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ABSTRACT
Let G be ann-vertex graph that has a vertex separator of sizek
that partitions the graph into connected components of size smaller
thanαn, for some fixed2/3 ≤ α < 1. Such a separator is called an
α-separator. Finding anα-separator of size at mostk is NP-hard.
Moreover, under reasonable complexity theoretic assumptions, it is
shown that this problem is not polynomially solvable even when
k = O(log n). In this paper, we give a randomized algorithm that
finds anα-separator of sizek in the given graph,unlessthe graph
contains an(α + ε)-separator of size strictly less thank, in which
case our algorithm finds one such separator. For fixedε, the run-
ning time of our algorithm isnO(1)2O(k), which is polynomial for
k = O(log n). For bounded degree graphs (as well as for the case
of finding balanced edge separators), we present a deterministic al-
gorithm with similar running time.

Our algorithm involves (among other things) a new concept that
we call (ε, k)-samples. This is related to the notion ofdetection
setsfor network failures, introduced by Kleinberg [FOCS 2000].
Our proofs adapt and simplify techniques that were introduced by
Kleinberg. As a by-product, our proof improves the known bounds
on the size of detection sets. We also show applications of(ε, k)-
samples to problems in approximation algorithms and rigorous analy-
sis of heuristics.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph theory—graph algorithms

General Terms
Algorithms

Keywords
Fixed parameter tractability, VC dimension

1. INTRODUCTION
An α-separator for a graphG(V, E) is a set of vertices whose

removal fromG leaves no connected component larger thanα|V |,
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whereα < 1 is some constant. Finding the minimum sizeα-
separator is NP-hard. In this paper, we shall always denote the
number of vertices in the underlying graph byn, and the minimum
size of anα-separator byk. The minimum sizeα-separator can be
found in timenO(1)

�
n
k

�
by exhaustive search over all subsets of size

k of vertices, which for small values ofk behaves likenk+O(1).
Therefore, this problem can be solved in polynomial time whenk
is a constant. On the other hand, there is a reduction that shows that
any algorithm for finding anα-separator of sizek can be used to
find ak-clique in the given graph [19] (see also Section 7.1). This,
together with existing results on the maximum clique problem [9]
(see also [6]) implies that there is no polynomial-time algorithm for
the problem of finding anα-separator of super-constant size (say,
k = O(log n)) unless NP has subexponential time algorithms.

To make the minimumα-separator problem more tractable, one
may allow for approximate solutions, rather than exact solutions.
The approximation may be in terms ofsize(allow for a separator
with somewhat more thank vertices), in terms ofbalance(allow
each connected component to have somewhat more thanαn ver-
tices), or as is most often the case, both. For example, this applies to
the approximation algorithms for finding balanced edge cuts in [17,
2] and balanced vertex separators in [8], and they are sometimes
referred to as “pseudo-approximations”. (The notable exception to
this is the approximation algorithm in [10] which approximates the
size but is exact in terms of the balance.) In this spirit of relax-
ing the balance requirements, we consider the following question:
given a graph with anα-separator of sizek = O(log n), can one
find an (α + ε)-separator of sizek in polynomial time? When
α ≥ 2/3, we give a positive answer to this question, and prove the
following stronger (and perhaps surprising) result: there is a ran-
domized algorithm that given a graphG containing anα-separator
of sizek, finds such a separatorunlessG also contains(α + ε)-
separators of sizestrictly less thank, in which case the algorithm
will find one such separator. For fixedε, the running time of our
algorithm isnO(1)2O(k), which is polynomial fork = O(log n).
Hence our result shows that (whenk is small)the only way to con-
struct hard instances of the minimumα-separator problem is to
hide such a separator among other separators with strictly smaller
size, though slightly worse balance.

For readers familiar with parameterized complexity [6], our re-
sult can be stated as a positive result on the fixed parameter tractabil-
ity of finding the minimumα-separator. This problem was shown
to beW [1]-hard by Marx [19], i.e., under some complexity theo-
retic assumptions, there is no exact algorithm for this problem with
running timenO(1)f(k), wheref(k) is some arbitrary function of
k that does not depend onn. We show that if the balance require-
ment of the separator is slightly relaxed, the problem becomes fixed
parameter tractable.



The sketch of our algorithm is as follows: we pick a random
sample of vertices of sizeO(k), and “guess” the partition of this
set with respect to the optimal separator. We add two verticess
andt and connect them to the vertices on the two sides of this par-
tition. The optimal separator corresponds to a minimumst-cut in
this graph. We then decompose this graph into “layers”, and use
a dynamic programming algorithm to find the most balanced mini-
mumst-cut in this graph.

The proof of our main result has two components. The main
technical tool used in the first component is a notion similar to the
notion of detection setsintroduced by Kleinberg [14]. Roughly
speaking, an(ε, k)-detection set is a setW of vertices of a net-
work that can “detect”k-separation events in which a removal of
k vertices disconnects more thanεn vertices from the rest of the
network. This detection is achieved if two vertices ofW end up
in different connected components, and cannot communicate any-
more through the network. We use a strengthening of this notion,
which intuitively enables us to relate the balance of any separa-
tor on the entire graph to its balance on a small set of vertices
which we call an(ε, k)-sample. We use a VC dimension argu-
ment similar to the one used by Kleinberg to show that a random
set of O(k) vertices is likely to be an(ε, k)-sample. Our argu-
ment is considerably simpler than Kleinberg’s proof. Furthermore,
since(ε, k)-sample is a strictly stronger notion than a detection set,
our result answers an open of Kleinberg [14], establishing the op-
timal dependence of the size of the smallest detection set onk.
More precisely, our result implies a bound ofO(kε−1 log(1/ε))
on the size of the smallest detection set, improving a bound of
O(kε−1 log k log(1/ε)) by Fakcharoenphol [7] which in turn im-
proves upon the bound ofO(k3ε−1 log(1/ε)) by Kleinberg [14].
It is easy to see thatO(kε−1) is a lower bound on the size of a
detection set, and therefore our bound has the optimal dependence
onk for general graphs. For highly connected graphs, and also for
weaker notions of detection sets better bounds are given by Gupta
(see [7]) and Kleinberg, Sandler, and Slivkins [15].

The second component of our proof is a dynamic programming
algorithm based on a new decomposition lemma. This algorithm
finds a minimumst-cut that is also balanced, if exists, in time
nO(1)2O(k), wherek is the size of the minimumst-cut. This is
done by showing that the graph can be constructed in steps, in each
step adding a number of vertices, so that in each step only a small
subset of the vertices can be connected to the rest of the graph.

We also present a deterministic algorithm for finding an(α+ ε)-
separator of sizek with running timenO(1)2O(k log k), and another
deterministic algorithm with running timenO(1)2O(k) on bounded
degree graphs. For this purpose we introduce the notion of a Steiner
t-decomposition, which essentially is a partition of the graph into
connected components of size roughlyt. The “Steiner” aspect of
this decomposition is that in order to make some of the components
connected, we may need to use vertices from other components as
Steiner points. But if there are no Steiner points, andt ¿ n/k,
then it follows that every separator of sizek must leave most of
the components connected, a fact that can be used in finding small
separators. Notions similar to Steinert-decompositions were also
considered in the context of detection sets.

The rest of this paper is organized as follows: In Section 2 we
present the definitions and preliminaries. Section 3 defines the no-
tion of an(ε, k)-sample and proves that a random set ofO(k) ver-
tices is likely to be an(ε, k)-sample. This immediately gives an
improved bound on the size of a detection set. We use the results of
Section 3 in Section 4 to prove our main result on balanced separa-
tors. The deterministic construction is presented in Section 5. Two
other applications of the notion of(ε, k)-samples are presented in

Section 6. Negative results that complement some of our positive
results are presented in Section 7.

2. PRELIMINARIES
We shall try to be consistent in using the following notation. The

number of vertices in a graph will be denoted byn, and[n] denotes
the set of integers from 1 ton. A set of vertices that forms a min-
imum size separator will be denoted byS, and its size byk. The
parameterα will be reserved for expressing the balance of separa-
tors (the size of largest connected component divided byn), andε
will quantify the error introduced by sampling. A random sample
of vertices (that is subsequently used in an algorithm to find small
separators) will be denoted byW . Unspecified universal constants
will all be denoted byc (even though the constants involved in var-
ious statements may differ from each other).

2.1 Key definitions

DEFINITION 2.1. A setS of verticesS ⊂ V in a graphG(V, E)
is an(α, k)-separatorif |S| ≤ k, and the induced subgraphG[V \
S] that remains whenS is removed fromG has no connected com-
ponent larger thanα|V |.

Remark. Any set of at mostk vertices will be called ak-separator,
regardless of whether its removal separates the graph into more
than one connected component. Ak-separator is calledbalancedif
it is an (α, k)-separator, whereα is some constant bounded away
from 1.

DEFINITION 2.2. Given a graphG(V, E) and a set of vertices
W ⊆ V , a setS of vertices is an(α, k, W )-separatorif |S| ≤ k,
and the induced subgraphG[V \S] that remains whenS is removed
fromG has no connected component with more thanα|W | vertices
fromW .

2.2 VC dimension
The notion of VC dimension (Definition 2.3) was introduced by

Vapnik and Chervonenkis [22], who also showed its uses in the
context ofε-samples (Definition 2.5). The concept ofε-nets (Defi-
nition 2.4) was introduced by Haussler and Welzl [13]. Lemma 2.6
(for the case ofε-nets) is from [4], and improves over bounds given
in [13] (as well as in [1], for example) by a factor ofO(log d).
For additional information on VC dimension, the reader may con-
sult [18, 5].

DEFINITION 2.3. A setT is shatteredby a collectionS of sub-
setsS1, S2 . . . of [n], if for everyT ′ ⊂ T there is someSi ∈ S
such thatT ∩ Si = T ′. TheVC-dimensionof S is the cardinality
of the largest setT shattered byS.

DEFINITION 2.4. A setW is anε-netwith respect to a collec-
tionS of subsetsS1, S2 . . . of [n], if W intersects every setSi ∈ S
with |Si| ≥ εn.

DEFINITION 2.5. A setW is anε-samplewith respect to a col-
lectionS of subsetsS1, S2 . . . of [n], if for every setSi ∈ S,

(
|Si|
n

− ε)|W | ≤ |W ∩ Si| ≤ (
|Si|
n

+ ε)|W |

LEMMA 2.6. For some universalc, for every set systemS over
[n] of VC dimensiond, a random setW ⊂ [n] of size

c

ε

�
d log

1

ε
+ log

1

δ

�



has probability at least1 − δ of being anε-net forS. Likewise, a
random setW ⊂ [n] of size

c

ε2

�
d log

1

ε
+ log

1

δ

�

has probability at least1− δ of being anε-sample forS.

PROOF. This lemma for the case ofε-nets appears in [4] (see
also [16] and [20] for improved constants). We are not aware of a
reference with an explicit proof for the case ofε-sample, but such a
proof follows by straightforward modifications to the proofs in [13,
4, 16]. The proof is sketched below for completeness.

Pick a random setW of t points (the reader may think oft
as being smaller thanO(d/ε3)). We wish to show that the event
that W is not anε-sample has probability at mostδ. Consider
the case thatW is not anε-sample. Then there is a setS ∈ S
with a µ fraction of the points of[n], but only a(µ − ε) fraction
of the points ofW . (Alternatively, it has at least a(µ + ε) frac-
tion of the points ofW , but this case is omitted from this sketch
of proof.) Pick at randomT − t additional random points, where
T = 2t/ε. With probability at least half, at leastµ(T − t) of these
points are inS. Hence with probabilityδ/2, a random set ofT
points contains at leastµ(T − t) points from some setS ∈ S,
but the firstt of theseT points contain only at most(µ − ε)t
points fromS. For a particularS, the probability of this happen-
ing can be estimated as follows. PickingT first and condition-
ing on it having at leastµ(T − t) points fromS, the expected
number of points fromS in the first t of the T points is at least
µ(T−t)t/T = µt(1−t/T ) ≥ (µ−ε/2)t. By bounds on large de-
viations (using the Chernoff bound [1, 5]), the probability of a de-
viation of εt/2 behaves like2−Ω(ε2t/µ) ≤ 2−Ω(ε2t). The bound of
d on the VC dimension implies (by Sauer’s Lemma) that there are
at mostd

�
T
d

� ≤ 2O(d log 1/ε) ways of choosingS (for the inequal-
ity we used the fact that we will takeT = O(t/ε) ≤ O(d/ε4)).
Hence we wantt to satisfy the following inequality:

2O(d log 1/ε)2−Ω(ε2t) ≤ δ/2

which proves Lemma 2.6.

2.3 Detection sets
The notion of(ε, k)-detection sets was defined by Kleinberg [14]

as follows. A setS of the vertices of a graphG(V, E) is called an
(ε, k)-partitioning set if|S| ≤ k andG[V \ S] contains two sets
of nodesA andB, each of size at leastεn, that are separated (note
that A andB need not be connected). A setW of vertices is an
(ε, k)-detection set if for every(ε, k)-partitioning setS, there are
nodesu, v ∈ W \ S that lie in different connected components of
G[V \ S].

Kleinberg showed that a random set of sizeO(k3ε−1 log(1/ε))
is likely to be an(ε, k)-detection set. This bound was improved by
Fakcharoenphol [7] toO(kε−1 log k log(1/ε)). Gupta (as reported
in [7]) defined a weaker notion of detection sets and showed that
there are weak detection sets of sizeO(kε−1) using a construction
that uses the structure of the graph. Kleinberg et al. [15] improved
the bound on the size of detection sets for graphs that are highly
connected.

3. RANDOM (ε, K)-SAMPLES
We start by defining the concepts of(ε, k)-nets and(ε, k)-samples.

We will use the notion of(ε, k)-samples to design our algorithm for
finding balanced separators, and the notion of(ε, k)-nets to answer
Kleinberg’s question on detection sets.

DEFINITION 3.1. A setW of vertices in a graphG(V, E) is an
(ε, k)-netif for everyk-separatorS, and for every set of verticesV ′

that forms a connected component in the induced graphG[V \ S],

1. If |V ′| ≥ εn, thenV ′ has at least one vertex fromW .

2. If |V ′| ≤ (1 − ε)n − |S|, then the setV \ (V ′ ∪ S) has at
least one vertex fromW .

Remark. Definitions for notions such asε-nets (see Definition 2.4)
typically have a condition such as condition 1 in Definition 3.1, but
do not include a condition similar to condition 2. This last condition
is added to Definition 3.1 so as to make it as strong as the notion of
k-detecting sets (see Corollary 3.7).

DEFINITION 3.2. A setW of vertices in a graphG(V, E) is
an (ε, k)-sampleif for everyk-separatorS, and for every set of
verticesV ′ that form a connected component in the induced graph
G[V \ S],

(
|V ′|
n

− ε)|W | ≤ |V ′ ∩W | ≤ (
|V ′|
n

+ ε)|W |

Remark. One may wonder whether every(ε, k)-sample is neces-
sarily an(ε, k)-net. This does not simply follow from the defini-
tions due to the following subtlety. Ak-separatorS may partition
G into a connected componentV ′ of size(1−ε)n−k and two more
connected components of sizeεn/2. An (ε, k)-sampleW might
then have all its vertices but one inV ′, and the remaining vertex
in S, and hence is not an(ε, k)-net (does not meet condition 2 of
Definition 3.1). However, it will turn out that our constructions for
(ε, k)-samples will also be constructions for(ε, k)-nets. (We could
have added to Definition 3.2 a condition in the spirit of condition 2
of Definition 3.1 without changing any of the results of this paper,
but chose not to do so, so as not to unnecessarily complicate defin-
itions.)

For an(ε, k)-sample, we have the following key connection be-
tween separators andW -separators.

LEMMA 3.3. Let W be an(ε, k)-sample in a graphG(V, E).
Then for every0 < α < 1,

1. Every(α, k)-separator is also an(α + ε, k, W )-separator.

2. Every(α, k, W )-separator is also an(α + ε, k)-separator.

PROOF. In terms of the size of separating setS, the restrictions
on (α, k) and(α, k, W ) separators are identical, namely,|S| ≤ k.
Hence to prove the lemma one only needs to consider the balance
parameter.

For item 1, consider an(α, k) separator. There is no connected
component with more thanαn vertices. Then by the right-hand
side inequality in Definition 3.2, no connected component may con-
tain more than(α + ε)|W | vertices ofW .

For item 2, consider an(α, k, W ) separator. There is no con-
nected component with more thanα|W | vertices ofW . Then by
the left-hand side inequality in Definition 3.2, no connected com-
ponent may contain more than(α + ε)n vertices.

In the rest of this section we show that relatively small sets of
random vertices are likely to be(ε, k)-samples. It is straightfor-
ward to show this if the size of the set is allowed to depend log-
arithmically onn (see [14]). We shall now show that the size of
(ε, k)-nets and(ε, k)-samples need not depend onn. Our proof is
a simplification of the proofs leading to the previously best bounds
known for detection sets (recall that detection sets are(ε, k)-nets),
and moreover, improve these bounds by a factor ofO(log k). The



previously best bounds for detection sets are cited in [15], based on
an improvement of [7] to the bounds in [14].

Given a graphG(V, E) onn vertices and a positive integerk <
n, we define a collectionS of subsets ofV as follows. The set
S′ ⊂ V belongs toS if there is a setS ⊂ V of at mostk vertices
disjoint fromS′ whose removal fromV disconnectsG, and one of
the resulting connected components has eitherS′ or V \(S∪S′) as
its set of vertices. (In our definition,S′ is either a single connected
component, or the union of all connected components but one. In
contrast, Kleinberg [14] defined and used a notion of “k-segmental”
sets. This notion appears to be a “red herring” and we shall not use
it.)

LEMMA 3.4. The VC-dimension ofS defined above is at most
ck, wherec is some universal constant independent ofk.

To prove the above lemma we need the following result of Klein-
berg [14], which is proved using a theorem of Mader (see Chap-
ter 73 in [21], for example).

LEMMA 3.5. ([14]) Let G(V, E) be a graph andT ⊂ V . If
there are nok+1 vertex disjoint paths inG with distinct endpoints
in T , then there is a setW ⊂ V of size at most3k such that its
removal fromG leaves no connected component with more than
one vertex fromT .

Proof of Lemma 3.4. Let T be an arbitrary set of sizet. We
show that for some universal constantc, if t ≥ ck, thenT cannot
be shattered byS. The constantc shall remain unspecified, since
we allow ourselves some slackness in the analysis, for the sake of
simplicity.

Assume first that there arek+1 vertex disjoint paths inG whose
endpoints are inT . Then any setS′ of at mostk vertices leaves
two endpoints of one such path in the same connected component.
Hence takingT ′ as having exactly one endpoint from every such
path, there is no shattering ofT that givesT ′ as one of the pieces.

Hence we may assume that there are at mostk vertex disjoint
paths inG whose endpoints are inT . In this case, Lemma 3.5
implies that there is a setW ⊂ V with at most3k vertices whose
removal fromG disconnectsG, and every vertex ofT \W lies in a
different connected component. Lett′ = |T \W | ≥ t−3k. Denote
the components that contain vertices fromT by C1, . . . , Ct′ , and
the rest of the components may remain nameless. We name the
vertices inT \ W by v1, v2, . . . , vt′ , in agreement with the name
of their respective components.

Consider all subsetsT ′ ⊂ (T \W ). We use a counting argument
to show that at least one suchT ′ cannot be derived as an intersec-
tion S′ ∩ T , with S′ ∈ S.

Let U be a connected component separated from the rest of the
graph by a setS of at mostk vertices. We give an upper bound
of the total number of possibilities forU ∩ (T \W ). Multiplying
this upper bound by 2 will also take care of setsS′ ∈ S that are
complements of a connected component.

There are at most2|W | ≤ 23k ways of choosing the intersection
U∩W . Having chosen this intersection determines uniquely which
componentsCi are connected toU ∩ W . To disconnect such a
componentCi from U ∩W , there must be some vertexv ∈ (S ∩
Ci). As |S| ≤ k, at mostk components can be disconnected from

U ∩W . Hence having fixedU ∩W , there are at most
Pk

i=0

�
t′
i

� ≤
(k + 1)

�
t′
k

�
ways of choosing which vertices of(T \W ) remain in

U . It follows from the above discussion thatT cannot be shattered
if:

2t−3k > 2 · 23k(k + 1)

 
t

k

!

This inequality is satisfied whent ≥ ck (for some sufficiently large
constantc), proving the lemma.

COROLLARY 3.6. For some universalc, a random setW ⊂ V
of size

c

ε

�
k log

1

ε
+ log

1

δ

�

has probability at least1 − δ of being an(ε, k)-net. A random set
W ⊂ V of size

c

ε2

�
k log

1

ε
+ log

1

δ

�

has probability at least1− δ of being an(ε, k)-sample.

PROOF. We note thatε-nets andε-samples (as in Definitions 2.4
and 2.5) with respect to the collectionS used in Lemma 3.4 are
(ε, k)-nets and(ε, k)-samples in the sense of Definitions 3.1 and 3.2.
Now theO(k) bound of the VC dimension ofS given in Lemma 3.4
together with the bounds in Lemma 2.6 imply Corollary 3.6.

The bounds in Corollary 3.6 are best possible up to anO(log 1/ε)
multiplicative factor. See Section 7.3 for details.

COROLLARY 3.7. In every graphG(V, E) and for everyε > 0
andk, there is an(ε, k)-detection set of sizeO(kε−1 log(1/ε)).

PROOF. By Corollary 3.6 it is enough to show that every(ε, k)-
netW is also an(ε, k)-detection set. This is easy to see, since ifS is
an(ε, k)-partitioning set, then no connected component ofG[V \S]
contains more than(1−ε)n−|S| nodes. Take one such component
V ′

1 . By definition,W must contain a vertexv ∈ V \ (V ′
1 ∪ S).

Now, letV ′
2 be the connected component ofG[V \S] containingu.

Again, by definition,W must contain a vertexu ∈ V \ (V ′
2 ∪ S).

Therefore,u andv are two vertices ofW \ S that are separated by
S.

4. FINDING SMALL BALANCED SEPARA-
TORS

In this section, we present an application of(ε, k)-samples to the
problem of finding small balanced separators in graphs. Marx [19]
proved that under certain complexity theoretic assumptions, there
is no algorithm with running timenO(1)f(k) that computes an
(α, k)-separator in a graph that contains such a separator (For more
details, see Section 7.1). In this section, we show that there exists
an algorithm with running timenO(1)2O(k) that given a graph that
contains an(α, k)-separator either finds such a separator (without
relaxing the balance), or computes an(α + ε, k − 1)-separator.

THEOREM 4.1. For α ≥ 2/3 and arbitraryk, let G(V, E) be
an n vertex graph that has an(α, k)-separator. Then for every
ε > 0, there is a randomized algorithm with expected running time

nO(1)2O(kε−2 log(1/ε)) that finds either an(α, k)-separator, or an
(α + ε, k − 1)-separator inG. In particular, the expected running
time is polynomial for every fixedε > 0 wheneverk = O(log n).

PROOF. Let S be ak-separator that separatesG into connected
components, where no connected component is larger thanαn. Us-
ing the fact thatα ≥ 2/3, it follows that the connected components
can be arranged in two sidesA andB, where no side contains more
thanαn vertices. (The proof of this fact is standard and omitted.
This is the only place where we requireα ≥ 2/3. As is well known,
whenα < 2/3, still each side might need to be as large as2n/3
rather thanαn, if S separatesG into three connected components
of sizen/3.)



Pick a random setW of O(kε−2 log(1/ε)) vertices. By Corol-
lary 3.6,W is likely to be an( ε

2
, k)-sample. Moreover, it is likely

thatW does not contain more than|W |· |A|
n

+
√

W ≤ |W |( |A|
n

+ ε
2
)

vertices fromA (and more than|W |( |B|
n

+ ε
2
) vertices fromB).

Consider all possible ways of partitioningW into two setsA′ and
B′, with no set larger than(α + ε

2
)|W |. We call these partitions

balanced. At least one balanced partition isfaithful in the sense
thatA′ ⊂ A ∪ S andB′ ⊂ B ∪ S. For every balanced partition,
find a minimum vertex cut inG separatingA′ from B′. (Such a
cut can be found in polynomial time by flow techniques, by adding
a vertexs connected to all vertices inA′, a vertext connected to
all vertices inB′, and finding the minimum vertex cut separatings
from t.) For at least one balanced partition (the faithful partition),
the number of vertices in the cut is at mostk. LetS′ be an arbitrary
vertex cut of size at mostk found by the above procedure. ThenS′

is necessarily an(α + ε, k)-separator forG, by Lemma 3.3. Fur-
thermore, if the size of the minimum cut separatingA′ from B′ is
strictly less thank, thenS′ will be an(α+ε, k−1)-separator forG.
Therefore, the only thing that remains is to find an(α, k)-separator
in G separatings andt, assuming that the size of the minimum cut
separatings andt is preciselyk. We call this problemthe balanced
minimumst-cut problem. This problem is NP-hard for generalk
(as shown in Section 7.2), but we show in Lemma 4.2 below that it
can be solved in timenO(1)2O(k).

The algorithm takes timenO(1)2|W |2O(k). It has small probabil-
ity of failing, if it is unlucky in the choice of the random setW (for
example, ifW happens not to be an(ε/2, k) sample). In this case,
the algorithm can be repeated with a new random choice ofW . The
expected number of times the algorithm needs to be repeated is at

most 2. Hence the expected running time isnO(1)2O(kε−2 log(1/ε)),
proving Theorem 4.1 (assuming Lemma 4.2).

Remark. Notice that by takingε = 1/k in the above theorem, we
either obtain an(α, k)-separator, or a cut in which the relative loss
in the balance is smaller than the relative gain in the size of the cut,
and therefore has a better “cut ratio”.

The only thing that remains is to solve theBalanced minimum
st-cut problem. Its input is a graphG = (V, E), two non-adjacent
verticess andt in G, and a constant0 < α < 1. A desired solution
is a vertex cutS ⊂ V \ {s, t} of sizek, separatings from t such
that the components ofG \ S that contains and t are of size at
mostα|V |, wherek is equal to the size of the smallest vertex cut
separatings andt in G. Observe that we do not care here about the
size of components that do not contains or t. The reason is that in
the context of Theorem 4.1, these components will not contain any
vertices from the(ε, k) sampleW , and hence their size will be at
mostε|V |.

The following lemma shows that this problem can be solved in
time nO(1)2O(k). The proof of this lemma is based on decompos-
ing the graph into layers and using dynamic programming on these
layers.

LEMMA 4.2. There is a deterministic algorithm that solves the
balanced minimumst-cut problem in timenO(1)2O(k), wherek is
the size of the minimumst-cut andn is the number of vertices in
the graph.

The rest of this section is devoted to the proof of the above
lemma. We start with the definition of critical and non-critical ver-
tices. Since the minimum vertex cut betweens andt is of sizek,
Menger’s theorem implies thatG contains a collection ofk vertex-
disjoint paths froms to t. For any such collection, everyst-cut of

sizek must contain exactly one vertex from each path. This moti-
vates the definition of critical and non-critical vertices.

DEFINITION 4.3. A vertexv of G is calledcritical if every col-
lection ofk vertex-disjoint paths froms to t containsv. A vertex
is non-critical if it is not critical. We say that two verticesu and
w are connectedif there is a path betweenu andw whose vertices
(except possibly foru andw) are non-critical.

We will use the following alternative definition for critical ver-
tices later in the proof. The proof of this proposition is not difficult
and is omitted here.

PROPOSITION 4.4. A vertexv is critical if and only if there is a
vertexst-cut of sizek containingv.

We now fix a collection ofk vertex-disjoint pathsP1, P2, . . . , Pk

from s to t. By definition, each critical vertex must be on one
of these paths. For eachPi, let vi,1, . . . , vi,ri be the sequence of
critical vertices ofPi in the order they appear on this path froms
to t. To simplify notation, definevi,0 = s andvi,ri+1 = t for
everyi, and think ofs andt as critical (even though they are not
allowed to be chosen as cut vertices). LetΩ be the set of allk-
tuplesa = (a1, . . . , ak) where0 ≤ ai ≤ ri for everyi. In other
words, eacha ∈ Ω corresponds to one way of selecting one vertex
from eachPi (Notice that this does not have to correspond to an
st-cut in G, since there are edges and vertices inG that are not on
Pi’s). For everyk-tuple a ∈ Ω, we define an induced subgraph
G[a] of G as follows.

DEFINITION 4.5. Theprefix subgraphG[a] defined bya ∈ Ω
is an induced subgraph ofG with the vertex set defined as follows:
a critical vertexvi,j is in G[a] if and only ifj ≤ ai; a non-critical
vertexu is in G[a] if and only if all critical vertices that are con-
nected tou are in G[a]. The last two layersof G[a] is the set of
critical verticesvi,j such thatai − 1 ≤ j ≤ ai.

The idea behind the algorithm is to constructG by a sequence
of prefix subgraphs, starting from the graphG[1̄], and adding one
critical vertex (and a number of non-critical vertices) in each step.
Furthermore, maintain the invariant that at any step, every critical
vertex outside the current subgraph is not connected to any criti-
cal vertex other than the ones in the last two layers of the current
subgraph. In other words, the last two layers of the current prefix
subgraph act as theinterfaceof this subgraph to the rest ofG. This
will enable us to use dynamic programming to solve the balanced
minimumst-cut problem, by only keeping track of the “status” of
the vertices at the interface of the current prefix subgraph.

This idea is formulated in the following decomposition lemma.

LEMMA 4.6. There is a sequencea1, . . . , ap ∈ Ω such that

(a) a1 = (1, . . . , 1) andap = (r1, . . . , rk);

(b) for everyh = 2, . . . , p, ah − ah−1 is a vector with exactly
one entry equal to one, and zero elsewhere; and

(c) for everyh = 1, . . . , p, every critical vertex not inG[ah] is
not connected to any critical vertex ofG[ah] except possibly
to the vertices in the last two layers ofG[ah].

PROOF. We construct the sequence inductively. It is clear that
G[a1] satisfies the condition (c) above. Assume we have con-
structed the sequence up toah−1. We show that there is someah

that satisfies the conditions of the lemma. To this end, we show that
there is ani, 1 ≤ i ≤ k, such thatv

i,ah−1
i −1

is not connected to



any critical vertex outsideG[ah−1]. Assume, for contradiction, that
such ani does not exist. This means that for eachi, there is a critical
vertexvj,l outsideG[ah−1] (i.e., with l > ah−1

j ) that is connected
to v

i,ah−1
i −1

. Now, we construct an auxiliary directed graphH

with vertex set[k]. For eachi, j ∈ [k], there is a directed edge
from i to j in H if v

i,ah−1
i −1

is connected to a critical vertexvj,l

on Pj with l > ah−1
j . By our assumption, every vertex inH has

outdegree at least one, and thereforeH has a cycle. Consider the
shortest cycleC = i0, . . . , if−1 in H. Each edgeibi(b+1) mod f of
this cycle corresponds to a pathQb from v

ib,ah−1
ib

−1
to vib+1,`b+1

for some`b+1 > ah−1
ib+1

, such that all internal vertices of this path
are non-critical. We show that the existence of this cycle contra-
dicts the fact thatv

i0,ah−1
i0

is a critical vertex. By Proposition 4.4,

there exists a vertexst-cut S of sizek that containsv
i0,ah−1

i0
. The

removal ofS splits the graph into several connected components.
We call the vertices in the component that containss silververtices,
and the ones in the component that containst tanvertices. SinceS
contains exactly one vertex from eachPi and`0 > ah−1

i0
, the ver-

texvi0,`0 must be a tan vertex. This vertex is connected by the path
Qf−1 to the vertexv

if−1,ah−1
if−1

−1
. Since all vertices ofQf−1 are

non-critical and hence not inS, the vertexv
if−1,ah−1

if−1
−1

is either

tan or inS. Therefore, the vertexvif−1,`f−1 must be tan. Simi-
larly, we can argue that the verticesvif−2,`f−2 , . . . , vi1,`1 are all
tan. However,vi1,`1 is connected by the pathQ0 to v

i0,ah−1
i0−1

, and

the latter vertex must be silver, since the only vertex onPi0 that is
in S is v

i0,ah−1
i0

. This gives us the desired contradiction.

The above argument shows that there is a vertexv
i,ah−1

i −1
that

is not connected to any critical vertex outsideG[ah−1]. Such a
vertex can be found efficiently by trying all possibilities. Now, we
simply let ah

i = ah−1
i + 1 andah

j = ah−1
j for everyj 6= i. It

is easy to see that this choice ofah satisfies the conditions of the
lemma.

Equipped with the above lemma, we can complete the proof of
Lemma 4.2 using dynamic programming. We start by defining the
notion of avalid coloringfor a prefix subgraph.

DEFINITION 4.7. A valid coloringof a prefix subgraphG[a] is
a partial coloring of the vertices ofG[a] with colors silver, tan, and
black such that

• for eachi, there is at most one vertex ofG[a] on Pi that is
colored black; furthermore,s andt cannot be colored black;

• for eachi andj ≤ ai, if there is noj′ ≤ ai such thatvi,j′ is
colored black, thenvi,j must be colored silver; if there is such
a j′, thenvi,j must be colored silver ifj < j′ and tan ifj > j′;

• there are no two connected critical vertices that are colored
silver and tan, respectively; and

• every non-critical vertex that is connected to at least one silver
(tan, resp.) critical vertex is colored silver (tan, resp.); every
non-critical vertex that is not connected to any silver or tan
critical vertex remains uncolored.

Notice that the third condition in the above definition guarantees
that no non-critical vertex is connected both to a silver and a tan
critical vertex, and therefore the fourth condition specifies a well-
defined coloring for non-critical vertices.

Proof of Lemma 4.2.Note that a valid coloring of the entire graph
G that colorst tan corresponds to a minimumst-cut in G. Con-
versely, any minimumst-cut in G gives rise to a valid coloring of

G that colorst tan. Therefore, the problem is to decide whether
there is a valid coloring ofG that colorst tan and contains at most
αn silver andαn tan vertices. This can be solved using dynamic
programming, as sketched below.

We use Lemma 4.6 to construct the sequencea1, . . . , ap. Based
on this sequence, we define a binaryp × 32k × n × n tableA as
follows. The entryA(h, y, xs, xt) is indexed by integersh, xs, and
xt, and a stringy ∈ {s, t, b}2k. This entry will be 1 if and only if
there is a valid coloring ofG[ah] with xs silver andxt tan vertices
that colors the vertices in the last two layers ofG[ah] according to
y.

The entriesA(1, ., ., .) can be computed by inspection. We now
show an algorithm that computesA(h, y, xs, xt), based on the en-
triesA(h − 1, ., ., .). The last two layers ofG[ah] differ from the
last two layers ofG[ah−1] in that one vertex (sayv) was added and
one vertex (sayu) was removed. (Technically, ifu = s thens may
still belong to the last two layers ofG[ah], but the treatment of this
case is only simpler than the caseu 6= s, and is omitted.) We try all
three colors foru. For each color, we first check if in combination
with y it violates any of the first three conditions of Definition 4.7.
If it does not, we compute the color of all vertices that are inG[ah]
but not inG[ah−1] using the fourth condition in Definition 4.7. By
condition (c) of Lemma 4.6, the color of any such vertex can be
uniquely specified. Given the number of such vertices that are col-
ored silver and tan, we can compute the number of silver and tan
vertices that we need inG[ah−1] to make the total number of sil-
ver and tan vertices inG[ah] add up toxs andxt, respectively. If
for at least one guess for the color ofu the corresponding entry in
A(h − 1, ., ., .) indicates that there is a valid coloring ofG[ah−1]
with the required number of silver and tan vertices, then we set
A(h, y, xs, xt) to one. Otherwise, it is set to zero.

Given the tableA, one can easily check the existence of a bal-
anced minimumst-cut by checking the entriesA(p, y, xs, xt) for
all stringsy that colort tan, and all valuesxs, xt ≤ αn. It is easy
to see that the running time of this algorithm isnO(1)2O(k).

5. DETERMINISTIC ALGORITHMS
We showed that a random set of vertices (that is sufficiently

large) is likely to be an(ε, k)-sample. The fact that(ε, k) sam-
ples can be chosen in a manner oblivious to the structure of the
underlying graph may be useful in some applications (for example,
in finding detection sets in large unknown graphs). However, for
some other applications (such as theα-separator problem in Sec-
tion 4) obliviousness is not required, and it might be preferable to
have deterministic algorithms.

We do not know of a deterministic way of selecting an(ε, k)

sample of sizeO(k/εO(1)) is graph, but suspect that this may be
possible. In Section 5.2 we show that this is indeed the case if
one considers edge separators rather than vertex separators. In
Section 5.3 we show that for vertex separators, this holds for a
large family of graphs. In Section 5.4 we no longer explicitly con-
sider(ε, k)-samples, and describe a deterministic version of Theo-
rem 4.1, with a somewhat worse dependency onk. All these results
are based on the notion of Steinert-decomposition that is described
in Section 5.1. We remark that arguments similar to the ones that
we use here were also used to some extent in the context of detec-
tion sets. See the part attributed to Gupta in [7].
Remark. For simplicity of the presentation, when dealing with
finding (α, k) separators in this section, we shall be content with
finding (α + ε, k) separators. These results can be extended to
finding either an(α, k) separator or an(α + ε, k − 1) separator
using the techniques of Section 4.



5.1 Steinert-decompositions
We start by defining the concept of a Steinert-decomposition.

DEFINITION 5.1. Givent ≥ 2, a Steinert-decompositionfor
a graphG(V, E) is a partition of its vertex set into disjoint sets
V0, V1, . . . , Vq, and a partition of its edge set into disjoint sets
E0, E1, . . . , Eq, E

′, with the following properties:

1. |Vi| < 2t for every0 ≤ i ≤ q.

2. |Vi| ≥ t for every1 ≤ i ≤ q. (|V0| may be smaller thant,
and may also be empty.)

3. For every0 ≤ i ≤ q, the subgraphG[Ei] of G induced
by the edgesEi forms a tree that contains all vertices ofVi.
It may contain also some vertices not inVi, which are then
calledSteiner vertices.

The load of a vertexv in a Steiner decomposition is the number
of setsVi for which v is a Steiner vertex. Theload of a Steiner
t-decomposition is the maximum load of any vertex.

Remark. Definition 5.1 is formulated in a way that makes it easy
to use both in the context of edge separators and vertex separa-
tors. For edge separators, we want the collection of Steiner trees
to be edge-disjoint (a requirement that is not used in our treatment
of vertex separators). For vertex separators we want the load to
be small (and the notion of load is irrelevant to our treatment of
edge separators). It will be the case that in our construction of
Steinert-decompositions, every subgraphG[Ei] contains at most
one Steiner point, a fact that will be used in the proof of Theo-
rem 5.7.

LEMMA 5.2. LetG(V, E) be an arbitrary connected graph and
let t be an integer satisfying2 ≤ t < |V |. ThenG has a Steiner
t-decomposition in the sense of Definition 5.1. Moreover, a Steiner
t-decomposition can be found in polynomial time.

PROOF. Let T be an arbitrary spanning tree ofG. The edges
not in this spanning tree will be placed inE′. Choose an arbitrary
vertexr ∈ V as its root, and direct all edges ofT away from the
root. With every edgee = (u, v) in the spanning tree associate the
set of verticesVe that includes all vertices that are cut off fromr
in T by removinge (and in particular, includesv but notu), and
a set of edgesEe that includes all tree edges induced byVe. Note
that the subgraphG[Ee] induced onEe is connected and includes
all vertices ofVe. Moreover, the spanning treeT restricted to the
vertices(V \ Ve) is a spanning tree ofG[V \ Ve], and this is an
invariant that we shall maintain throughout the proof.

If for some edgee = (u, v), t ≤ |Ve| < 2t, then letV1 and
E1 of the Steinert-decomposition beVe andEe, remove fromT
all vertices ofVe and their incident edges, and continue inductively
with the subgraph that remains (to find the setsV2, . . . , Vq). If this
subgraph contains at mostt vertices, take its vertices asV0 and the
remaining tree edges asE0, and terminate.

If there is no edgee with t ≤ |Ve| < 2t, then there must be
some vertexu (where possiblyu = r) and edgese1 = (u, v1), . . . ,
ep = (u, vp) (for somep > 1) such that for every1 ≤ i ≤ p,
|Vei | < t, and moreover

Pp
i |Vei | ≥ t. In this case there must be

somep′ < p such that

t ≤
p′X

i=1

|Vei | < 2t.

Let V1 from the statement of the lemma be
Sp′

i=1 Vei and letE1

be all tree edges incident withV1. The vertexu serves as a Steiner

vertex. Remove fromT all vertices ofV1, and continue inductively
with the subgraph that remains. Again, if this subgraph contains at
mostt vertices, take its vertices asV0 and the remaining tree edges
asE0, and terminate.

It is clear that all setsVi constructed above are of size between
t and2t (except forV0), and are disjoint. The subgraphG[E0]
contains exactly the vertices ofV0, and fori ≥ 1, every subgraph
G[Ei] is connected, and contains the vertices ofVi and at most one
more Steiner vertex (denoted byu in the above description).

5.2 Edge separators
In this section we discuss edge separators, unlike all other sec-

tions that deal with vertex separators. As a rule of thumb (which
can be supported by formal arguments), problems on edge separa-
tors are easier than the corresponding problems on vertex separa-
tors. Hence all the results derived in this paper apply not only to
vertex separators, but also to edge separators. Moreover, some of
the results can be strengthened, as we shall show here.

DEFINITION 5.3. A setS of edgesS ⊂ E in a graphG(V, E)
is an(α, k) edge separatorif |S| ≤ k, and the graphG(V, E \ S)
that remains whenS is removed fromG has no connected compo-
nent larger thanα|V |.

Other definitions in this paper (such as the notions of(ε, k) nets
and samples) generalize in a straightforward way to the case of
edge separator, and will not be repeated.

THEOREM 5.4. For every connected graphG(V, E), for every
1 ≤ k ≤ |V | andε > 0, the following holds with respect to edge
separators.

1. There is a deterministic polynomial time algorithm for choos-
ing an(ε, k)-net of sizeO(k/ε).

2. There is a deterministic polynomial time algorithm for choos-
ing an(ε, k)-sample of sizeO(k/ε2).

3. If the graph has an(α, k) edge separator (withα ≥ 2/3)
then there is a deterministic algorithm with running time
nO(1)2O(k/ε) that finds an(α + ε, k) edge separator inG.

PROOF. Let t = εn/4k (rounded to the nearest integer). Con-
sider setsV0, . . . , Vq with t ≤ |Vi| < 2t for 1 ≤ i ≤ q, as implied
by Lemma 5.2. Note that necessarily,q ≥ n/2t = 2k/ε. Consider
an arbitrary edge separator inG of sizek. Thek edges of the cut
may be in at mostk of the subgraphsG[Ei], because these sub-
graphs are edge-disjoint. (If fact, some edges may be inE′ rather
than in one of these subgraphs, a fact that may become useful if
we ever come to care about the constants in the proof.) At most
2tk = εn/2 vertices are in these subgraphs. At leastq − k of
the setsVi are not disconnected by edges of the cut, and will be
calledgood. Every good set must reside entirely in one connected
component.

To prove item 1 of the Lemma ((ε, k)-nets), pick one vertex from
every setVi. Every connected component larger thanεn must con-
tain at least one good set, and hence at least one vertex from the net.
Likewise, every connected component smaller than(1 − ε)n − k
does not contain at least one good set, and hence cannot have all
the net points.

To prove item 2 ((ε, k)-samples), consider first the case that all
setsVi have the same sizet (or sizes betweent and(1 + ε/2)t).
Then the(ε, k)-net described above is also an(ε, k)-sample. If
the sizes of sets vary more radically (they may differ by a factor
of 2) pick |Vi|/tε vertices from each setVi (rounded to the nearest



integer). Every connected component contains its fair fraction of
the sample points, up to an additive error ofO(ε). The source of
error is twofold: rounding effects, and the fact that anε fraction of
sets might not be good.

To prove item 3 (fixed parameter tractability), letS be an optimal
k edge separator partitioningG into sidesA andB of size at most
αn. Guess which setsVi contain separator edges (at mostk sets),
and for the rest of the sets (the good sets), guess which of them are
on sideA of the cut and which are on sideB. Now find a minimum
edge cut inG between the vertices already placed in sideA and
those already placed in sideB. Its size is at mostk, and at most
εn/2 vertices change side compared to the optimal separator. The
running time of the above algorithm is at mostnO(1)3q.

5.3 Bounded degree spanning trees
For a connected graphG, let ∆T (G) denote the maximum de-

gree in a spanning tree whose maximum degree is smallest. For ex-
ample,∆T (G) = 2 if and only if the graph has a hamiltonian path.
In any graphG, a spanning tree of maximum degree∆T (G) + 1
can be found in polynomial time [12].

LEMMA 5.5. There is a polynomial time algorithm that in every
graphG finds a Steinert-decomposition of load at most∆T (G)/2.

PROOF. In the proof of Lemma 5.2, takeT to be a tree of max-
imum degree∆T (G) + 1. For every Steiner vertexv, at least one
of its edges connectv to the setVi containingv, and every setVj

for whichv is a Steiner vertex uses two ofv’s edges. As all the sets
Ej are disjoint, the proof follows.

COROLLARY 5.6. For every connected graphG(V, E), for every
1 ≤ k ≤ |V | andε > 0, the following holds with respect to vertex
separators.

1. There is a deterministic polynomial time algorithm for choos-
ing an(ε, k)-net of sizeO(k∆T (G)/ε).

2. There is a deterministic polynomial time algorithm for choos-
ing an(ε, k)-sample of sizeO(k∆T (G)/ε2).

3. If the graph has an(α, k) separator (withα ≥ 2/3) then
there is a deterministic algorithm that finds an(α + ε, k)

separator in timenO(1)2O(k∆T (G)/ε).

PROOF. The proof is similar to the proof of Theorem 5.4, with
the following changes. Use the Steinert-decomposition promised
in Lemma 5.5. Pickt = εn/2k∆T (G). Use the fact that every
separator vertexv separates at most1 + ∆T /2 setsVi. Details
omitted.

Remark. If G is Hamiltonian, and furthermore, a Hamiltonian path
is given, then by cutting the path into segments of sizet one gets
a Steinert-decomposition of load 0. The fact that all sets of the
decomposition (except for at most one) has size exactlyt leads to a
deterministic construction of(ε, k)-samples of sizeO(k/ε), in this
special case.

5.4 A deterministic algorithm for k-separators
Here we use the notion of Steinert-decomposition to present a

deterministic version of Theorem 4.1, with a slightly worse depen-
dence ofk (and a better dependence onε).

THEOREM 5.7. For α ≥ 2/3 and arbitraryk, let G(V, E) be
an n vertex graph that has an(α, k)-separator. Then for every
ε > 0, there is a deterministic algorithm that finds an(α + ε, k)-
separator in timenO(1)2O(k(log k+1/ε)). In particular, the run-
ning time is polynomial for every fixedε > 0 wheneverk =
O(log n/ log log n).

PROOF. Let S be ak-separator that separatesG into connected
components, where no connected component is larger thanαn. Us-
ing the fact thatα ≥ 2/3, it follows that the connected components
can be arranged in two sidesA andB, where no side contains more
thanαn vertices.

Find a Steinert-decomposition forG with t = εn/2k, and hence
q ≤ 2k/ε. Observe that if none of the Steiner vertices are inS, the
proof of item 3 of Theorem 5.4 can serve also as a proof for the
current theorem. Hence it remains to deal with the case that some
Steiner vertices are inS. There are at mostq Steiner vertices (be-
cause our constructions of Steinert-decompositions have the prop-
erty that every induced subgraphG[Ei] has at most one Steiner
vertex). Let the computation now branch intoq + 1 possibilities,
depending on which is the first Steiner vertex that is inS, if any.
In branch 0 (corresponding to no Steiner vertex inS), proceed as
in the proof of item 3 of Theorem 5.4. In every other branch, re-
move the corresponding Steiner vertex from the graph, and repeat
the above algorithm (of selecting a Steinert-decomposition and
branching) to search for ak−1 size separator in the new graph. (In
fact, this needs to be done only on the largest component of the new
graph, and only if this component has at least(α + ε)n vertices.)
After at mostk iterations of this process, no more Steiner vertices
can be inS, and the process ends.

Altogether, the branching process results in a tree withqk nodes.
The amount of computation per node of the tree is at mostnO(1)3q,
as in the proof of item 3 of Theorem 5.4. The fact thatq = O(k/ε)
completes the proof of Theorem 5.7.

6. OTHER APPLICATIONS
In this paper, we showed the application of our results on(ε, k)-

samples to the problem of finding balanced separators (Section 4)
and improving the best known bound on the size of a detection set.
However, our original motivation for considering(ε, k)-samples
was somewhat different. It relates to improving the approximation
ratio for balanced separators. See Section 6.1. The possible use of
(ε, k)-samples in local search heuristics is discussed in Section 6.2.

6.1 Approximation algorithms
The following theorem was proved by Arora, Rao and Vazi-

rani [2] for edge separators, and by Feige, Hajiaghayi and Lee [8]
for vertex separators, which is the version we discuss here. (The
reader may wish to recall Definition 2.2.)

THEOREM 6.1. For every constants0 < α < 1 and ε > 0,
there is a randomized polynomial time algorithm that for every
graphG(V, E) and setW ⊂ V finds an(α + ε, k

p
log |W |, W )-

separator ifG has an(α, k, W )-separator.

As a special case, whenW = V Theorem 6.1 offers a (pseudo)
approximation ratio ofO(

√
log n) for (α, k)-separators. We shall

improve upon this ratio whenk is small.

THEOREM 6.2. For every constants0 < α < 1 and ε > 0,
there is a randomized polynomial time algorithm that for every
graphG(V, E) with an(α, k)-separator finds an(α+ε, k)-separator
of sizeO(k

√
log k).

PROOF. Pick a setW of O(k/ε3) = O(k) (becauseε is con-
stant) vertices inG. By Corollary 3.6, it has high probability of be-
ing an(ε, k)-sample. Then by Lemma 3.3,G has an(α+ε, k, W )-
separator. By Theorem 6.1, an(α+2ε, O(k

√
log k), W ) separator

can be found in polynomial time. By Lemma 3.3, this is also an
(α + 3ε, O(k

√
log k))-separator inG. Scalingε by a factor of 3

proves Theorem 6.2.



We remark that a somewhat different rounding technique for the
semidefinite relaxations given in [2, 8] can be used to directly prove
Theorem 6.2, without using(ε, k)-samples. This rounding tech-
nique is based on a deterministic choice of anε-net with respect to
the geometry of the solution to the semidefinite program. See [8]
for details.

6.2 Rigorous analysis of a local search heuris-
tic

We show how the notion of(ε, k)-samples can be used in com-
bination with some local search based heuristics. For simplicity of
the presentation, it refers to edge separators rather than vertex sep-
arators. The edge separator of sizek is assumed to partition the
graph into two parts, namedA andB. Hence it will be referred to
as a2cut.

A 2cut (A, B) of sizek is t-optimal if for every 2cut(A′, B′)
of size less thank it must hold that|A ⊕ A′| > t (whereA ⊕
A′ denotes the set of vertices that need to change sides so as to
makeA equal toA′). The range of parameters of interest fort-
optimality requirest < min[|A|, |B|]. Checkingt-optimality can
be done in time proportional to

�
n
t

�
by exhaustive search. This time

is polynomial inn only whent is constant. Whent is not a small
constant, the following randomized algorithm may sometimes be
useful in testing fort-optimality.

1. Select random setsS ⊂ A and R ⊂ B with |S|/|A| '
|R|/|B| ¿ 1/t.

2. Unify S into one vertexs, unify R into one vertexr, and find
a minimum(s, r)-cut.

(a) If the cut found is of size less thank, and it differs from
the cut(A, B) in the location of at mostt vertices, con-
clude that(A, B) is nott-optimal.

(b) If the cut found is of size at leastk, then conclude that
(A, B) is probablyt-optimal.

(c) If the cut found is of size less thank, and it differs from
the cut(A, B) in the location of more thant vertices,
then abort.

The output of the algorithm in step 2(a) is certainly correct. As
for step 2(b), here the rational is that if there is a cut(A′, B′)
smaller thank that differs from(A, B) in the location of at most
t vertices, neitherS nor R is likely to contain any of these ver-
tices. In this case, the(s, r)-cut found in step 2 will be at most as
large as the cut(A, B). Thus not finding a cut smaller thank is
(probabilistic) evidence that(A, B) is t-optimal.

The problematic part of the above algorithm is that if the algo-
rithm reaches step 2(c), then its output is not informative regarding
the t-optimality of the cut(A, B). This can be remedied in some
special cases, using the notion of(ε, k)-samples. Assume that the
cut(A, B) is balanced, and furthermore, that the cut sizek is much
smaller thann/t. In this case|S|, |R| À k, and Corollary 3.6 im-
plies thatS ∪ R is an(ε, k)-net. (In fact, since we are considering
edge separators here, we can use instead item 2 in Theorem 5.4,
but rather than picking vertices arbitrarily within each setVi, pick
them at random.) Now if step 2(c) is reached, the cut produced will
be balanced. Hence with high probability, either the algorithm cor-
rectly declares the cut(A, B) to be t-optimal, or it finds another
balanced cut of smaller size.

The above discussion relates to a notion ofstability of inputs
that is investigated by Bilu and Linial [3]. Under one plausible
definition of stability, a bisection(A, B) (with |A| = |B|) of size

k is calledstableif for every setS of vertices the 2cut(A′, B′) with
A′ ⊕ A = S is of size at leastk + |S|, provided that|A′|, |B′| ≥
n/4. (As a convention we assume that|A′ ⊕A| ≤ |A′ ⊕B|).

THEOREM 6.3. Let G(V, E) be a graph with a minimum bi-
section(A, B) of sizek ¿ √

n/(log n)1/4, and moreover, assume
that this bisection is stable in the sense defined above. Then this
bisection can be found in polynomial time.

PROOF. We sketch the proof. Using [2], one can find in polyno-
mial time a balanced 2-cut(A′, B′) of size at mostO(k

√
log n) ¿√

n(log n)1/4. Stability then implies that|A′⊕A| ¿ √
n(log n)1/4.

Now we take an(ε, k)-sampleW of sizeO(k) ≤ O(
√

n/(log n)1/4)
(here we takeε to be a fixed small constant, hidden in theO nota-
tion). By the union bound it is likely thatW ∩ A = W ∩ A′.
Hence the 2cut found by the algorithm fort-optimality sketched
above will be of size at mostk, and furthermore, by the fact thatW
is an(ε, k)-sample the sides of the cut will be similar to those of
A′ andB′ (up toεn vertices). By stability, the only cut with these
properties is the minimum bisection(A, B).

7. SOME NEGATIVE RESULTS

7.1 Hardness of finding balanced separators
A variation on the following theorem appears in [19]. We sketch

its proof for completeness.

THEOREM 7.1. For everyk andα ≥ 1/2, there is a polynomial
time reduction from the problem of finding a clique of sizek in a
graph, to the problem of finding an(α, k)-separator.

PROOF. Let G(V, E) be a graph in which one seeks to find a
clique of sizek. Without loss of generality, assume that vertex 1 is
known to belong to a clique of sizek. (There are at mostn vertices
to choose from, and one may simply try all of them.) Now construct
the following graphH. For every vertexi ∈ V introduce a vertex
vi in H. For every edge(i, j) ∈ E introduce a vertexvij in H.
In addition, introduce a setW of vertices, where|W | is chosen so
that

|W |+
 

k

2

!
+ k = (1− α)(|V |+ |E|+ |W |) (1)

For every1 ≤ i < j ≤ n, put in H the edges(vi, vj). (Namely,
the setV forms a clique inH.) For every(i, j) ∈ E, put inH the
edges(vij , vi) and(vij , vj). In addition, connect all vertices ofW
to v1. This completes the description ofH.

It is not hard to see thatS, the most balancedk-separator inH
must includev1 andk − 1 other vertices fromV . To have only
α(|V |+ |E|+ |W |) vertices remain in the largest connected com-
ponent, it must be that the vertices ofS form ak-clique inG, by
Equation (1).

Theorem 7.1 shows the difficulty in designing algorithms run-
ning in timenO(1)f(k) for finding(α, k)-separators, for some func-
tionk. (Theorem 4.1 gives an algorithm of running timenO(1)2O(k),
but this algorithm might fail to find(α, k)-separators in graphs that
also have(α+ε, k−1)-separators.) Such algorithms are not known
for finding k-cliques, and moreover, having such algorithms for
k-cliques would have far reaching consequences in computational
complexity. See [6] for more details.

7.2 NP-hardness of the balanced minst-cut
problem



In this section we prove that the balanced minst-cut problem
is NP-hard, even for the case of edge cuts. The proof for the
case of vertex cuts is similar (and in fact simpler). For directed
graphs, Feige and Yahalom [11] proved that the problem of finding
an(α, k)-separator is NP-hard, even whenk = 0, and therefore the
problem is not even fixed parameter tractable.

The proof is by a reduction fromCLIQUE. Let G be a graph,
andk be an integer. In order to find ak-clique inG, we construct
an instance of the balanced minst-edge-cut problem. For simplic-
ity, we allow the vertices to have integer weights and allow paral-
lel edges. It is possible to remove these assumptions by replacing
parallel edges by parallel paths and adjusting the weights, and re-
placing a vertex of weightw by a vertex attached to a clique of size
w−1. The set of vertices in our instance is{s, t}∪V (G)∪E(G).
For everyv ∈ V (G) ande ∈ E(G), there aredegG(v) parallel
edges froms to v, two edges frome to t, and an edge betweenv
ande if v is an endpoint ofe. The weight of all vertices inV (G)
areW (some integer larger thank2), and the weight of other ver-
tices are one. Furthermore, we setα such thatα times the total
weight of the graph is equal toWk +

�
k
2

�
+ 1. It is not difficult

to see that the existence of a minimum edge-cut in this graph that
contains anα fraction of the vertices on thes-side is equivalent to
the existence of ak-clique inG. This is based on the fact that the
graph is a disjoint union of2|E(G)| length-3 paths betweens and
t. Details of the proof are left to the full version of the paper.

7.3 A lower bound for (ε, k)-samples
We show that Corollary 3.6 is optimal up to a factor ofO(log 1/ε).

THEOREM 7.2. For everyk and ε, there are infinitely many
graphs for which a setW of vertices chosen uniformly at random
is likely not to be an(ε, k)-sample, unless it containsΩ(k/ε2) ver-
tices.

PROOF. Forn a multiple ofk, letP (n/k) denote the graph that
is composed ofk vertex disjoint paths, each withn/k vertices, and
in which the leftmost points of every two paths are connected by
an edge, and the rightmost points of every two paths are connected
by an edge. (In other words, there are twok-cliques, andk equal-
length vertex disjoint paths connecting them.)

Pick at random a setW of kt2 vertices. In expectation, every
path containst2 vertices fromW , with standard deviationΩ(t). In
each path, exactly one vertex will be included in thek-separatorS.
If the path has less thant2 vertices fromW , the left-most vertex
of the path is placed inS. If the path has more thant2 vertices
from W , the right-most vertex of the path is placed inS. Standard
probabilistic analysis shows that for the connected componentC to
the right ofS the following holds with high probability:

|W ∩ C| ≤ |W |( |C|
n
− Ω(1/t))

HenceW is not an(ε, k)-sample unlesst = Ω(1/ε), proving The-
orem 7.2.

The observant reader may have noticed that the proof without
change applies also to edge separators. Recall however that The-
orem 5.4 shows that edge separators of sizek can be found in
time nO(1)2O(k/ε). Hence the lower bound in Theorem 7.2 on the
size of(ε, k)-samples is perhaps not very informative regarding the
prospects of improving the dependence onε in Theorem 4.1.
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