaved similarly on the HTTP and
UDP data so we omit the graphs for brevity. Overall, the quantile
algorithms cannot compete against the counter based algorithms for
identifying heavy hitters. They have larger structures, are slower to
update, and yet still do not estimate frequencies accurately.

4.4 Sketch algorithms

Finally, we evaluate sketching algorithms. The advantage of
sketches is that they support deletions, and hence are the only al-
ternative in fully dynamic environments. This comes at the cost of
increased space consumption and slower update performance. We
run the same set of experiments, using a default value of z = 1.0

1537

14000 8000 : 700000
12000 7000 b 600000
, 10000 , oo 7 500000
€ g 5000 | g
% 8000 2 ® 400000
2 £ 4000 - 2
© © >
g 6000 g @ 300000
& S 3000 | g
4000 | - 2000 |- i 200000
2000 - g 1000 4 100000
0 [tT—+ T t T 0= ! 0
0.8 1 12 14 16 1.8 2 0.0001 0.001 0.01 0.8 1 12 14 16 18 2
Skew Phi (log scale) Skew
(a) Zipf: Speed vs. Skew. (b) Zipf: Speed vs. ¢. (c) Zipf: Size vs. Skew.
GK —— QD —»— GK —— QD —%— GK —— QD —»—
3.56+06 - 100 - - - - - 100 -
3e+06 g
80 [80 [-
2.5¢+06 - E _ —
& L
@ 20406 |- . e oor T s sor
-3 2 3
@ 15e+06 - g 8 af i 3 4t i
16406 [E & &
20 - 20 [-
500000 \ -
0 o 1 1 1 1 0 1 T
0.0001 0.001 0.01 08 1 12 14 16 18 2 0.0001 0.001 0.01
Phi (log scale) Skew Phi (log scale)
(d) Zipf: Size vs. ¢. (e) Zipf: Precision vs. Skew. (f) Zipt: Precision vs. ¢.
GK —— QD —— GK ——QD —¢— GK —— QD —x—
0.4 - - - - - 0.3 5000 T
0.35 0.28 4500 -
4 - .
02 2500
0.25 0.24 2000
w w 022 w
o 0.2 [c 2500
< < 0.2 <
0.15 2000
04 018 1500
) 0.16 1000
0.05 0.14 500
0 1 1 1 1 1 012 1 0
0.8 1 12 14 16 1.8 2 0.0001 0.001 0.01 0.0001 0.001 0.01
Skew Phi (log scale) Phi (log scale)

(g) Zipf: ARE vs. Skew of frequent items.

(h) Zipf: ARE vs. ¢ of frequent items.

(i) Zipf: ARE vs. ¢ of false positives.

Figure 7: Performance of quantile algorithms on synthetic data

and ¢ = 0.001. We used a hierarchy with b = 16 for all algo-
rithms, after running experiments with several values and choos-
ing the best tradeoff between speed, size and precision (details are
omitted due to lack of space). The sketch depth is set to d = 4
throughout, and the width to w = 2/¢, based on the analysis of
the COUNTMIN sketch. This keeps the space of CS and CMH rel-
atively close, and CGT constant factors larger.

Space and Time Cost. Figures and [8(b)] show the update
throughput of the algorithms. Update throughput is not affected by
data skewness, and marginally affected by variations in ¢, except
for the CGT algorithm. CS has the slowest update rate among all
algorithms, due to the larger number of hashing operations needed.
The fastest sketch algorithm is from 5 up to 10 times slower than
the fastest counter based algorithm. Figures and [8(d)] plot
the space consumed. The size of the sketches is fairly large com-
pared to counter based algorithms. CMH is the most space efficient
sketch and still consumes space 3 times as large as the least space
efficient counter based algorithm.

Precision, Recall and Error. Figures[8(c)] and [8(D)] plot recall. We
observe that for the sketches the recall is not always 100%. The

1538

error of CMH is one sided, and as a consequence, it still guarantees
100% recall; CGT does not have as strong a guarantee, but also
achieved 100% recall in all our experiments. CS has a higher prob-
ability of failing to recover some frequent items, but still achieved
close to 100% in all cases (94% in the worst case), and within the
variance of the algorithm over 20 runs.

Figures and O(b)] plot precision. CMH has low precision
for average skewness, but improves as data skew increases. CMH
can accurately estimate the frequencies of only the most frequent
items. As the distribution approaches a uniform distribution the
error in estimated frequencies increases, and the number of false
positives increases. The other algorithms exhibit precision higher
than 85% in all cases.

Figures and [9(d)] plot the average relative error in the fre-
quency estimation of the truly frequent items. For sufficiently skewed
distributions all algorithms can estimate item frequencies very ac-
curately. Results here are very comparable, since they essentially
correspond to a single instance of a COUNTSKETCH or COUNT-
MIN sketch, both with the same amount of space for each point
plotted. Hence CMH and CGT are quite similar, corresponding to
a single COUNTMIN sketch (with different random choice of hash

CS ——CMH —»—CGT —8—

CS —+—CMH ——CGT —8—

CS ——CMH —»—CGT —8—

4500 T T T T T T 4e+06 j——m——m T = T
4000 3.5e+06 - 1
3500 3e+06 - 1
£ 3000 g 250406 |- g
2 2500 g g
£ 2500 £ : 2e+06 |- -
o el
£ 2000 s 1.50406 - g
1500 — 1e+06 |- —
1000 — 500000 |- B
500 1 1 1 1 1 1 0 T T 1 T 1
0.8 1 1.2 1.4 1.6 1.8 2 0.0001 0.001 0.01 0.8 1 12 14 16 1.8 2
Skew Phi (log scale) Skew
(a) Zipf: Speed vs. Skew. (b) Zipf: Speed vs. ¢. (c) Zipf: Size vs. Skew.
CS ——CMH —»—CGT —8— CS —+—CMH —>— CGT —&— CS —+—CMH —»—CGT —8—
4e+07 4 T 100 B—# e : T 100 & & &
3.5e+07 i 9 | i 90 L N
3e+07 e sor] gor]
70 | 1 70 1
, 25e+07 B L ef 4 £ 60| R
2 2e+07 g = 50 F B T 50 g
o 3 3
1.5e+07 E c 40F b € 40F b
1e+07 e sor] 801]
20 — 20 —
56+06 4 0l i 0l i
0 —— e] 1 1 1 1 1 |
0.0001 0.001 0.01 0.8 1 1.2 1.4 1.6 1.8 2 0.0001 0.001 0.01
Phi (log scale) Skew Phi (log scale)

(d) Zipf: Size vs. ¢.

(e) Zipf: Recall vs. Skew.

(f) Zipf: Recall vs. ¢.

Figure 8: Performance of sketch algorithms on synthetic data (Speed, size and recall)

functions, leading to variations). We do not expect ¢ to affect es-
timation accuracy significantly, but as ¢ increases the total number
of answers decreases which could make a difference. CS exhibits
erratic behaviour here. This could be attributed to a random failure
of the sketch, since this is a probabilistic algorithmﬂ

Finally, Figures[(e)]and0(D)]plot the average relative error in the
frequency estimation of false positives. The errors increase sub-
stantially in this case for CMH and low skew data. CS seems to be
able to estimate frequencies very accurately, but exhibits outliers
once again.

Conclusion. The trends for the network datasets were very similar,
and we omit the graphs. There is no clear winner among these
algorithms. CMH has small size and high update throughput, but is
only accurate for highly skewed distributions. CGT consumes a lot
of space but it is the fastest sketch and is very accurate in all cases,
with high precision and good frequency estimation accuracy. CS
has low space consumption and is very accurate in most cases, but
has slow update rate and exhibits some random behaviour.

5. EXTENSIONS

As mentioned in the introduction, there are many natural varia-
tions of the fundamental frequent items problem which can be ad-
dressed by extending the known algorithms.

Weighted input. The definition above assigns all arriving items
equal, unit weight. A more general model allows each item to
have a weight w, and the frequency of an item is the sum of its
weights throughout the stream (and N is replaced with the sum
of all weights). It is unclear how to process weighted updates

"Notice that even though we average over 20 runs, we simply par-
tition the input and use the same random hash functions throughout
the experiment. Hence, failures will propagate over all runs, since
we simply query the same sketch repetitively.

1539

correctly using LOSSYCOUNTING or FREQUENT, but the anal-
ysis of SPACESAVING and QDIGEST extends to allow arbitrary
weights [[15]. Sketch methods such as COUNTSKETCH and COUNT-
MIN directly handle weighted updates: when updating entries in
the sketch, the value of the hash function A (%) (+1 or -1) is multi-
plied by the weight w.

Top-k items. The top-k items are those items with the k-highest
frequencies. Let fi, denote the kth highest frequency; the problem
can be restated as finding all items whose frequency exceeds fr41.
But by a similar hardness proof to that for the original exact fre-
quent items problem (Section [2), even approximating this problem
by promising to return items whose frequency is at least (1 — €) fx
requires space linear in the input size. Further weakenings of this
problem to make it tractable yields formalizations which are more
similar in nature to the approximate frequent items problem.

Assumptions on the frequency distribution. Many realistic fre-
quency distributions are skewed, with a few items with high fre-
quency, and many with low frequency. Such distributions are char-
acterized by the Zipfian, pareto, or power-law distributions (these
three distributions are essentially identical up to change of parame-
ters). The Zipfian distribution with parameter z, for example, states
that fi, the kth most frequent item, has frequency proportional to
k~*. For large enough z (greater than 1, say), this can simplify
the frequent items problem, and reduce the space needed to, for
example, O(ﬁ) in the case of SPACESAVING [32]. Under the
assumption that the frequency distribution is skewed, this can also
make the top-k items problem tractable [[11}|32]].

Distributed Streams. A variation of the problem is when there
are multiple streams observed by different parties, and the goal is
to compute the frequent items over the union of the streams. It is
straightforward to solve this problem by combining all the frequent
items and their estimated counts from each observer, so an addi-
tional requirement is to produce summaries of streams which can

CS —+—CMH —x%— CGT —&— CS —+—CMH —»— CGT —8— CS —+—CMH —%— CGT —&—
100§ % . 0.25
§
80 - E 0.2 E
T 60F E < W 018 .
2 2 <
g 40t E 8 0.1 E
o o
20 E 0.05 1 e
0 1 1 1 1 1 65 1 o 1
0.8 1 1.2 1.4 1.6 1.8 2 0.0001 0.001 0.01 0.8 1 1.2 1.4 1.6 1.8 2
Skew Phi (log scale) Skew
(a) Zipf: Precision vs. Skew. (b) Zipf: Precision vs. ¢. (c) Zipf: ARE vs. Skew of frequent items.
CS —+—CMH —»—CGT —8— CS —+—CMH —%— CGT —8— CS —+—CMH —»—CGT —8—
0.35 T 1 T T T T 1 T
03
08 | E 08 | E
0.25
W 02 N e L 06F e
g z g
015 04 E 04 E
0.1 i
02 | E 02 E
0.05
0 L o] L Y - 0
0.0001 0.001 0.01 08 1 12 14 16 18 2 0.0001 0.001 0.01
Phi (log scale) Skew Phi (log scale)

(d) Zipt: ARE vs. ¢ of frequent items.

(e) Zipf: ARE vs. Skew of false positives.

(f) Zipf: ARE vs. ¢ of false positives.

Figure 9: Performance of sketch algorithms on synthetic data (precision and average relative error)

be merged together to form summaries of the union of the input
streams while occupying no more space than the summary of a sin-
gle stream. This is relevant when there are many streams and the
information needs to be sent over a (sensor) network. Sketches, and
the QDIGEST have this merging property. It is unclear how to cor-
rectly merge the other counter-based and quantile algorithms while
keeping their size bounded.

Distinct Frequent Items. For this problem, the input streams are
of the form (¢, j), and f; is now defined as |{j|(¢,7) € S}|. Mul-
tiple occurrences of (i, j) therefore still only count once towards
fi. Techniques for “distinct frequent items” rely on combining fre-
quent items algorithms with “count distinct” algorithms [28| |6].

Time-decay. While processing a long stream, it may be desirable
to weight more recent items more heavily than older ones. Vari-
ous models of time decay have been proposed. In a sliding win-
dow, only the W most recent items, or only the (W) items arriving
within the last 7" time units, should be considered to define the
frequent items. The space used should be sublinear in W, and so-
Iutions have been proposed with dependency log W or better [[19}
2}, 29]. Exponential decay gives an item with ‘age’ a a weight of
exp(—Aa) for a fixed parameter \. The ‘age’ can be derived from
timestamps, or implied by the count of items which arrive subse-
quently. This generates a weighted instance of frequent items, but
the weights vary as time increases. However, due to the structure of
the decay function, the decay can be handled quite efficiently [[15].
Other decay functions (such as a polynomially decaying weight)
require significantly more complex solutions.

6. CONCLUSIONS

We have attempted to survey algorithms for finding frequent items
in streams, and give an experimental comparison of their behavior
to serve as a baseline for comparison. Even so, we had to omit a few
less popular algorithms based on random sampling. For insert-only

1540

streams, the clear conclusion of our experiments is that the SPACE-
SAVING algorithm, a relative newcomer, has surprisingly clear ben-
efits over others. We observed that implementation choices, such
as whether to use a heap or lists of items grouped by frequencies,
tradeoff speed and space. Quantile algorithms, with guarantees
which appear similar on paper, are demonstrated to be a poor solu-
tion for finding frequent items in comparison to the dedicated solu-
tions. For sketches, there is not such a clear answer, with different
algorithms excelling at different aspects of the problem.

We do not consider this the end of the story, and continue to
experiment with other implementation choices. Our source code,
datasets and experimental test scripts are available so that others
can use these as baseline implementations, and for experimental
repeatability. We have done some testing over different comput-
ing architectures and observed similar relative performance of the
algorithms in terms of throughput.

There have been some other careful comparisons of the perfor-
mance of streaming algorithms for different problems in the past
year. Dobra and Rusu [21]] have studied sketches for the problem
of estimating join sizes (vector inner products). Metwally et al.
compare a variety of algorithms for estimating the number of dis-
tinct elements [33]. This recent interest highlights the importance
of benchmarking. It is indicative that streaming has “come of age”,
in that there are several competing solutions for these fundamen-
tal problems, and that these are sufficiently powerful and stable
to make it valuable to perform rigorous comparisons. The next
logical step is to extend such studies (and availability of code) for
other foundational streaming problems, such as finding quantiles,
frequency moments, and more complex mining problems (mining
frequent itemsets and clusters).

Acknowledgments. We thank Flip Korn for providing reference
implementations of the GK algorithm, and the VLDB reviewers
for helpful suggestions.

(1]

(2]

(3]

[4

—

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. In ACM
Symposium on Theory of Computing, pages 20-29, 1996.
A. Arasu and G. S. Manku. Approximate counts and
quantiles over sliding windows. In ACM PODS, 2004.

N. Bandi, A. Metwally, D. Agrawal, and A. E. Abbadi. Fast
data stream algorithms using associative memories. In ACM
SIGMOD, 2007.

S. Bhattacharrya, A. Madeira, S. Muthukrishnan, and T. Ye.
How to scalably skip past streams. In Scalable Stream

Processing Systems (SSPS) Workshop with ICDE 2007, 2007.

L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. Simpler

algorithm for estimating frequency moments of data streams.

In ACM-SIAM Symposium on Discrete Algorithms, 2006.
A. Blum, P. Gibbons, D. Song, and S. Venkataraman. New
streaming algorithms for fast detection of superspreaders.
Technical Report IRP-TR-04-23, Intel Research, 2004.

P. Bose, E. Kranakis, P. Morin, and Y. Tang. Bounds for
frequency estimation of packet streams. In SIROCCO, 2003.
B. Boyer and J. Moore. A fast majority vote algorithm.
Technical Report ICSCA-CMP-32, Institute for Computer
Science, University of Texas, Feb. 1981.

R. S. Boyer and J. S. Moore. MJRTY - a fast majority vote
algorithm. In Automated Reasoning: Essays in Honor of
Woody Bledsoe, Automated Reasoning Series, pages
105-117. Kluwer Academic Publishers, 1991.

A. Chakrabarti, G. Cormode, and A. McGregor. A
near-optimal algorithm for computing the entropy of a
stream. In ACM-SIAM Symposium on Discrete Algorithms,
2007.

M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Procedings of the
International Colloquium on Automata, Languages and
Programming (ICALP), 2002.

G. Cormode and M. Hadjieleftheriou. Finding Frequent
Items in Data Streams: Source Code.
http://www.research.att.com/~marioh/
frequent—-items.html.

G. Cormode, F. Korn, S. Muthukrishnan, T. Johnson,

O. Spatscheck, and D. Srivastava. Holistic UDAFs at
streaming speeds. In ACM SIGMOD, pages 35-46, 2004.
G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Space- and time-efficient deterministic algorithms for biased
quantiles over data streams. In ACM PODS, 2006.

G. Cormode, F. Korn, and S. Tirthapura. Exponentially
decayed aggregates on data streams. In IEEE International
Conference on Data Engineering, 2008.

G. Cormode and S. Muthukrishnan. MassDAL Public Code
Bank. http://www.cs.rutgers.edu/~muthu/
massdal-code—index.htmll

G. Cormode and S. Muthukrishnan. What’s new: Finding
significant differences in network data streams. In
Proceedings of IEEE Infocom, 2004.

G. Cormode and S. Muthukrishnan. An improved data
stream summary: The count-min sketch and its applications.
Journal of Algorithms, 55(1):58-75, 2005.

M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
stream statistics over sliding windows. In ACM-SIAM
Symposium on Discrete Algorithms, 2002.

E. Demaine, A. Lépez-Ortiz, and J. I. Munro. Frequency

1541

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

(36]

(371

(38]

(39]

estimation of internet packet streams with limited space. In
European Symposium on Algorithms (ESA), 2002.

A. Dobra and F. Rusu. Statistical analysis of sketch
estimators. In ACM SIGMOD, 2007.

M. Fischer and S. Salzburg. Finding a majority among n
votes: Solution to problem 81-5. Journal of Algorithms,
3(4):376-379, 1982.

A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
How to summarize the universe: Dynamic maintenance of
quantiles. In International Conference on Very Large Data
Bases, pages 454-465, 2002.

M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In ACM SIGMOD, 2001.
J. Hershberger, N. Shrivastava, S. Suri, and C. Toth. Adaptive
spatial partitioning for multidimensional data streams. In
ISAAC, 2004.

T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee.
Estimating statistical aggregates on probabilistic data
streams. In ACM PODS, 2007.

R. Karp, C. Papadimitriou, and S. Shenker. A simple
algorithm for finding frequent elements in sets and bags.
ACM Transactions on Database Systems, 28:51-55, 2003.
G. Kollios, J. Byers, J. Considine, M. Hadjieleftheriou, and
F. Li. Robust aggregation in sensor networks. IEEE Data
Engineering Bulletin, 28(1), Mar. 2005.

L. Lee and H. Ting. A simpler and more efficient
deterministic scheme for finding frequent items over sliding
windows. In ACM PODS, 2006.

G. Manku and R. Motwani. Approximate frequency counts
over data streams. In International Conference on Very Large
Data Bases, pages 346-357, 2002.

G. S. Manku. Frequency counts over data streams.
http://www.cse.ust.hk/v1db2002/
VLDB2002-proceedings/slides/
S10P03slides.pdf} 2002.

A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient
computation of frequent and top-k elements in data streams.
In International Conference on Database Theory, 2005.

A. Metwally, D. Agrawal, and A. E. Abbadi. Why go
logarithmic if we can go linear?: Towards effective distinct
counting of search traffic. In International Conference on
Extending Database Technology, 2008.

J. Misra and D. Gries. Finding repeated elements. Science of
Computer Programming, 2:143-152, 1982.

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with sawzall. Dynamic
Grids and Worldwide Computing, 13(4):277-298, 2005.

R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang,

P. A. Dinda, M.-Y. Kao, and G. Memik. Reversible sketches:
enabling monitoring and analysis over high-speed data
streams. IEEE Transactions on Networks, 15(5):1059-1072,
2007.

N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: New aggregation techniques for sensor
networks. In ACM SenSys, 2004.

M. Thorup. Even strongly universal hashing is pretty fast. In
ACM-SIAM Symposium on Discrete Algorithms, 2000.

M. Thorup and Y. Zhang. Tabulation based 4-universal
hashing with applications to second moment estimation. In
ACM-SIAM Symposium on Discrete Algorithms, 2004.

http://www.research.att.com/~marioh/frequent-items.html
http://www.research.att.com/~marioh/frequent-items.html
http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://www.cse.ust.hk/vldb2002/VLDB2002-proceedings/slides/S10P03slides.pdf
http://www.cse.ust.hk/vldb2002/VLDB2002-proceedings/slides/S10P03slides.pdf
http://www.cse.ust.hk/vldb2002/VLDB2002-proceedings/slides/S10P03slides.pdf

