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ABSTRACT wherea < 1 is some constant. Finding the minimum size

separator is NP-hard. In this paper, we shall always denote the
number of vertices in the underlying graphtyand the minimum
size of anw-separator by:. The minimum sizex-separator can be
found in timen®™ » by exhaustive search over all subsets of size
k+O(1)

Let G be ann-vertex graph that has a vertex separator of &ize
that partitions the graph into connected components of size smaller
thanan, for some fixe®/3 < a < 1. Such a separator is called an
a-separator. Finding an-separator of size at moktis NP-hard.
Moreover, under reasonable complexity theoretic assumptions, itis & of vertices, which for small values df behaves liken
shown that this problem is not polynomially solvable even when Therefore, this problem can be solved in polynomial time when
k = O(logn). In this paper, we give a randomized algorithm that is a constant. On the other hand, there is a reduction that shows that
finds ana-separator of sizé in the given graphunlessthe graph ~ any algorithm for finding amx-separator of sizé can be used to
contains ar{« + €)-separator of size strictly less thanin which find ak-clique in the given graph [19] (see also Section 7.1). This,
case our algorithm finds one such separator. For fixdte run- together with existing results on the maximum clique problem [9]
ning time of our algorithm i%°™2°®)  which is polynomial for (see also [6]) implies that there is no polynomial-time algorithm for
k = O(log n). For bounded degree graphs (as well as for the case the problem of finding am-separator of super-constant size (say,
of finding balanced edge separators), we present a deterministic alk = O(log n)) unless NP has subexponential time algorithms.
gorithm with similar running time. To make the minimuna-separator problem more tractable, one
Our a|gorithm involves (among other thmgs) a hew Concept that may allow for approximate SOlUtionS, rather than exact solutions.
we call (¢, k)-samples. This is related to the notionddtection ~ The approximation may be in terms size(allow for a separator
setsfor network failures, introduced by Kleinberg [FOCS 2000]. With somewhat more thah vertices), in terms obalance(allow
Our proofs adapt and simplify techniques that were introduced by €ach connected component to have somewhat morecthaver-
Kleinberg. As a by-product, our proof improves the known bounds tices), or as is most often the case, both. For example, this applies to

on the size of detection sets. We also show applicatior(s, af)- the approximation algorithms for finding balanced edge cuts in [17,
samples to problems in approximation algorithms and rigorous analy2] and balanced vertex separators in [8], and they are sometimes
sis of heuristics. referred to as “pseudo-approximations”. (The notable exception to

this is the approximation algorithm in [10] which approximates the
size but is exact in terms of the balance.) In this spirit of relax-

Categones and SUbJeCt DeSCI’IptOI’S ing the balance requirements, we consider the following question:

G.2.2 Discrete Mathematicg: Graph theory—graph algorithms given a graph with am-separator of sizé = O(logn), can one
find an (o + ¢)-separator of sizé& in polynomial time? When
General Terms a > 2/3, we give a positive answer to this question, and prove the

following stronger (and perhaps surprising) result: there is a ran-
domized algorithm that given a graghcontaining arx-separator

of sizek, finds such a separatanlessG also containga + ¢)-
Keywords separators of sizstrictly less thank, in which case the algorithm
will find one such separator. For fixed the running time of our
algorithm isn®®2°®) 'which is polynomial fork = O(logn).
Hence our result shows that (whéns small)the only way to con-

Algorithms

Fixed parameter tractability, VC dimension

1. INTRODUCTION struct hard instances of the minimumseparator problem is to
An a-separator for a grapté(V, E) is a set of vertices whose  hide such a separator among other separators with strictly smaller
removal fromG leaves no connected component larger thé|, size, though slightly worse balance

For readers familiar with parameterized complexity [6], our re-
sult can be stated as a positive result on the fixed parameter tractabil-
ity of finding the minimuma-separator. This problem was shown
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The sketch of our algorithm is as follows: we pick a random Section 6. Negative results that complement some of our positive
sample of vertices of siz€(k), and “guess” the partition of this  results are presented in Section 7.
set with respect to the optimal separator. We add two vertices
andt and connect them to the vertices on the two sides of thispar- 2. PRELIMINARIES
tition. The optimal separator corresponds to a minimstreut in
this graph. We then decompose this graph into “layers”, and use
a dynamic programming algorithm to find the most balanced mini-
mum st-cut in this graph.

The proof of our main result has two components. The main
technical tool used in the first component is a notion similar to the
notion of detection setsntroduced by Kleinberg [14]. Roughly
speaking, ar(e, k)-detection set is a sél/ of vertices of a net-
work that can “detectk-separation events in which a removal of
k vertices disconnects more than vertices from the rest of the
network. This detection is achieved if two verticesl®f end up
in different connected components, and cannot communicate any-
more through the network. We use a strengthening of this notion, 2 1 Key definitions
which intuitively enables us to relate the balance of any separa-

tor on the entire graph to its balance on a small set of vertices - iviTion 2.1 AssetS of verticesS © V inagraphG(V, E)

which we call an(e, k)-sample. We_use a VC dimension argu- is an(a, k)-separatoif || < k, and the induced subgragB[V’ \
ment similar to the one used by Kleinberg to show that a random S] that remains whets' is removed fron has no connected com-
set of O(k) vertices is likely to be ar{e, k)-sample. Our argu- ponent larger thary|V/|.

ment is considerably simpler than Kleinberg’s proof. Furthermore,

since(e, k)-sample is a strictly stronger notion than a detection set, Remark. Any set of at most: vertices will be called &-separator,
our result answers an open of Kleinberg [14], establishing the op- regardiess of whether its removal separates the graph into more
timal dependence of the size of the smallest detection sét.on  than one connected componentkseparator is callebalancedf

More precisely, our result implies a bound ©f(ke ™" log(1/¢)) it is an (a, k)-separator, where is some constant bounded away
on the size of the smallest detection set, improving a bound of fom 1.

O(ke™ ' log klog(1/¢)) by Fakcharoenphol [7] which in turn im-
proves upon the bound @ (k3¢ log(1/¢)) by Kleinberg [14]. DEFINITION 2.2. Given a graphG(V, E) and a set of vertices
It is easy to see thaD (ke ') is a lower bound on the size of a W C V, a setS of vertices is ar(a, k, W )-separatoif |S| < k,
detection set, and therefore our bound has the optimal dependencend the induced subgraghi[V'\ S] that remains whess' is removed
on k for general graphs. For highly connected graphs, and also for from G has no connected component with more th&iV | vertices
weaker notions of detection sets better bounds are given by Guptafrom V.
(see [7]) and Kleinberg, Sandler, and Slivkins [15]. . .

The second component of our proof is a dynamic programming 2.2 VC dimension
algorithm based on a new decomposition lemma. This algorithm  The notion of VC dimension (Definition 2.3) was introduced by
finds a minimumst-cut that is also balanced, if exists, in time  vapnik and Chervonenkis [22], who also showed its uses in the
n®M20M) wherek is the size of the minimunst-cut. This is context ofe-samples (Definition 2.5). The conceptehets (Defi-
done by showing that the graph can be constructed in steps, in eachition 2.4) was introduced by Haussler and Welzl [13]. Lemma 2.6
step adding a number of vertices, so that in each step only a small(for the case oé-nets) is from [4], and improves over bounds given
subset of the vertices can be connected to the rest of the graph.  in [13] (as well as in [1], for example) by a factor 6¥(log d).

We also present a deterministic algorithm for finding(ant ¢)- For additional information on VC dimension, the reader may con-
separator of sizé with running timen® 29 1 %) ‘and another ~ sult [18, 5].
deterministic algorithm with running time®*2°®) on bounded
degree graphs. For this purpose we introduce the notion of a Steiner DEFINITION 2.3. A setT is shatteredy a collectionS of sub-
t-decomposition, which essentially is a partition of the graph into setsSi, Sz ... of [n], if for everyT’ C T there is somes; € S
connected components of size roughlyThe “Steiner” aspect of  such thatl' N S; = T". TheVC-dimensionof S is the cardinality
this decomposition is that in order to make some of the components of the largest sef” shattered bysS.
connected, we may need to use vertices from other components as ) )
Steiner points. But if there are no Steiner points, ane n/k, ~ DEFINITION 2.4. A setlV is ane-netwith respect to a collec-
then it follows that every separator of sizemust leave most of ~ tion S of subsetsss, Sz ... of [n], if W intersects every sef; € S
the components connected, a fact that can be used in finding smalWith [Si| = en.
separators. Notions similar to Steinedecompositions were also
considered in the context of detection sets.

We shall try to be consistent in using the following notation. The
number of vertices in a graph will be denotedrbyand[n] denotes
the set of integers from 1 ta. A set of vertices that forms a min-
imum size separator will be denoted By and its size by.. The
parameter will be reserved for expressing the balance of separa-
tors (the size of largest connected component divided)hwnde
will quantify the error introduced by sampling. A random sample
of vertices (that is subsequently used in an algorithm to find small
separators) will be denoted BY. Unspecified universal constants
will all be denoted by: (even though the constants involved in var-
ious statements may differ from each other).

DEFINITION 2.5. A setlV is ane-samplewith respect to a col-

The rest of this paper is organized as follows: In Section 2 we '€ctions of subsetsss, S, ... of [n], if for every setS; € S,
present the definitions and preliminaries. Section 3 defines the no- |Si] |Si]
tion of an(e, k)-sample and proves that a random se©X¢f:) ver- (7 — W[ < [WnsSi| < (7 + W]
tices is likely to be ar(e, k)-sample. This immediately gives an
improved bound on the size of a detection set. We use the results of LEMMA 2.6. For some universat, for every set systei over
Section 3 in Section 4 to prove our main result on balanced separa-[n] of VC dimensionl, a random setV’ C [n] of size
tors. The deterministic construction is presented in Section 5. Two c 1 1
other applications of the notion @¢, k)-samples are presented in - dlog - + log 5



has probability at least — ¢ of being ane-net forS. Likewise, a
random seW C [n] of size

€2

allog1 Jrlog1
€ §

has probability at least — § of being ane-sample forS.

PrRoOOF This lemma for the case afnets appears in [4] (see
also [16] and [20] for improved constants). We are not aware of a
reference with an explicit proof for the casece§ample, but such a
proof follows by straightforward modifications to the proofs in [13,
4, 16]. The proof is sketched below for completeness.

Pick a random seW of ¢ points (the reader may think af
as being smaller tha®(d/e*)). We wish to show that the event
that W is not ane-sample has probability at most Consider
the case thalV is not ane-sample. Then there is a séte S
with a u fraction of the points ofrn], but only a(u — €) fraction
of the points ofi¥. (Alternatively, it has at least gu + ¢) frac-
tion of the points ofi¥/, but this case is omitted from this sketch
of proof.) Pick at randomT" — ¢ additional random points, where
T = 2t/e. With probability at least half, at leag{T" — t) of these
points are inS. Hence with probabilityy /2, a random set of”
points contains at leagt(T" — ¢) points from some sef € S,
but the firstt of theseT points contain only at mosty — €)¢
points fromS. For a particularS, the probability of this happen-
ing can be estimated as follows. Pickifigfirst and condition-
ing on it having at leasy(7 — ¢) points from S, the expected
number of points fromS in the first¢ of the T' points is at least
w(T—t)t)T = ut(1—t/T) > (u—e€/2)t. By bounds on large de-
viations (using the Chernoff bound [1, 5]), the probability of a de-
viation of et /2 behaves like~(<*t/#) < 2=2(*) The pound of
d on the VC dimension implies (by Sauer's Lemma) that there are
atmostd 7 < 20(¢lee1/9) ways of choosings (for the inequal-
ity we used the fact that we will také = O(t/¢) < O(d/e*)).
Hence we want to satisfy the following inequality:

QO(dlogl/e)Q—Q(ezt) < 5/2
which proves Lemma 2.6.[]

2.3 Detection sets

The notion of{¢, k)-detection sets was defined by Kleinberg [14]
as follows. A setS of the vertices of a grapt'(V, E) is called an
(e, k)-partitioning set if|S| < k andG[V \ S] contains two sets
of nodesA and B, each of size at leash, that are separated (note
that A and B need not be connected). A g8t of vertices is an
(e, k)-detection set if for everye, k)-partitioning setS, there are
nodesu,v € W\ S that lie in different connected components of
G[V\ S].

Kleinberg showed that a random set of s2&k*c " log(1/¢))
is likely to be an(e, k)-detection set. This bound was improved by
Fakcharoenphol [7]t@ (ke ™! log klog(1/¢)). Gupta (as reported

DEFINITION 3.1. A setlV of vertices in a grapt@(V, E) is an
(e, k)-netif for everyk-separatorS, and for every set of verticas’
that forms a connected component in the induced gi@ph \ S],

1. If |V’| > en, thenV’ has at least one vertex frobf.

2. If|[V'| < (1 —€)n—|S], then the seV \ (V' U S) has at
least one vertex frorfi/.

Remark. Definitions for notions such asnets (see Definition 2.4)
typically have a condition such as condition 1 in Definition 3.1, but
do notinclude a condition similar to condition 2. This last condition
is added to Definition 3.1 so as to make it as strong as the notion of
k-detecting sets (see Corollary 3.7).

DEFINITION 3.2. A setW of vertices in a graphG(V, E) is
an (e, k)-sampleif for every k-separatorS, and for every set of
verticesV’ that form a connected component in the induced graph
G[V\ 9],

Vi
(-

Remark. One may wonder whether evety, k)-sample is neces-
sarily an(e, k)-net. This does not simply follow from the defini-
tions due to the following subtlety. A-separatolS may partition
G into a connected compone¥it of size(1—e)n—k and two more
connected components of size/2. An (¢, k)-sampleW might
then have all its vertices but one ¥, and the remaining vertex
in S, and hence is not aft, k)-net (does not meet condition 2 of
Definition 3.1). However, it will turn out that our constructions for
(e, k)-samples will also be constructions far, k)-nets. (We could
have added to Definition 3.2 a condition in the spirit of condition 2
of Definition 3.1 without changing any of the results of this paper,
but chose not to do so, so as not to unnecessarily complicate defin-
itions.)

For an(e, k)-sample, we have the following key connection be-
tween separators andl-separators.

V']

W<V NW] < (5= + W]

LEmMmMA 3.3. Let W be an(e, k)-sample in a grapliG(V, E).
Then for every < o < 1,

1. Every(a, k)-separator is also affa + ¢, k, W)-separator.

2. Every(a, k, W)-separator is also aric + ¢, k)-separator.

PROOF In terms of the size of separating sttthe restrictions
on(a, k) and(«, k, W) separators are identical, namely| < k.
Hence to prove the lemma one only needs to consider the balance
parameter.

For item 1, consider afuw, k) separator. There is no connected
component with more thaan vertices. Then by the right-hand
side inequality in Definition 3.2, no connected component may con-
tain more thar{a + €) || vertices ofi¥/.

For item 2, consider afa, k, W) separator. There is no con-

in [7]) defined a weaker notion of detection sets and showed that hected component with more than| vertices ofW. Then by

there are weak detection sets of si2éke™') using a construction
that uses the structure of the graph. Kleinberg et al. [15] improved

the bound on the size of detection sets for graphs that are highly

connected.

3. RANDOM (e, k)-SAMPLES

We start by defining the concepts(ef k)-nets andee, k)-samples.
We will use the notion ofe, k)-samples to design our algorithm for
finding balanced separators, and the notiofeok)-nets to answer
Kleinberg’'s question on detection sets.

the left-hand side inequality in Definition 3.2, no connected com-
ponent may contain more th&no + ¢)n vertices. [J

In the rest of this section we show that relatively small sets of
random vertices are likely to b, k)-samples. It is straightfor-
ward to show this if the size of the set is allowed to depend log-
arithmically onn (see [14]). We shall now show that the size of
(e, k)-nets and e, k)-samples need not depend @nOur proof is
a simplification of the proofs leading to the previously best bounds
known for detection sets (recall that detection setg arg)-nets),
and moreover, improve these bounds by a factab@bg k). The



previously best bounds for detection sets are cited in [15], based onThis inequality is satisfied when> ck (for some sufficiently large

an improvement of [7] to the bounds in [14]. constant), proving the lemma. I
Given a graphG(V, E) onn vertices and a positive integér< )
n, we define a collectio of subsets ofi’ as follows. The set COROLLARY 3.6. For some universat, a random setV C V/
S’ C V belongs taS if there is a sefS C V of at mostk vertices of size
disjoint from.S” whose removal fronV" disconnectg~, and one of c 1 1
the resulting connected components has eighar V\ (SUS’) as = klog— +log <

its set of vertices. (In our definitiory’ is either a single connected
component, or the union of all connected components but one. In has probability at least — ¢ of being an(e, k)-net. A random set
contrast, Kleinberg [14] defined and used a notionkeseégmental” W C V of size
sets. This notion appears to be a “red herring” and we shall not use c 1 1
it.) — klog— +log -
€ € é
LEMMA 3.4. The VC-dimension af defined above is at most o :
ck, wherec is some universal constant independent of has probability at least — ¢ of being an(c, k)-sample.
. . PROOF We note that-nets and-samples (as in Definitions 2.4
To prove thg abpve lemma we need the following result of Klein- and 2.5) with respect to the collectiah used in Lemma 3.4 are
berg [14], which is proved using a theorem of Mader (see Chap- (. 1) nets ande, k)-samples in the sense of Definitions 3.1 and 3.2.
ter 73 in [21], for example). Now theO(k) bound of the VC dimension & given in Lemma 3.4
LEMMA 3.5. ([14]) Let G(V, E) be a graph andl’ C V. If together with the bounds in Lemma 2.6 imply Corollary 3.6]
there are ndk + 1 vertex disjoint paths iid with distinct endpoints
in T, then there is a sel’ C V of size at mosBk such that its
removal fromG leaves no connected component with more than
one vertex fronT".

The bounds in Corollary 3.6 are best possible up t@éing 1/¢)
multiplicative factor. See Section 7.3 for details.

COROLLARY 3.7. Inevery graphG(V, E') and for everye > 0
; _ ; ; -1
Proof of Lemma 3.4. Let T' be an arbitrary set of size We andk, there is an(e, k)-detection set of siz (ke log(1/¢)).

show that for some universal constanif ¢ > ck, thenT cannot PrROOF By Corollary 3.6 it is enough to show that evey k)-
be shattered by§. The constant shall remain unspecified, since  netWW is also ar(e, k)-detection set. This is easy to see, sincgii
we allow ourselves some slackness in the analysis, for the sake ofan(e, k)-partitioning set, then no connected componer®ff \ S]
simplicity. contains more thafll — e)n— |.S| nodes. Take one such component
Assume first that there afket 1 vertex disjoint paths i whose Vi. By definition, W' must contain a vertex € V \ (V/ U S).
endpoints are ifl. Then any seS’ of at mostk vertices leaves ~ Now, letV; be the connected component®fV/ \ 5] containingu.
two endpoints of one such path in the same connected componentAgain, by definition, )’ must contain a vertex € V' \ (V5 U S).
Hence takingl” as having exactly one endpoint from every such Thereforeu andv are two vertices oV \ S that are separated by
path, there is no shattering @fthat givesI” as one of the pieces. S.
Hence we may assume that there are at nkogertex disjoint

paths inG whose endpoints are ifi. In this case, Lemma 3.5 4, FINDING SMALL BALANCED SEPARA-

implies that there is a s&/ C V with at most3k vertices whose TORS

removal fromG disconnectgr, and every vertex df'\ W lies in a . ] L

different connected component. Lét= |T\W| > t—3k. Denote In this section, we present an application(afk)-samples to the

the components that contain vertices frafby Ci, ..., Cy, and problem of finding small balanced separators in graphs. Marx [19]
the rest of the components may remain nameless. We name theProved that under certain complexity theoretic assumptions, there
vertices inT \ W by v1,va, .. ., vys, in agreement with the name 1S N algorithm with running timex“ (k) that computes an

of their respective components. (o, k)-separator in a graph that contains such a separator (For more

Consider all subses’ C (T'\ W). We use a counting argument details, see Section 7.1). In this section, we show that there exists
to show that at least one su@i cannot be derived as an intersec- 2N algorithm with running time.”)2°) that given a graph that
tion S’ NT,withS" € S. contains ar(«, k)-separator either finds such a separator (without

Let U be a connected component separated from the rest of the'elaxing the balance), or computes(an- ¢, k — 1)-separator.
graph by a sef of at mostk vertices. We give an upper bound THEOREM 4.1. For a > 2/3 and arbitrary k, let G(V, E) be

of the total number of possibilities fd/ N (7" \ W). Multiplying
. . an n vertex graph that has afo, k)-separator. Then for every
this upper bound by 2 will also take care of séfse 5 that are e > 0, there is a randomized algorithm with expected running time

complements of a connectepl component. 0(1)nO(ke—2 log(1/¢)) ) )
There are at most'V! < 23% ways of choosing the intersection ~ * 2 that finds either ar{a, k)-separator, or an

UNW. Having chosen this intersection determines uniquely which (& + ¢k — 1)-separator inG:. In particular, the expected running
components”; are connected t&/ N W. To disconnect such a  time is polynomial for every fixed> 0 whenevek = O(log ).

component; from U N W, there must be some vertexc (SN PROOF. Let S be ak-separator that separatésinto connected
Ci). As|S| < k, at mostk components can be disggnnected from - components, where no connected component is largerthais-
U NW. Hence having fixed N W, there are at most f:() tj < ing the fact thaty > 2/3, it follows that the connected components

can be arranged in two sidelsand B, where no side contains more
U. It follows from the above discussion tH&tcannot be shattered ~ thanan vertices. (The proof of this fact is standard and omitted.
if: This is the only place where we requize> 2/3. As is well known,
! whena < 2/3, still each side might need to be as large2ag3
ot=3k < o 23k(k 1) t rather thamn, if S separates: into three connected components
of sizen/3.)

(k+1) " ways of choosing which vertices of"' \ W) remain in



Pick a random selii” of O(ke™2log(1/¢)) vertices. By Corol-
lary 3.6, W is likely to be an(5, k)-sample. Moreover, it is likely

thatW does not contain more tha |- 2L /i < |w|(121 1<)

vertices fromA (and more thamW|(% + 5) vertices fromB).
Consider all possible ways of partitionifgj into two setsA’ and
B', with no set larger thafe + £)|W/|. We call these partitions
balanced At least one balanced partition faithful in the sense
thatA’ ¢ AuSandB’ C BU S. For every balanced partition,
find a minimum vertex cut irG separatingd’ from B’. (Such a
cut can be found in polynomial time by flow techniques, by adding
a vertexs connected to all vertices id’, a vertext connected to
all vertices inB’, and finding the minimum vertex cut separating
from ¢.) For at least one balanced partition (the faithful partition),
the number of vertices in the cut is at mést_et .S’ be an arbitrary
vertex cut of size at mogt found by the above procedure. Thgh

is necessarily afi + €, k)-separator foiG, by Lemma 3.3. Fur-
thermore, if the size of the minimum cut separatitigfrom B’ is
strictly less thark, thenS’ will be an(a+e¢, k—1)-separator fots.
Therefore, the only thing that remains is to find(an k)-separator

in G separating andt, assuming that the size of the minimum cut
separating andt is preciselyk. We call this problenthe balanced
minimumst-cut problem This problem is NP-hard for general
(as shown in Section 7.2), but we show in Lemma 4.2 below that it
can be solved in tima® (20"

The algorithm takes time® ) 2!/W120(%) |t has small probabil-
ity of failing, if it is unlucky in the choice of the random sBt (for
example, ifi¥’ happens not to be &@/2, k) sample). In this case,
the algorithm can be repeated with a new random choit¢® oThe

sizek must contain exactly one vertex from each path. This moti-
vates the definition of critical and non-critical vertices.

DEFINITION 4.3. A vertexv of G is calledcritical if every col-
lection of k vertex-disjoint paths from to ¢ containsv. A vertex
is non-criticalif it is not critical. We say that two vertices and
w are connectedf there is a path betweem andw whose vertices
(except possibly for. andw) are non-critical.

We will use the following alternative definition for critical ver-
tices later in the proof. The proof of this proposition is not difficult
and is omitted here.

PROPOSITION 4.4. A vertexv is critical if and only if there is a
vertexst-cut of sizek containingw.

We now fix a collection ok vertex-disjoint path$ , P, . .., Pk
from s to t. By definition, each critical vertex must be on one
of these paths. For eadh, letv;,...,v;, be the sequence of
critical vertices ofP; in the order they appear on this path fram
to t. To simplify notation, define; o = s andv;,,4+1 = t for
everyi, and think ofs andt as critical (even though they are not
allowed to be chosen as cut vertices). Kebe the set of alk-
tuplesa = (a1, ...,axr) where0 < a; < r; for everyi. In other
words, eacta € Q) corresponds to one way of selecting one vertex
from eachP; (Notice that this does not have to correspond to an
st-cut in G, since there are edges and vertice&/ithat are not on
P;’s). For everyk-tuplea € €, we define an induced subgraph
G|a] of G as follows.

expected number of times the algorithm needs to be repeated is at

most 2. Hence the expected running time 1) 20 (ke *1es(1/€)
proving Theorem 4.1 (assuming Lemma 4.2].]

Remark. Notice that by taking = 1/k in the above theorem, we
either obtain arje, k)-separator, or a cut in which the relative loss

in the balance is smaller than the relative gain in the size of the cut,

and therefore has a better “cut ratio”.

The only thing that remains is to solve tBalanced minimum
st-cut problem. Its input is a grapli = (V, E), two non-adjacent
verticess andt in G, and a constarit < o < 1. A desired solution
is avertex cutS C V' \ {s,t} of sizek, separating from ¢ such
that the components @ \ S that contains and¢ are of size at
mosta|V|, wherek is equal to the size of the smallest vertex cut
separating andt in G. Observe that we do not care here about the
size of components that do not contaior ¢. The reason is that in

DEFINITION 4.5. Theprefix subgraphG|a] defined bya € Q
is an induced subgraph @F with the vertex set defined as follows:
a critical vertexwv; ; is in G[a] if and only ifj < a;; a non-critical
vertexu is in G[a] if and only if all critical vertices that are con-
nected tou are in GJa]. Thelast two layersof G[a] is the set of
critical verticesuv; ; such thata; — 1 < j < a;.

The idea behind the algorithm is to constridetby a sequence
of prefix subgraphs, starting from the gra@fi], and adding one
critical vertex (and a number of non-critical vertices) in each step.
Furthermore, maintain the invariant that at any step, every critical
vertex outside the current subgraph is not connected to any criti-
cal vertex other than the ones in the last two layers of the current
subgraph. In other words, the last two layers of the current prefix
subgraph act as theterfaceof this subgraph to the rest 6f. This
will enable us to use dynamic programming to solve the balanced

the context of Theorem 4.1, these components will not contain any minimum st-cut problem, by only keeping track of the “status” of

vertices from thee, k) samplelV, and hence their size will be at
moste|V/|.

the vertices at the interface of the current prefix subgraph.
This idea is formulated in the following decomposition lemma.

The following lemma shows that this problem can be solved in LEMMA 4.6. Thereis a sequence, ..., aP € Q such that
time n®M2°%) The proof of this lemma is based on decompos- )
ing the graph into layers and using dynamic programming on these (@) a' = (1,...,1) anda” = (r1,...,7%);
layers. h—

LEMMA 4.2. There is a deterministic algorithm that solves the
balanced minimuns¢-cut problem in time:?"2°%)  wherek is
the size of the minimunt-cut andn is the number of vertices in
the graph.

The rest of this section is devoted to the proof of the above
lemma. We start with the definition of critical and non-critical ver-
tices. Since the minimum vertex cut betweeandt is of sizek,
Menger’s theorem implies that contains a collection of vertex-
disjoint paths froms to ¢. For any such collection, evert-cut of

(b) for everyh = 2,...,p, a" — a"~!is a vector with exactly
one entry equal to one, and zero elsewhere; and

(c) for everyh = 1,...,p, every critical vertex not irfG[a"] is
not connected to any critical vertex 6fa”] except possibly
to the vertices in the last two layers 6fa”].

PROOF We construct the sequence inductively. It is clear that
G[a'] satisfies the condition (c) above. Assume we have con-
structed the sequence upa8~—!. We show that there is somé
that satisfies the conditions of the lemma. To this end, we show that
thereis arg, 1 < ¢ < k, such thatui’ahfl_l is not connected to



any critical vertex outsid€/[a" ~']. Assume, for contradiction, that
such an does not exist. This means that for eactiere is a critical
vertexv; ; outsideG[a" '] (i.e., withl > a’ ") that is connected
to v, ah 11 Now, we construct an auxiliary directed graph

with vertex set[k]. For eachi,j € [k], there is a directed edge

fromitoyjin H if v, n—1_, is connected to a critical vertex;;

on P; with [ > a;.“l. 'By our assumption, every vertex i has
outdegree at least one, and thereféfeéhas a cycle. Consider the
shortest cycle€ = 4, ...,i7_1 in H. Each edgéyi(y41) mod s Of

this cycle corresponds to a path, from v, h 1 0wy,

Ly41

for somely 1 > a,L- , such that all mternal vertices of this path

are non-critical. We show that the existence of this cycle contra-
dicts the fact tha’vi0 .h—1 is a critical vertex. By Proposition 4.4,
ag

there exists a vertext-cut S of sizek that contains)l.(J Qb1 The

removal of S splits the graph into several connected components.

We call the vertices in the component that contaisgver vertices,

and the ones in the component that contaite vertices. Since&

contains exactly one vertex from eaghand/y, > ah L, the ver-

texv;,,¢, must be a tan vertex. This vertex is connected by the path

Qy—1tothe Vel’terlf ah—1 _p- Since all vertices o), are
1f_1

non-critical and hence not if, the vertexv,  _n—1 _, iseither
. A _
tan or inS. Therefore, the vertex;,_,,¢,_, must be tan. Simi-
larly, we can argue that the vertices, _,.¢;_,,...,vs; ¢, are all

tan. Howeveryp;, ¢, is connected by the pato t0v h 3 ,and

the latter vertex must be silver, since the only verte@nthat is
in Sisv, _n—1.This gives us the desired contradiction.

that

is not connected to any critical vertex outsi@ga”~']. Such a
vertex can be found efficiently by trying all possibilities. Now, we
simply leta} = a}~' + 1 anda} = a}~! for every;j # i. It

is easy to see that this choice @f satisfies the conditions of the
lemma. [

The above argument shows that there is a vestex.—1 _,

Equipped with the above lemma, we can complete the proof of
Lemma 4.2 using dynamic programming. We start by defining the
notion of avalid coloringfor a prefix subgraph.

DEFINITION 4.7. Avalid coloringof a prefix subgrapliz[a] is
a partial coloring of the vertices af[a] with colors silver, tan, and
black such that

e for eachi, there is at most one vertex 6f[a] on P; that is
colored black; furthermores and¢ cannot be colored black;

e for eachi andj < a,, if there is noj’ < a; such thaty; ;/ is
colored black, themw; ; must be colored silver; if there is such
aj’, thenw; ; must be colored silver if < j' and tan ifj > 5';

e there are no two connected critical vertices that are colored
silver and tan, respectively; and

e every non-critical vertex that is connected to at least one silver
(tan, resp.) critical vertex is colored silver (tan, resp.); every
non-critical vertex that is not connected to any silver or tan
critical vertex remains uncolored.

Notice that the third condition in the above definition guarantees
that no non-critical vertex is connected both to a silver and a tan
critical vertex, and therefore the fourth condition specifies a well-
defined coloring for non-critical vertices.

Proof of Lemma 4.2.Note that a valid coloring of the entire graph
G that colorst tan corresponds to a minimust-cut in G. Con-
versely, any minimunst-cut in G gives rise to a valid coloring of

G that colorst tan. Therefore, the problem is to decide whether
there is a valid coloring of7 that colorst tan and contains at most
an silver andan tan vertices. This can be solved using dynamic
programming, as sketched below.

We use Lemma 4.6 to construct the sequeaige. . , a?. Based
on this sequence, we define a binarx 32* x n x n table A as
follows. The entryA(h, y, zs, z+) is indexed by integers, =, and
x¢, and a stringy € {s,t,b}?*. This entry will be 1 if and only if
there is a valid coloring of[a"] with z, silver andx, tan vertices
that colors the vertices in the last two layers@i”] according to
Y.

The entriesA(1, ., .,.) can be computed by inspection. We now
show an algorithm that computeXh, y, =, ), based on the en-
tries A(h — 1,.,.,.). The last two layers of/[a"] differ from the
last two layers of7[a"~!] in that one vertex (say) was added and
one vertex (say) was removed. (Technically, if = s thens may
still belong to the last two layers @f[a"], but the treatment of this
case is only simpler than the case“ s, and is omitted.) We try all
three colors for.. For each color, we first check if in combination
with y it violates any of the first three conditions of Definition 4.7.
If it does not, We compute the color of all vertices that ar&'ja”
but not inG[a" ] using the fourth condition in Definition 4.7. By
condition (c) of Lemma 4.6, the color of any such vertex can be
uniquely specified. Given the number of such vertices that are col-
ored silver and tan, we can compute the number of silver and tan
vertices that we need i@[a"~'] to make the total number of sil-
ver and tan vertices iﬁl[ah] add up tozs andz,, respectively. If
for at least one guess for the colorwthe corresponding entry in
A(h —1,.,.,.) indicates that there is a valid coloring 6fa”" ']
with the required number of silver and tan vertices, then we set
A(h,y,zs, x¢) to one. Otherwise, it is set to zero.

Given the tabled, one can easily check the existence of a bal-
anced minimumst-cut by checking the entried(p, y, x5, z:) for
all stringsy that colort tan, and all valuess, z: < an. Itis easy
to see that the running time of this algorithmi€(»20®) O

5. DETERMINISTIC ALGORITHMS

We showed that a random set of vertices (that is sufficiently
large) is likely to be an(e, k)-sample. The fact thate, k) sam-
ples can be chosen in a manner oblivious to the structure of the
underlying graph may be useful in some applications (for example,
in finding detection sets in large unknown graphs). However, for
some other applications (such as theeparator problem in Sec-
tion 4) obliviousness is not required, and it might be preferable to
have deterministic algorithms.

We do not know of a deterministic way of selecting @nk)
sample of sizeD(k/e°1)) is graph, but suspect that this may be
possible. In Section 5.2 we show that this is indeed the case if
one considers edge separators rather than vertex separators.
Section 5.3 we show that for vertex separators, this holds for a
large family of graphs. In Section 5.4 we no longer explicitly con-
sider (e, k)-samples, and describe a deterministic version of Theo-
rem 4.1, with a somewhat worse dependency oAll these results
are based on the notion of Steirteslecomposition that is described
in Section 5.1. We remark that arguments similar to the ones that
we use here were also used to some extent in the context of detec-
tion sets. See the part attributed to Gupta in [7].

Remark. For simplicity of the presentation, when dealing with
finding («, k) separators in this section, we shall be content with
finding (a + ¢, k) separators. These results can be extended to
finding either an(a, k) separator or affe + ¢,k — 1) separator
using the techniques of Section 4.

In



5.1 Steiner:-decompositions
We start by defining the concept of a Steinetecomposition.

DEFINITION 5.1. Givent > 2, a Steinert-decompositiorfor
a graphG(V, E) is a partition of its vertex set into disjoint sets
Vo, Vi,..., Vg, and a partition of its edge set into disjoint sets
Eo, Er,. .., E,, E', with the following properties:

1. |Vi| < 2t forevery0 <i <g.

2. |Vi| > tforeveryl < i < q. (|Vo| may be smaller than,
and may also be empty.)

3. For every0 < ¢ < g, the subgraphG[E;] of G induced
by the edge#’; forms a tree that contains all vertices of.
It may contain also some vertices notlif), which are then
called Steiner vertices

The load of a vertex in a Steiner decomposition is the number
of setsV; for which v is a Steiner vertex. Thimad of a Steiner
t-decomposition is the maximum load of any vertex.

Remark. Definition 5.1 is formulated in a way that makes it easy

vertex. Remove frorfT" all vertices ofl/;, and continue inductively
with the subgraph that remains. Again, if this subgraph contains at
mostt vertices, take its vertices & and the remaining tree edges
asEy, and terminate.

It is clear that all setd; constructed above are of size between
t and 2t (except fors), and are disjoint. The subgragh[E]
contains exactly the vertices &f, and fori > 1, every subgraph
G|[E;] is connected, and contains the vertice¥pand at most one
more Steiner vertex (denoted hyin the above description).[]

5.2 Edge separators

In this section we discuss edge separators, unlike all other sec-
tions that deal with vertex separators. As a rule of thumb (which
can be supported by formal arguments), problems on edge separa-
tors are easier than the corresponding problems on vertex separa-
tors. Hence all the results derived in this paper apply not only to
vertex separators, but also to edge separators. Moreover, some of
the results can be strengthened, as we shall show here.

DEFINITION 5.3. A setS of edgesS C E inagraphG(V, E)
is an(a, k) edge separatdf | S| < k, and the graphG(V, E \ S)

to use both in the context of edge separators and vertex separathat remains whei$' is removed fronz has no connected compo-
tors. For edge separators, we want the collection of Steiner treesnent larger tham|V|.

to be edge-disjoint (a requirement that is not used in our treatment
of vertex separators). For vertex separators we want the load to

Other definitions in this paper (such as the notionéok) nets

be small (and the notion of load is irrelevant to our treatment of and samples) generalize in a straightforward way to the case of
edge separators). It will be the case that in our construction of ©€dge separator, and will not be repeated.

Steinert-decompositions, every subgraghFE;] contains at most

one Steiner point, a fact that will be used in the proof of Theo-

rem>5.7.

LEMMA 5.2. LetG(V, E) be an arbitrary connected graph and
let ¢ be an integer satisfying < ¢ < |V|. ThenG has a Steiner

t-decomposition in the sense of Definition 5.1. Moreover, a Steiner

t-decomposition can be found in polynomial time.

PROOF Let T be an arbitrary spanning tree 6f. The edges
not in this spanning tree will be placed it/. Choose an arbitrary
vertexr € V as its root, and direct all edges Bfaway from the
root. With every edge = (u, v) in the spanning tree associate the
set of vertices/, that includes all vertices that are cut off from
in T' by removinge (and in particular, includes but notu), and
a set of edge#. that includes all tree edges induced Wy, Note
that the subgrapli¥| E.] induced onE. is connected and includes
all vertices ofV,.. Moreover, the spanning tré@ restricted to the
vertices(V' \ Ve) is a spanning tree af[V \ V], and this is an
invariant that we shall maintain throughout the proof.

If for some edge: = (u,v), t < |Ve| < 2t, then letV; and
E; of the Steiner-decomposition bé’. and E., remove fromT’
all vertices ofV. and their incident edges, and continue inductively
with the subgraph that remains (to find the Séts. . ., V). If this
subgraph contains at mastertices, take its vertices & and the
remaining tree edges @, and terminate.

If there is no edge: with ¢t < |V.| < 2t, then there must be
some vertex, (where possibly. = r) and edges: = (u,v1), ...,
ep = (u,vp) (for someps> 1) such that for everyl < i < p,
[Ve;] < t, and moreover ?|V.,| > t. In this case there must be
somep’ < p such that

/

x
t< [Ve,| < 2t.

=1

S
Let V1 from the statement of the lemma be_; V., and letE;
be all tree edges incident wifli . The vertexu serves as a Steiner

THEOREM 5.4. For every connected grapf(V, E), for every
1 <k < |V|ande > 0, the following holds with respect to edge
separators.

1. There is a deterministic polynomial time algorithm for choos-
ing an (e, k)-net of sizeD (k/¢).

2. There is a deterministic polynomial time algorithm for choos-
ing an (e, k)-sample of siz&©(k/c).

3. If the graph has an(«, k) edge separator (witlx > 2/3)
then there is a deterministic algorithm with running time
n@W 20/ that finds anla + ¢, k) edge separator il

PROOF Lett¢ = en/4k (rounded to the nearest integer). Con-
sider setdyp, ...,V witht < |V;| < 2t for1 < < g, as implied
by Lemma 5.2. Note that necessarijy> n/2¢t = 2k/e. Consider
an arbitrary edge separator @ of sizek. Thek edges of the cut
may be in at mosk of the subgraph&:[F;], because these sub-
graphs are edge-disjoint. (If fact, some edges may k&' irather
than in one of these subgraphs, a fact that may become useful if
we ever come to care about the constants in the proof.) At most
2tk = en/2 vertices are in these subgraphs. At legst k of
the setsV; are not disconnected by edges of the cut, and will be
calledgood Every good set must reside entirely in one connected
component.

To prove item 1 of the Lemmdd, k)-nets), pick one vertex from
every setl;. Every connected component larger tkarmust con-
tain at least one good set, and hence at least one vertex from the net.
Likewise, every connected component smaller than- €)n — k
does not contain at least one good set, and hence cannot have all
the net points.

To prove item 2 (e, k)-samples), consider first the case that all
setsV; have the same size(or sizes betweenand (1 + €/2)t).
Then the(e, k)-net described above is also &n k)-sample. |If
the sizes of sets vary more radically (they may differ by a factor
of 2) pick |V;|/te vertices from each séf; (rounded to the nearest



integer). Every connected component contains its fair fraction of
the sample points, up to an additive error@®fe). The source of
error is twofold: rounding effects, and the fact thateamaction of
sets might not be good.

To prove item 3 (fixed parameter tractability), febe an optimal
k edge separator partitioning into sidesA and B of size at most
an. Guess which setg; contain separator edges (at mésets),

PROOF Let S be ak-separator that separatésinto connected
components, where no connected component is largerthab)s-
ing the fact thatx > 2/3, it follows that the connected components
can be arranged in two sidelsand B, where no side contains more
thanan vertices.

Find a Steinet-decomposition fotz with ¢ = en/2k, and hence
g < 2k/e. Observe that if none of the Steiner vertices ar§ jthe

and for the rest of the sets (the good sets), guess which of them areproof of item 3 of Theorem 5.4 can serve also as a proof for the

on sideA of the cut and which are on side. Now find a minimum
edge cut inG between the vertices already placed in sitland
those already placed in sid@. Its size is at mosk, and at most

current theorem. Hence it remains to deal with the case that some
Steiner vertices are if. There are at most Steiner vertices (be-
cause our constructions of Steinedecompositions have the prop-

en/2 vertices change side compared to the optimal separator. Theerty that every induced subgragh{F;] has at most one Steiner

running time of the above algorithm is at meét37. [

5.3 Bounded degree spanning trees
For a connected grap8i, let A7 (G) denote the maximum de-

vertex). Let the computation now branch inte+ 1 possibilities,
depending on which is the first Steiner vertex that iSinf any.

In branch 0 (corresponding to no Steiner vertexSin proceed as

in the proof of item 3 of Theorem 5.4. In every other branch, re-

gree in a spanning tree whose maximum degree is smallest. For exmove the corresponding Steiner vertex from the graph, and repeat

ample,Ar(G) = 2if and only if the graph has a hamiltonian path.
In any graphG, a spanning tree of maximum degréde-(G) + 1
can be found in polynomial time [12].

LEMMA 5.5. There is a polynomial time algorithm that in every
graphG finds a Steinet-decomposition of load at modt; (G) /2.

PROOF In the proof of Lemma 5.2, tak€ to be a tree of max-
imum degreeAr(G) + 1. For every Steiner vertex, at least one
of its edges conneet to the setV; containingv, and every sev;
for whichv is a Steiner vertex uses two o6 edges. As all the sets
E; are disjoint, the proof follows. [

COROLLARY 5.6. Forevery connected graphi(V, E), for every
1 <k < |V]ande > 0, the following holds with respect to vertex
separators.

1. There is a deterministic polynomial time algorithm for choos-
ing an (e, k)-net of sizeD (kAT (G)/¢).

2. There is a deterministic polynomial time algorithm for choos-
ing an (e, k)-sample of siz© (kAT (G) /).

3. If the graph has an(a, k) separator (withaw > 2/3) then
there is a deterministic algorithm that finds dn + €, k)
separator in time, 020 RAT(E)/€)

PrROOF The proof is similar to the proof of Theorem 5.4, with
the following changes. Use the Steintelecomposition promised
in Lemma 5.5. Pick = en/2kAr(G). Use the fact that every
separator vertex separates at modt+ Ar/2 setsV;. Details
omitted. [

Remark. If G is Hamiltonian, and furthermore, a Hamiltonian path
is given, then by cutting the path into segments of gin@e gets

a Steinert-decomposition of load 0. The fact that all sets of the
decomposition (except for at most one) has size exadtigds to a
deterministic construction dk, k)-samples of siz&(k/¢), in this
special case.

5.4 Adeterministic algorithm for k-separators

Here we use the notion of Steinedecomposition to present a
deterministic version of Theorem 4.1, with a slightly worse depen-
dence oft (and a better dependence §n

THEOREM 5.7. For o > 2/3 and arbitrary k, let G(V, E) be
an n vertex graph that has afa, k)-separator. Then for every
e > 0, there is a deterministic algorithm that finds &n + ¢, k)-
separator in timenp® (20 k(ogk+1/9) |0 particular, the run-
ning time is polynomial for every fixed > 0 wheneverk
O(logn/loglogn).

the above algorithm (of selecting a Steinedecomposition and
branching) to search forfa— 1 size separator in the new graph. (In
fact, this needs to be done only on the largest component of the new
graph, and only if this component has at le@stt ¢)n vertices.)
After at mostk iterations of this process, no more Steiner vertices
can be inS, and the process ends.

Altogether, the branching process results in a tree glithodes.
The amount of computation per node of the tree is at m8$t) 3¢,
as in the proof of item 3 of Theorem 5.4. The fact that O(k/¢)
completes the proof of Theorem 5.7[]

6. OTHER APPLICATIONS

In this paper, we showed the application of our result$c®k)-
samples to the problem of finding balanced separators (Section 4)
and improving the best known bound on the size of a detection set.
However, our original motivation for considering, k)-samples
was somewhat different. It relates to improving the approximation
ratio for balanced separators. See Section 6.1. The possible use of
(e, k)-samples in local search heuristics is discussed in Section 6.2.

6.1 Approximation algorithms

The following theorem was proved by Arora, Rao and Vazi-
rani [2] for edge separators, and by Feige, Hajiaghayi and Lee [8]
for vertex separators, which is the version we discuss here. (The
reader may wish to recall Definition 2.2.)

THEOREM 6.1. For every constant§ < « < 1 ande > 0,
there is a randomized polynomial time algoriﬂgm that for every
graphG(V, E) and setW C V findsan(a + ¢,k log |W|,W)-
separator ifG has an(«, k, W)-separator.

As a special case, whél¥ = V Theorem 6.1 offers a (pseudo)
approximation ratio of)(y/log n) for («, k)-separators. We shall
improve upon this ratio wheh is small.

THEOREM 6.2. For every constant§ < o« < 1 ande > 0,
there is a randomized polynomial time algorithm that for every
graphG(V, E) with an(«, k)-separator finds afa+e¢, k)-separator
of sizeO(k+/log k).

PROOF. Pick a setiV of O(k/e*) = O(k) (because is con-
stant) vertices irt7. By Corollary 3.6, it has high probability of be-
ing an(e, k)-sample. Then by Lemma 3.3, has ana+¢, k, W)-
separator. By Theorem 6.1, én+2¢, O(k+/log k), W) separator
can be found in polynomial time. By Lemma 3.3, this is also an
(o + 3¢, O(k+/log k))-separator inG. Scalinge by a factor of 3
proves Theorem 6.2.[]



We remark that a somewhat different rounding technique for the
semidefinite relaxations given in [2, 8] can be used to directly prove
Theorem 6.2, without usinge, k)-samples. This rounding tech-
nique is based on a deterministic choice ofamet with respect to
the geometry of the solution to the semidefinite program. See [8]
for details.

6.2 tRigorous analysis of a local search heuris-
ic

We show how the notion dfe, k)-samples can be used in com-
bination with some local search based heuristics. For simplicity of

k is calledstableif for every setS of vertices the 2cutA’, B’) with
A" @ A = Sis of size at leask + | S|, provided tha{ 4’|, |B'| >
n/4. (As a convention we assume that @ A| < |A’ @ B|).

THEOREM 6.3. Let G(V, E) be a graph with a minimum bi-
section(A, B) of sizek < /n/(logn)'/*, and moreover, assume
that this bisection is stable in the sense defined above. Then this
bisection can be found in polynomial time.

PROOF We sketch the proof. Using [2], one can find in polyno-
mial time a balanced 2-cg#d’, B’) of size at mosO (k+/logn) <

SOm¢ 1/4 o P / 1/4
the presentation, it refers to edge separators rather than vertex sepy "*(1ogn) /. Stability thenimplies thgtd’® A| < /n(logn) /*.

arators. The edge separator of sizés assumed to partition the
graph into two parts, named and B. Hence it will be referred to
as a2cut

A 2cut (A, B) of sizek is t-optimalif for every 2cut(A’, B')
of size less thark it must hold that| A & A’| > ¢ (where A &

Now we take arfe, k)-samplelV of sizeO (k) < O(y/n/(logn)'/*)
(here we take to be a fixed small constant, hidden in thenota-
tion). By the union bound it is likely tha” N A wWnA.
Hence the 2cut found by the algorithm fooptimality sketched
above will be of size at modt, and furthermore, by the fact thEt

A’ denotes the set of vertices that need to change sides so as téS an (¢, k)-sample the sides of the cut will be similar to those of

make A equal toA’). The range of parameters of interest fer
optimality requires < min[|A|, |B|]. Checkingt-optimality can

be done in time proportional td; by exhaustive search. This time
is polynomial inn only whent is constant. When is not a small
constant, the following randomized algorithm may sometimes be
useful in testing fot-optimality.

1. Select random set§ C A andR C B with |S|/|A] ~
|R|/|B] < 1/t.

2. Unify S into one verte, unify R into one vertex:, and find
a minimum(s, r)-cut.

(a) If the cut found is of size less thadn and it differs from
the cut(A, B) in the location of at mogtvertices, con-
clude that( A, B) is not¢-optimal.

(b) If the cut found is of size at leaét, then conclude that
(A, B) is probablyt-optimal.

(c) Ifthe cut found is of size less than and it differs from
the cut(A, B) in the location of more thanh vertices,
then abort.

The output of the algorithm in step 2(a) is certainly correct. As
for step 2(b), here the rational is that if there is a ¢df, B')
smaller thark that differs from(A, B) in the location of at most
t vertices, neithelS nor R is likely to contain any of these ver-
tices. In this case, thes, r)-cut found in step 2 will be at most as
large as the cutA, B). Thus not finding a cut smaller thanis
(probabilistic) evidence thdt4, B) is t-optimal.

The problematic part of the above algorithm is that if the algo-
rithm reaches step 2(c), then its output is not informative regarding
the t-optimality of the cut(A, B). This can be remedied in some
special cases, using the notion(ef k)-samples. Assume that the
cut(A, B) is balanced, and furthermore, that the cut ¢ize much
smaller tham /¢. In this casgS|, |R| > k, and Corollary 3.6 im-
plies thatS U R is an(e, k)-net. (In fact, since we are considering

A’ andB’ (up toen vertices). By stability, the only cut with these
properties is the minimum bisectidd, B). [

7. SOME NEGATIVE RESULTS

7.1 Hardness of finding balanced separators

A variation on the following theorem appears in [19]. We sketch
its proof for completeness.

THEOREM 7.1. Foreveryk anda > 1/2, there is a polynomial
time reduction from the problem of finding a clique of sizm a
graph, to the problem of finding af, k)-separator.

PROOF Let G(V, E) be a graph in which one seeks to find a
clique of sizek. Without loss of generality, assume that vertex 1 is
known to belong to a clique of siZe (There are at most vertices
to choose from, and one may simply try all of them.) Now construct
the following graphH. For every vertex € V introduce a vertex
v; in H. For every edgéi,j) € E introduce a vertex;; in H.

In addition, introduce a sé¥ of vertices, whergl¥V| is chosen so
that
1

W+ +hk=0-a)(VI+|E[+[W]) @)

For everyl < i < j < n, putin H the edgegv;,v;). (Namely,
the setl’ forms a clique inH.) For every(i, j) € E, putin H the
edgeqv;;,v;) and(vi;, v;). In addition, connect all vertices &V
to v1. This completes the description &f.

It is not hard to see thaf, the most balanceld-separator inf
must includev; andk — 1 other vertices from/. To have only
a(|V| + |E| + |W]) vertices remain in the largest connected com-
ponent, it must be that the vertices $fform a k-clique in G, by
Equation (1). [

Theorem 7.1 shows the difficulty in designing algorithms run-
ning in timen® ) £ (k) for finding («, k)-separators, for some func-

edge separators here, we can use instead item 2 in Theorem 5.4tion k. (Theorem 4.1 gives an algorithm of running tim@(*) 20 ),

but rather than picking vertices arbitrarily within each Bgtpick

but this algorithm might fail to findc, k)-separators in graphs that

them at random.) Now if step 2(c) is reached, the cut produced will also havda+¢, k—1)-separators.) Such algorithms are not known
be balanced. Hence with high probability, either the algorithm cor- for finding k-cliques, and moreover, having such algorithms for
rectly declares the cut4, B) to be¢-optimal, or it finds another k-cliques would have far reaching consequences in computational
balanced cut of smaller size. complexity. See [6] for more details.

The above discussion relates to a notionstbility of inputs
that is investigated by Bilu and Linial [3]. Under one plausible
definition of stability, a bisectiofA, B) (with |A| = | B|) of size

7.2 NP-hardness of the balanced mins-cut
problem



In this section we prove that the balanced mincut problem
is NP-hard, even for the case of edge cuts.
case of vertex cuts is similar (and in fact simpler). For directed

to Anupam Gupta, who directed us to Kleinberg'’s work on detec-
The proof for the tion sets. Shimon Kogan sent us very useful comments on a prelim-

inary version of the paper, and independently derived Theorem 5.7.

graphs, Feige and Yahalom [11] proved that the problem of finding We would also like to thank MohammadTaghi Hajiaghayi, James

an(a, k)-separator is NP-hard, even wher= 0, and therefore the
problem is not even fixed parameter tractable.

The proof is by a reduction fror€LIQUE. Let G be a graph,
andk be an integer. In order to find/aclique inG, we construct
an instance of the balanced mitredge-cut problem. For simplic-
ity, we allow the vertices to have integer weights and allow paral-
lel edges. It is possible to remove these assumptions by replacing
parallel edges by parallel paths and adjusting the weights, and re-
placing a vertex of weight by a vertex attached to a clique of size
w — 1. The set of vertices in our instancefis, t} UV (G) U E(G).
For everyv € V(G) ande € E(G), there aredeg(v) parallel
edges froms to v, two edges frone to ¢, and an edge between
ande if v is an endpoint ok. The weight of all vertices iV (G)
areW (some integer larger thak?), and the weight of other ver-
tices are one. Furthermore, we sesuch thatx times the total
weight of the graph is equal 87’k + '; + 1. Itis not difficult
to see that the existence of a minimum edge-cut in this graph that
contains anx fraction of the vertices on the side is equivalent to
the existence of &-clique inG. This is based on the fact that the
graph is a disjoint union df| E(G)| length-3 paths betweenand
t. Details of the proof are left to the full version of the paper.

7.3 Alower bound for (e, k)-samples
We show that Corollary 3.6 is optimal up to a facto@flog 1 /¢).

THEOREM 7.2. For everyk and e, there are infinitely many
graphs for which a sell of vertices chosen uniformly at random
is likely not to be ar{e, k)-sample, unless it contaig(k/c*) ver-
tices.

PrRoOOF Forn a multiple ofk, let P(n/k) denote the graph that

is composed ok vertex disjoint paths, each with/k vertices, and
in which the leftmost points of every two paths are connected by

an edge, and the rightmost points of every two paths are connected

by an edge. (In other words, there are tivaliques, and: equal-
length vertex disjoint paths connecting them.)

Pick at random a sdl’ of kt? vertices. In expectation, every

path containg? vertices fromi¥/, with standard deviatiof2(¢). In
each path, exactly one vertex will be included in theeparatosS.
If the path has less that? vertices fromWW, the left-most vertex
of the path is placed it§. If the path has more that? vertices
from W, the right-most vertex of the path is placeddnStandard
probabilistic analysis shows that for the connected compatieat
the right of S the following holds with high probability:

€1 o)

n
HenceW is not an(e, k)-sample unless = 2(1/¢), proving The-
orem7.2. [

Wnc|< Wi

Lee, Laci Lovasz, Amin Saberi and Kunal Talwar for useful discus-

sions.
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