Free Launch: Optimizing GPU Dynamic Kernel Launches
through Thread Reuse

Guoyang Chen, Xipeng Shen
Computer Science Department, North Carolina State University
890 Oval Drive, Raleigh, NC, USA 27695
gchent1i@ncsu.edu, xshen5@ncsu.edu

ABSTRACT

Supporting dynamic parallelism is important for GPU
to benefit a broad range of applications. There are cur-
rently two fundamental ways for programs to exploit dy-
namic parallelism on GPU: a software-based approach
with software-managed worklists, and a hardware-based
approach through dynamic subkernel launches. Neither
is satisfactory. The former is complicated to program
and is often subject to some load imbalance; the latter
suffers large runtime overhead.

In this work, we propose free launch, a new software
approach to overcoming the shortcomings of both meth-
ods. It allows programmers to use subkernel launches
to express dynamic parallelism. It employs a novel
compiler-based code transformation named subkernel
launch removal to replace the subkernel launches with
the reuse of parent threads. Coupled with an adaptive
task assignment mechanism, the transformation reas-
signs the tasks in the subkernels to the parent threads
with a good load balance. The technique requires no
hardware extensions, immediately deployable on exist-
ing GPUs. It keeps the programming convenience of
the subkernel launch-based approach while avoiding its
large runtime overhead. Meanwhile, its superior load
balancing makes it outperform manual worklist-based
techniques by 3X on average.

Categories and Subject Descriptors

3.4 [Programming Languages|: Processors—optimiza-

tion, compilers

Keywords

GPU, Dynamic Parallelism, Optimization, Thread Reuse,

Compiler, Runtime Adaptation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions @acm.org.
MICRO 2015 Waikiki, Hawaii USA

Copyright 2015 ACM ISBN 978-1-4503-4034-2/15/12 ...$15.00.

DOL: http://dx.doi.org/10.1145/2830772.2830818.

1. INTRODUCTION

As GPU shows some great potential for accelerating
general-purpose computations, many emerging data in-
tensive applications are trying to exploit GPU for accel-
erations. These applications range from business ana-
lytics, user modelling, to social network analysis and so
on. They center around sophisticated algorithms from
Machine Learning, Graph Theory, Deductive Reasoning
and others. These algorithms often feature irregulari-
ties and dynamic parallelism.

Breadth-first search (BFS), for example, needs to tra-
verse all nodes in a graph in a breadth-first order. When
it reaches a node, it can process all its neighbors in par-
allel. The amount of parallelism is determined by the
degree of the node, which often differs from one node
to another.

There have been two fundamental ways to exploit
dynamic parallelism on GPU. (1) The first is software-
based techniques with software-managed worklists. They
use some carefully designed data structures (e.g., dou-
ble buffers [1]) to store parallel tasks for GPU threads
to grab and execute. (2) The second is hardware-based
techniques, represented by the CUDA Dynamic Paral-
lelism (CDP) [2] that NVIDIA introduces to their recent
GPU and the corresponding technique that OpenCL [3]
introduces lately. It is also called device-side nested
kernel launch capability or subkernel launch (SKL) in
short. This feature allows a GPU kernel to launch a
child kernel at runtime through some programming in-
terface. It is more intuitive and simpler to use than the
software approach. For the aforementioned BFS exam-
ple, one may simply launch a subkernel to process the
neighbors of a node.

Neither solution however is satisfactory. The software-
based techniques are complicated to program and main-
tain, and even sophisticated implementations still have
considerable load imbalance among threads, leaving sub-
stantial room for performance improvement (as to be
shown in Section 5). The hardware-based techniques
are subject to large time overhead of subkernel launches.
The overhead consists of the time to save the states
(registers and shared memory content) of the parent
threads, to create the child kernel and threads, and to
restore the states of the parent threads. For the nature
of massive parallelism of GPU, each of the three compo-
nents could take some substantial amount of time, caus-

ing overhead sometimes even greater than the workload
itself [4, 5, 6]. So despite being intuitive to use, this
method has received only little practical usage. Some
recent hardware extensions have been proposed to help
alleviate the problem [5, 7]. They are yet to be adopted
in the actual GPU designs.

In this work, we propose a new software solution
named free launch, which replaces subkernel launches
with parent thread reuse. It starts with a program that
uses subkernel launch for dynamic parallelism. It then
automatically transforms the program to remove those
subkernel launches, and assigns the work of the sub-
kernels to the parent GPU threads in a balanced man-
ner. By allowing the use of subkernel launches in the
original program, free launch keeps the conveniences of
the hardware-based approach for programmers. By au-
tomatically removing the subkernel launches, it avoids
the large runtime overhead of the hardware-based ap-
proach. Meanwhile, its adaptive assignment of tasks
to parent threads gives it the opportunity to achieve a
better load balance and hence outperform the previous
software-based manual techniques. Free launch requires
no hardware extensions, immediately deployable on cur-
rent applications and GPUs.

The main challenge for developing free launch is how
to materialize its idea in a sound and effective man-
ner, such that, after the removal, the program can run
correctly and efficiently. We propose two techniques
to achieve the goal. The first is subkernel launch re-
moval (or launch removal in short), which is a new
compiler-based code transformation for replacing sub-
kernel launches with parent thread reuses. The second
is adaptive subtask assignment (a subtask in this pa-
per refers to the set of work a child thread block is
supposed to process), which, based on our exploration
of four load-balancing schemes, equips the launch re-
moval with the capability to produce subtask-to-thread
assignments with a superior load balance.

Experiments on a set of kernels and two GPUs show
that free launch can effectively support dynamic paral-
lelism while avoiding the shortcomings of prior software
and hardware techniques. It outperforms the manual
worklist-based method by 3X on average, thanks to the
better load balance brought by its adaptive subtask as-
signment. Compared to versions that completely rely
on existing hardware support of subkernel launches for
dynamic parallelism, it gives 36X average speedups for
its removal of the large launching overhead and the bet-
ter load balancing.

Overall, this work makes several major contributions:

e It proposes a novel software method, free launch,

to support dynamic parallelism on GPU; the method

overcomes the main drawbacks of prior software
and hardware techniques.

e It develops a new code transformation, launch re-
moval, that is able to automatically replace sub-
kernel launches with reuses of parent threads.

e It develops adaptive subtask assignment, an ap-
proach to adaptively selecting the load-balancing

__global__ void parentKernel(int *AX

1
2
3 for(int i=0; i < loop; i++){

4 // child kernel grid and thread block dimensions

5 childGDim = 2; childBDim = 512;

6 childKernel<<<childGDim,childBDim>>>(A,i, threadID);
7 /thread|ID: global ID of each thread
8 cudaDeviceSynchronize(); /wait for childKernel finish
9 L. /lother computations

1

0 1}

1 //childBDim = 512; parentBDim = 544;

2 __global__ void childKernel(int *A, int P_i, int P_threadID){

3 __shared__ int AS[512];

4 //load data from global memory to shared memory.

5 AS[threadID] = A[threadID+blockID*blockDim]; /blockDim=512;
6 __syncthreads(); /intra-block synchronization;

7 if(AS[threadID]==P_i])

8 atomicAdd(&A[P_threadID],threadID);

9 ... //other computations

10 }

Figure 1: DynCall: An example codelet repre-
senting GPU kernels with dynamic parallelism.

subtask assignment scheme that suites a given ker-
nel.

e It shows that free launch offers a significantly bet-
ter support to dynamic parallelism on existing GPU,
with 3X average speedups over manual worklist-
based methods and 36X average speedups over sub-
kernel launch-based methods.

2. LAUNCH REMOVAL TRANSFORMATION

Launch removal centers on reusing parent threads
rather than creating children threads to process sub-
tasks. It enables the reuse through four types of compiler-
based program transformations. This section presents
these transformations.

2.1 A Running Example

To help explain our proposed transformations, we
first introduce a running example as shown in Figure 1.
The codelet, which we call DynCall, represents a gen-
eral form of a GPU kernel with children kernel calls.
The loop surrounding the child kernel call represents
the case in which a parent thread may invoke the child
kernel repeatedly. In many GPU programs, only a por-
tion rather than all of the parent threads launch a child
kernel. The if statement in the DynCall codelet repre-
sents the condition that a parent thread needs to meet
such that it needs to launch a child kernel. We call it
the launching condition. It affects the number of chil-
dren kernels to be launched by the parent kernel and
hence the collection of subtasks to be generated, which
in turn affects the appropriate assignment of subtasks
to parent threads. To handle the variations, we design
four types of subtask assignments as explained next.

2.2 Four Types of Subtask Assignments

There are many possible variations in the amount and
patterns of the dynamic parallelism associated with a

| a parent aparent _ a subkernel
----- ‘ thread block ™ thread call

the task setofa _ a
]
subkernel subtask

(mm] mwm]

(b) Assignment scheme | (CB-»PB-) (c) Assignment scheme Il (CK-—PB:)

(d) Assignment scheme Il (CKi—PB;) (e) Assignment scheme IV (CK;—PT;)

Figure 2: Illustration of the four assignments
(b,c,d,e) of subtasks enabled by the launch re-
moval program transformations on a kernel with
subkernel calls (a).

child kernel. For instance, depending on the launching
condition, in some instances of DynCall, every parent
thread launches a child kernel; in some other instances,
only some do. Moreover, the children kernels launched
by different parent threads could have different num-
bers of thread blocks and dimensions. As a result, the
suitable assignments of subtasks to parent threads vary
accordingly.

By examining some kernels with dynamic parallelism
and their manually developed more efficient counter-
parts without using dynamic parallelism, we find that
four types of subtask assignments offer different trade-
offs in load balance and control overhead, and together
can meet the needs of most kernels for effective sub-
task assignments. Figure 2 illustrates these different
schemes. Figure 2 (a) shows a very simple kernel that
uses subkernel launches. The kernel consists of two
thread blocks with each containing only two threads.
The second thread in the first thread block has a sub-
kernel launch, which is used to process two subtasks; the
two threads in the second thread block each have a sub-
kernel launch with three and one subtask respectively.
Figures 2 (b,c,d,e) illustrate the four types of subtask
assignments respectively. We next explain each of them
(some notations: C for child, P for parent, K for kernel,
B for thread block, T for thread, — for assignment.)

e C'B, — PB,: This subtask assignment is at the
thread block level. The assignment unit is a sub-
task. The subscript “*” means that any subtask is
possible to be assigned to any parent thread block.
As Figure 2 (b) shows, any of the five subtasks that
the subkernels in Figure 2 (a) are to process, could
get assigned to any of the two thread blocks. This
global assignment could incur some runtime con-

trol overhead, but it is, among these four types
of assignments, the most general way to ensure a
good load balance among parent threads.

e CK, — PB,: This assignment scheme works at
the level of a subkernel. The assignment unit is
the whole set of subtasks of a subkernel. As Fig-
ure 2 illustrates, there are three sets of subtasks
shown as the three solid-lined boxes, correspond-
ing to the three subkernel launches shown in Fig-
ure 2 (a). Each of the three sets could be assigned
to any of the thread blocks. Because a task set is
the assignment unit, unlike in the previous scheme,
the tasks inside a set cannot get assigned to dif-
ferent thread blocks. This assignment could help
ensure a good load balance and at the same time
avoid some control overhead needed for handling
the tasks of different children blocks.

e CK, — PB;: This assignment is similar to the
previous one, except that the assignment is local:
The i*" parent block handles the subtasks of only
the child kernel that is supposed to be launched
by itself. As illustrated by Figure 2 (d), the first
thread block can handle only the first set of sub-
tasks as that is the only set of subtasks that the
children threads of the first thread block are sup-
posed to process. For the same reason, the second
thread block handle the other two sets of subtasks.
This local assignment is not as flexible as the afore-
mentioned ones in load balancing, but is simple
and avoids much runtime overhead.

e CK, — PT;: This assignment is similar to the
previous scheme except that it assigns tasks to a
parent thread rather than a parent thread block.
In this scheme, a parent thread needs to process
the set of subtasks that its children threads are
originally supposed to process. As illustrated by
Figure 2 (e), the second thread will handle the
first set of subtasks, the third thread will handle
the second set, and the fourth thread will handle
the third set. This assignment is not as flexible,
but is the simplest to implement and may still suit
some scenarios.

These four types of assignments feature different strengths.

We postpone to Section 3 the discussion on how to se-
lect them effectively. This section describes how code
transformations can materialize each of them.

2.3 Transformation for CB, — PB,

The transformation for CB, — PB, involves almost
all the intricate aspects of launch removal transforma-
tions. Understanding this transformation would make
the other transformations easy to understand. Figure 3
shows the transformed result of our example DynCall.
We explain the transformation in three steps.

1 __device__ int kernelCalls = 0, ChildTBs = 0; //Global variables.

2 __global__ void parentKernel(int *A,record *worklist, int BLOCK, int THREADX
3 /worklist: record all launching info; BLOCK: # of PTBs in original kernel;

4 //THREAD: # of threads in original PTB.

5 inti; int i_p=0; bool hasLaunch = False; / initialization.

6 //assign original parent TBs to persistent TBs; gridDim: # of persistent TBs.

7 for(i_p=0; i_p+blockD<BLOCK && threadID<THREAD; i_p+=gridDim){

8

9 childGDim = 2; childBDim = 512;

10 for(i=0; i < loop; i++)

1" int curNumCalls = atomicAdd(&kernelCalls, 1);

12 hasLaunch = True;

13 atomicAdd(&ChildTBs, childGDim);

14 worklistfcurNumCalls] = {childGDim, childBDim, i, threadID};
15 goto P; //childKernel<<<grid,block>>>(i, threadID);

16 Back: ... //other computations

17 3
18 // Code for subtask processing
19 P: syncAllThreads(); /synchronize all thread blocks (via usage of persistent threads)

20 if(kernelCalls>0) /assign and process subtasks.

21 int tasksPerPTB =(ChildTBs + gridDim-1)/gridDim;

22 for(int i_c=0; i_c<tasksPerPTB && tasksPerPTB *blocklD+i_c<ChildTBs; i_c++}{
23 retrieve {childGDim, childBDim, P_i,P_threadID} from worklist;

24 int NewBlockID = find_blockID_for_launch(tasksPerPTB *blockID+i_c);
25 code of the work of a child thread;

26 }

27 syncAllThreads();

28 ... /lreset kernelCalls and ChildTBs to 0.

29 syncAllThreads();

30 if(hasLaunch) {hasLaunch = False; goto Back;}

31 else goto P;

32 P

Figure 3: Transformation result for CB, — PB,.
The black code is what the transformation in-
serts; other code is from the original program.

Making Parent Threads Persistent.

Due to the global nature of the task assignments in
this transformation, it is necessary to have synchroniza-
tions across thread blocks. GPU, by default, supports
intra-block but not inter-block synchronizations. Inter-
block synchronization is possible only when the GPU
kernel code uses persistent threads. So, the first step
in our code transformation is to make parent threads
persistent.

The idea of persistent threads is first described in
a paper by Gupta and others [8]. The main idea is to
keep threads resident on SMs until kernel finishes. Dur-
ing the kernel execution, every persistent thread block
continuously fetches some other task from the remain-
ing unfinished task queue when it finishes a task (a task
refers to the work an original thread block is supposed
to do).

In Figure 3, the “for” loop at line 7 realizes a mapping
from the original parent thread blocks to the persistent
blocks. In each iteration of the loop executed by a per-
sistent thread block, the work of the original parent
thread block (whose ID equals i_p) is processed by that
persistent thread block.

Our transformation ensures that the total number
of persistent thread blocks is no larger than the max-
imum number of thread blocks that can concurrently
run on a GPU (by considering the shared memory usage
and register usage of the kernel). This condition makes

synchronizations across all thread blocks feasible. The
cross-block barrier “syncAllThreads” in Figure 3 (lines
19, 27, 29) is implemented as follows: It tries to syn-
chronize threads in the current thread block first and
then repeatedly checks a counter on the global memory
to wait for all thread blocks to reach here.

Parameters and Shared Memory.

A child kernel launch involves some parameters, in-
cluding the launch configuration (grid and block dimen-
sions), and the function arguments. These parameters
determine both the number of subtasks and the opera-
tions in the subtasks. For parent threads to fulfill these
subtasks, these parameters must be recorded. Line 14
in Figure 3 does it, where “curNumCalls” is the index
number of the child kernel call under consideration.

The usage of shared memory in GPU adds some spe-
cial complexities to the transformation. Shared memory
in GPU is some on-chip memory that can be shared by
threads in the same thread block. A good usage of it is
essential for performance for its low latency. It is lim-
ited in size (48KB per SM on NVIDIA GPU), but could
be needed by the parent threads tasks and the subtasks.
We summarize the intricacies in handling shared mem-
ory in our code transformation in various scenarios as
follows:

Scenario 1. The child kernel launch is asynchronous.
In this case, our code generation omits the “goto” state-
ment in line 15 in Figure 3 such that all parent threads
will finish their own work first and then go to line 19
to do the subtasks. Shared memory used in the work of
the parent threads is reused for the subtask processing.
The launch of the parent kernel is changed such that
the size of shared memory for a thread block is set as
MAX{shared_size_parent, shared size_child} to accom-
modate the needs.

Scenario 2. The total shared memory usage of par-
ent kernel and child kernel doesn’t affect the maximum
number of thread blocks that can run concurrently. That
means, the maximum occupancy of the GPU is deter-
mined by some other resource (e.g., registers) rather
than shared memory. In this situation, a parent thread
block uses one shared memory array to do its own work
and use another shared memory array for the subtasks.

Scenario 3. In other cases, the transformed code
makes the parent threads first save its shared memory
content to global memory before using shared mem-
ory to do subtasks. It is facilitated with the global
barrier syncAllThreads(). When subtasks are finished,
the content of the shared memory gets restored be-
fore the parent threads resume its own work. Similar
to scenario 1, the shared memory array size is set to
MAX{shared_size_parent, shared_size_child}.

Control Flows and Subtask Assignment.

Control flow changes are an important part of the
transformation. They are materialized by the several
“goto” statements in Figure 3. The first “goto” (line 15)
corresponds to a scenario where the child kernel launch
is a synchronous launch. The “goto” makes the par-

22 for(int i_c=0; i_c+blocklD<kernelCalls; i_c+=gridDim){

23 retrieve {childGDim, childBDim, P_i,P_threadID} from worklist;

24 for(int i_cb=0; i_cb<childGDim && threadID<childBDim; i_cb++){

25 code of the work of a child thread; /with blockID replaced by i_cb.
26 hi;

Figure 4: The main part of the CK, — PB,
transformation that differs from the CB, — PB,.

ent threads jump to subtasks before continuing its own
work. The “syncAllThreads” at line 19 ensures that
all threads synchronized before starting processing sub-
tasks to avoid data races on processing the set of sub-
tasks. The “for” loop at line 22 evenly partitions the
subtasks among parent thread blocks; “tasksPerPTB” is
the number of subtasks per parent thread block (PTB).
In the i_c’th iteration of the loop, the parent thread
block whose ID is “blockID” processes the
(tasksPerPTB *blockID+i_c)’th subtask. Before the
actual processing, launching parameters are retrieved
from “worklist” (line 23).

After all subworks have been finished, kernelCalls
and ChildT Bs get reset. Parent threads that have left
their own work to process subtasks (their local variable
“hasLaunch” is “true”) go back to do their own work and
continue their executions (the “goto” at line 30). Note
that some threads may not have met the “if” condition
at line 8, which means that they were not supposed
to launch children kernels. In the transformed code,
these threads arrive at the synchronization point at Line
19 with “hasLaunch” equalling “false”. After they help
process some subtasks, through the “goto” at line 31,
they return to Line 19 as they have finished all of their
own work. They continue to wait to process some future
subtasks that their peers may launch.

2.4 Transformation for CK, — PB,

This transformation tries to assign a parent thread
block with the subtasks of an entire child kernel launch
rather than of a child thread block. The resulting code
is similar to what Figure 3 shows. The main difference
is that lines 22 to 26 in Figure 3 are replaced with the
code in Figure 4. In each iteration of the outer loop in
Figure 4, the sets of subtasks of a child kernel call are
processed by a parent thread block. In each iteration
of the inner loop, the parent thread block processes one
subtask. Another difference is that since the new assign-
ment does not need “tasksPerTB” anymore, statements
relevant to it are removed (lines 13 and 21).

2.5 Transformation for CK; — PB;

This transformation tries to reuse all threads in a
parent thread block to do the subtasks of the children
kernels that the parent thread block itself launches. The
generated code is similar to Figure 3; there are two main
differences. First, the assignment loop (lines 22 to 26)
in Figure 3 is replaced with the code in Figure 5 to
materialize the different subtask assignment. Variables
wordlist and kernelCalls become local to a parent thread

22 for(inti_c=0; i_c<kernelCalls; i_c++){

23 retrieve {childGDim, childBDim, P_i,P_threadID} from worklist;

24 for(int i_cb=0; i_cb<childGDim && threadlD<childBDim; i_cb++)X
25 code of the work of a child thread; // blockID replaced with i_cb.
26 B

Figure 5: The main part of the CK; — PB,; trans-
formation that differs from the CB, — PB,. The
worklist becomes a variable local to a parent
thread block.

__global__ void parentKernel(int *A){

1
2
3 childGDim = 2; childBDim = 512;

4 for(int i=0; i < loop; i++X

5 /IchildKernel<<<childGDim,childBDim>>>(A, i, threadID);
6 one thread does all subtasks of a child kernel.

7 //other computations

8

W

Figure 6: Transformation result for CK; — PT;.

block, and kernelCalls is put onto shared memory for
efficiency. Second, because the assignment is local to
a thread block, there is no need for inter-block syn-
chronizations and hence no need for persistent threads
anymore: The “for” loop on line 7 in Figure 3 is re-
placed with a simple check “if(threadID<THREAD)”
just to ensure that the current thread is within a valid
range. The “synAllThreads” calls on lines 19, 27, 29 are
replaced with “_synchthreads” for intra-block synchro-
nizations. Similar to CK, — PB,, statements relevant
to “tasksPerTB” (lines 13 and 21) are removed.

2.6 Transformation for CK, — PT;,

Figure 6 shows the transformation of CK; — PT;.
The locally-scoped nature makes this the simplest among
all the transformations. Line 6 in Figure 6 ensures that
only the thread that is supposed to launch a child kernel
will do all subtasks of that child kernel.

2.7 Other Complexity

There is some subtlety when the thread block size
of the child kernel is smaller than the parent kernel.
Consider a case where a child thread block has 512
threads while a parent thread block has 544 threads.
The original child kernel has a “_synchthreads” to syn-
chronize all the 512 threads in a child thread block. So
in the transformed code, when the parent threads reach
the synchronization statement in the subtask, we only
want its first 512 threads to synchronize to emulate the
operations of the child threads. However, the default
“_synchthreads” statement would synchronize all 544
threads. We use CUDA customized synchronization to
solve the problem. Customized synchronization is some
PTX assembly instruction, which allows partial thread
block sync. The PTX code is "bar.sync a{,b}”, where
a is the ID of the partial barrier, and b specifies the
number of threads participating in the barrier.

3. TASK ASSIGNMENT SELECTION

The four transformations have different strengths in
load balance and runtime control overhead. From T1
to T4, the flexibility in load balancing gets weaker, but
at the same time, the needed runtime control becomes
simpler and less costly (for the fewer synchronizations,
atomic operations, and other extra instructions).

Which transformation best suits a given GPU kernel
depends on the properties of the kernel. We design a
runtime version selector, which selects the appropriate
version on the fly (without the need for offline profil-
ing). Figure 7 outlines our selection algorithm. The
algorithm uses the host side code to select either T3
or T4. It leaves the selection between T1 and T2 to
the runtime execution at the device side (Figure 7(b)).
The device side is also used when the host can tell the
numbers of subkernels and their sizes.

The host side algorithm computes the maximum num-
ber of parent thread blocks that can be concurrently
supported by the GPU and sets that number as the
number of the persistent parent thread blocks. If that
number is larger than the number of parent thread blocks
set in the original kernel, using T3 or T4 would leave
some persistent blocks idle. Hence, either T1 or T2
is suitable (the T1_T2_megakernel is a code with both
T1 and T2 put together for runtime selection on the
device; exemplified in Figure 10 (e)). Otherwise, the
algorithm checks whether the sizes of the subkernels,
in terms of the number of children thread blocks, are
highly imbalanced: The standard deviation of the sizes
is greater than the mean size or not (line 5 in Fig-
ure 7(a)). If so, global balancing is important and hence
the T1_T2_megakernel is chosen. Otherwise, it checks
whether more than half of threads launch subkernels.
If so, the simplest thread-level subtask assignment (T4)
is a good choice as most threads will be busy and the
runtime control overhead is minimized (line 7 in Fig-
ure 7(a)). Otherwise, the better load balance offered
by T3 gives the advantage and it is chosen (line 9 in
Figure 7(a)).

The T1_T2_megakernel is chosen for imbalanced child
kernel launches and the cases when the host does not
have enough info on the size or number of calls of the
subkernel. The algorithm in Figure 7(b) selects between
T1 and T2 at the runtime of the GPU kernel of inter-
est. Recall that the differences between them is that
although both support even assignments to all parent
thread blocks, T1 treats each subtask as the assign-
ment unit, while T2 treats the whole set of subtasks of
a subkernel as the assignment unit. The algorithm in
Figure 7(b) uses the runtime revealed subkernel num-
bers and sizes to compute the number of extra subtasks
the most loaded persistent thread block is subject if T2
is applied, compared to the load each persistent thread
block has in T1 (line 3 in Figure 7(b)). It estimates the
overhead of the extra control instructions in T1 (stored
in “extraOverhead_T1”). It then compares the overhead
of the extra subtasks in T2 and the extra control over-
head in T1, and selects the more efficient one (lines 4
to 7 in Figure 7(b)).

persistTBs = maxActive TBsAllowed();
if (persistTBs > orgParTB)
choose T1_T2_megaKernel;
else
if (CTB_std < CTB_mean)
if (over half threads launch subkernels)
choose T4;
else
choose T3;
else /CTB_std = CTB_mean or uncertain
choose T1_T2_megaKernel;

(a) Host side
1 subtasksPerPTB_T1 = ttiSubtasks/PersistTBs;
2 maxSubtasks_T2 = findMaxSubkernelSize();
3 extraSubtasks = maxSubtasks_T2 - subtasksPerPTB_T1;
4 if (extraSubtasks * subtaskLength > extraOverhead_T1)
5
6
7

= =4 © 0N ON-=

-+ o

choose T1;
else
choose T2;

(b) GPU side

Figure 7: Algorithm for transformation selec-
tion.

Figure 8 offers an example. The bars in broken lines
show the number of subtasks each persistent thread
block (PTB) gets in T1. The black bars show the num-
bers of assigned subtasks that the algorithm estimates
for each PTB in T2. The third PTB is the mostly
loaded, having (88-47=43) extra subtasks. The algo-
rithm estimates the cost of them by multiplying 43 with
the estimated length of a subtask (in number of instruc-
tions). If it is larger than the estimated extra control
overhead of T1, T1 is used; otherwise, T2 is used.

Device side selection has more accurate information
on the subtasks. In principle, one could put all four
versions into a megakernel for selection at the device
side. The disadvantages are the increased code size, and
the register and shared memory pressure. Our design
favors T1 and T2 slightly for their advantages in load
balancing.

4. IMPLEMENTATION

Figure 9 shows the high level structure of free launch,
which contains two components: a source-to-source com-
piler for revealing the launching patterns of the program
and staging the code for runtime adaptation, and an
online selector which takes the launching patterns and
launching profiles as inputs to find out the best version
at runtime.

We implement the source-to-source compiler based
on Cetus [9]. The compiler takes the following steps
to generate the four versions of code for four different
transformations, along with the version selection code.

e Find out how many child kernels will be launched
by one thread at most and add codelet shown in
Figure 10(a) to the global declarations for each.
For each child kernel call, find out how many pa-
rameters need to be stored and create the needed
data structure.

| device__int kernelCalls_0 = 0, NewCTBs_0 = 0, MAXCO = 0;|
| device__int kernelCalls_1 =0, NewCTBs_1 = 0, MAXCI =0;

typedef struct record_0{

dim3 chil;
dim3 childBlock;
int *Arg0;.... //function arguments.}

typedef struct record_1{

dim3 childGrid;

dim3 childBlock;

float *ArgO0;.... //function arguments.}

Int i; bool hasLaunch = False; //inir | |......

int currNumCalls = atomicAdd(&kernelCalls, 1);
hasLaunch = True;

__shared___int kernelCalls;

__syncthreads();

worklist_local[currNumCalls] ={...};
record *worklist_local = goto P;
&worklist[size*blockID]; Back:

(b) Kernel Starts for T3 (c) Replace child kernel call for T3

(a) Global Declarations

int i; int i_p=0; bool hasLaunch = False;
for(i_p=0; i_p+blocklD<BLOCK&&threadID< THREAD; i_p

P: syncAllThreads();
if(kernelCalls>0){
if(threadlD==0) atomicMax(&MAXC, CTBsPTB[blockID]);
syncAllThreads();
if(MAXC¥*instrT2>NewCTBs*instrT1Insert){
int tasksPerPTB =(NewCTBs + gridDim-1)/gridDim;
for(int i_c=0; i_c<tasksPerPTB&&tasksPerPTB *blockID+i_c<NewCTBs; i_c++){

+=gridDim.x){

hasLaunch = True;

atomicAdd(&NewCTBs, childGDim);
worklistfcurNumCalls] = {...... %
atomicAdd(&CTBsPTB[curNumCalls%gridDim], grid);
goto P;

int curNumCalls = atomicAdd(&kernelCalls, 1); else{
for(int i_c=0; i_ct+blockID<kernelCalls; i_c+=gridDim){

retrieve parameters from worklist;
One child kernel TB work; }}

retrieve parameters of kernel call from worklist;
for(int i_cb=0; i_cb< &&threadlD<
One Child kernel TB work;}

i_cb++){

(d) Replace child kernel call for megaKernel

Figure 10: A codelet for code generations.
dimension value.

|PTB| |PTB| |PTB| |PTB| |PTB||PTB|

b I I b
I " f I 16
b I I b 41'3'5
| 2| : ||
| q¢Bs | I P
» [| » !
I] [Lo
A IS N T L —mebe e
_— 41 ea
53 CTBs ar
CTBs CTBs
72
CTBs
88
CTBs

Figure 8: An example of subtasks assignments
by T1 (in broken lined bars) and T2 (in solid
lined bars).

e Statically analyze the launching patterns, based
on section 3 to determine whether T3 or T4 code
needs to be generated (e.g., if the program is ir-
regular, T3 and T4 need not to be generated). To
generate different versions of transformations, we
have different strategies. For T4 code to be gener-
ated, We use the same technique as MCUDA [10]
does to generate a sequential code for a parent
thread to run to do the subtasks. For T3 code to
be generated, in the parent kernel, the codelet in

(e) Version selection for T1 and T2 in megaKernel

threadID, blockID and gridDim are changed to one

OFFLINE : ONLINE
_~launch |
Source-to-Source S GEEE desired
org.program — Compiler version
A J
staged /E/vlaunch profile EFFICIENT

program EXECUTION

Figure 9: High level structure of free launch.

Figure 10 (b) will be added at the beginning, and
the codelet in Figure 10(c) will be added at the po-
sition where the child kernel is launched. For T1
and T2 code to be generated, we create a megak-
ernel which will contain the code of both T1 and
T2. The preparation for recording parameters and
online profiles will be done in code shown in Fig-
ure 10(d). To choose T1 code or T2 code in the
megakernel, we add code in Figure 10(e) to calcu-
late T1 and T2 performance based on the profiling
data we get in Figure 10 (d).

e Transform the host code to enable the selection
between T3 code and T4 code if necessary, as il-
lustrated in Figure 11.

/offline analysis has been done.
/Original GPU kernel: //Parent<<<grid,block,shared>>>();
int main(int arge, char **argv){
int variance = atoi(argv[1]); //variance got by offline analysis.
int mean = atoi(argv[2]); //mean of CTBs Per PTB by analysis.
int threads = atoi(argv[3]); // num of threads will launch kernels.
int instrT1 = atoi(argv[4]); //num of extra instructions added by T/
int instrT2 = atoi(argv[5]); //num of instructions for child kernel
struct cudaDeviceProp *prop;
cudaGetDevieProperties(prop,0); //use device 0;
int MaxPTB = max_active_block(Parent,prop,block,shared);
if(grid>MaxPTB&&variance<mean){
if(threads>grid*block/2) Parent_T4<<<grid,block,shared>>>();
else Parent_T3<<<grid,block,shared>>>(); }
else{record * worklist; int *CTBsPTB;
cudaMalloc((void **)worklist, MAX_SIZE);
cudaMalloc((void **)CTBsPTB, MaxPTB);
megaKernel<<<MaxPTB, max_block, max_shared>>>\
(worklist, grid, block, CTBsPTB, instrTlInsert, instrT2);}
It //max_block, max_shared are max size of block and shared in parent

Ikernel and child kernel respectively.

Figure 11: A sample of runtime version selection
put in the host-side code before a kernel call.

5. EVALUATION

This section evaluates the proposed launch removal
technique. It gives performance comparisons on sev-
eral different versions of a set of programs: the default
version from benchmark suites that use no dynamic par-
allelism, the version that uses dynamic parallelism, and
the versions produced by the various transformations
of our kernel removal. These versions differ just at how
the dynamic parallelism inside a GPU kernel is mate-
rialized; the top-level kernel and task management (in
the host code) is the same in these versions.

5.1 Methodology

Because of the large overhead of dynamic subkernel
launch—the exact problem this work tries to address,
we did not find many existing benchmarks that use dy-
namic parallelism. We looked through several public
CUDA benchmark suites and identified eight kernels of
seven programs that either have already used dynamic
parallelism, or have a GPU kernel which contains some
loops that could be conveniently expressed in subkernel
calls. For the latter ones, we then manually made code
changes to replace the loops with child kernel calls.

Figure 2 lists those programs, with a brief description
of the programs and the functionality of the dynamic
kernel launches. The citations in the first column in-
dicate the source of the original version of the bench-
mark (SSSP was implemented in this work, which fol-
lows the classic shortest path algorithm, and manages
the parallelism in a way similar to the BFS in Rodinia).
The rightmost column indicates whether the subkernel

Table 1: Machine Description.

Name GPU card Processor CUDA
K20c NVIDIA K20c Intel Xeon E5-1607v2 6.5
K40m NVIDIA K40m Intel Xeon E5-2697 7.0

is regular or irregular (detailed in Section 5.2).

Among the programs, CCL and BT already use dy-
namic parallelism in the original code. SP and MST
come from the LoneStarGPU [1] benchmark suite (v2.0).
They use double-buffered worklists for storing frontier
nodes for computing efficiency. The subkernel launch
(SKL) version of SP uses dynamic kernel calls to replace
the “for(int edndx = 0; edndx < cllen; edndx++)” loop
inside the kernel “decimate_2”. The usage of double-
buffered worklists is not affected, still used in the SKL
version and all the free launch versions. Two kernels of
MST are used in the study, one to find the minimum
spanning tree, the other to verify the minimum span-
ning tree. Dynamic subkernel calls are used to replace
the loops for processing all neighbors of a given node in
the two kernels. For the graph coloring program GC,
the dynamic parallelism is used to replace the loop for
processing the adjacent nodes of a graph node in the
kernel for detecting the numbers of conflicts for current
colored graph. Programs BFS and SSSP both come
from the Rodinia benchmark suite [11]. The original
code of BFS uses one warp to process 32 nodes of a
graph, and for each node, it uses that warp to process
its neighbors in parallel. In the SKL version, each par-
ent thread visits one node, and a subkernel call is used
for processing all the neighbors of that node. The par-
allelism in SSSP is similar to BFS.

All subkernel calls, except those in CCL, are asyn-
chronous. When measuring the performance of kernels
that contain subkernel calls, we use the CUDA func-
tion “cudaDeviceSetLimit” to ensure that the pending

launch limit “cudaLimitDevRuntimePendinglLaunchCount”

of GPU subkernel launches is not exceeded by the actual
subkernel launches. It helps reserve enough resource on
the device for subkernel launches. Without it, the slow-
down brought by subkernel launches is several times
larger than using it.

We run the experiments on both K20c¢c and K40m
GPU as listed in Table 1. The results on them are simi-
lar. We include the overall performance results on both
of them in Figure 12. To enhance the legibility of CCL
and BT results, we list their numbers in Table 3. Our
detailed result discussions, without notice, concentrate
on the results collected on K20c.

5.2 Overall Performance

The transformed code run correctly on all of the pro-
grams, regardless of their code complexities (atomic op-
erations in MST_dfind2 and MST_verify, synchroniza-
tion in CCL, function calls in CCL and BT kernels,
etc.). Although in principle it is possible for free launch
to support recursive subkernel launches (with a limit
on recursion levels), none of the kernels have recursive
launches. We leave the support to future work.

Table 2: Benchmarks

CCL and BT already use dynamic subkernel launches in their original version.

[Benchmark [Description [Purpose of the dynamic kernel call [Regular |
GC [12] Graph Coloring color a node’s all adjacent node Y
SP [1] Survey Propagation propagate to a variable’s neighbours N
BF'S [11] Breadth-first Search in a graph determine the levels of all neighbour nodes of a given node N
SSSP [13] Single-Source Shortest Paths in a graph get the minimal distance from a node to its neighbours N
CCL [14] Connected Component Labelling Merge different spans Y
BT [15] Bezier Line Tessellation all vertices along each bezzier line N
MST_dfind2 [1] find Minimum Spanning Tree process all neighbours of a given node N
MST_verfiy [1] verify Minimum Spanning Tree process all neighbours of a given node N

Table 3: Speedups of CCL and BT over the original SKL version.
Kernels K20c _ _ K40m . _
T1 T2 T3 T4 auto-selection | original T1 T2 T3 T4 auto-selection | original
CCL 1.17 | 0.31 0.43 0.0041 1.17 1.08 0.32 0.31 0.0046 1.08 1
BT 0.81 | 0.97 | 1.94 2.05 1.91 0.79 | 0.94 | 1.89 2 1.84 1

Overhead of Subkernel Launches.

The “original” bars in Figure 12 correspond to the
original benchmarks, which, except for CCL and BT,
use no subkernel calls. The up to 21X speedups shown
by the “original” bars indicate the large overhead of sub-
kernel launches. The result echos some numbers men-
tioned in a previous paper [6]. It is however much larger
than what another recent paper reports [4]. In that
work, the authors included only the cases where the
amount of work for a child kernel to do is larger than
some thresholds. The threshold values were manually
determined for each benchmark. The overhead of sub-
kernel launches is more prominent when the amount of
work for a child kernel to do is small. Our objective is
to automatically address the overhead in all cases and
hence uses no such manually customized thresholds.

The “auto-selection” bars in Figure 12 correspond to
the results of our method equipped with the automatic
version selection (all runtime overhead is counted). By
removing the subkernel launching overhead, the trans-
formed results outperform the version with subkernel
calls by 36X on average. The rightmost column of Ta-
ble 4 shows the selected versions. Among them, T2 is
the most popular choice, T3 is never selected. Figure 12
shows that the auto-selector selects the best version for
all the benchmarks; the selection overhead throttles the
speedups by about 10% on average.

Speedups over the Original.

From Figure 12, we can see that the results from
“auto-selection” also outperform the “original” substan-
tially: 3.2X on K20c and 3.4X on K40m on average.
When excluding the two programs (CCL and BT) that
use subkernel calls in their original versions, the aver-
age speedups over the “original” are still about 3X. The
main reason is the much better load balance brought
by the free launch version. It is shown by the right
columns in Table 4 under “Max subtasks by a PTB”.
The columns report the maximum number of subtasks
assigned to a parent thread block in the four free launch
versions and in the original version. For a given kernel,
the total number of subtasks is the same for all the ver-
sions. So, the lower the number in a column is, the more

balanced the workload is in that version. The maximum
numbers of subtasks in the “original” version are orders
of magnitude larger than the free launch versions (es-
pecially T1 and T2).

We take SP as an example for a more detailed discus-
sion. At the core of SP, it tries to solve a SAT problem.
Recall that the SKL version of SP uses dynamic kernel
calls to replace the “for” loop inside the kernel “dec-
imate_2”, which propagates a boolean value to a vari-
able’s neighbours (i.e., clauses containing that variable).
The generated T2 version shows 2.2X speedup com-
pared to the original version (the default input “random-
16800-4000-3.cnf” is used). In the execution of the orig-
inal version, the kernel has 65 thread blocks and each
has 384 threads, but only 40 threads in the first thread
block actually work on the “for” loop and other threads
are idle. The numbers of iterations of the loop executed
by the threads frequently differ. In T2, the work in the
40 loops is handled by the 65 parent thread blocks with
a much improved load balance. As Table 4 shows, the
maximum numbers of subtasks by a PTB are 240 for
the “original” and 4 for T2.

The “R” fields in three columns in Table 4 report the
number of registers used in the GPU kernels. On several
benchmarks due to the use of megakernel and inserted
instructions, the free launch versions use slightly more
registers than the parent kernels do in the version that
uses subkernel calls. There is some slight decrease in
register usage on CCL and BT due to different regis-
ter reuses. The other columns of Table 4 show more
detailed information on the kernels, including the grid
and thread block dimensions, and the numbers of child
kernel launches.

We next discuss the benchmarks further by grouping
them into two categories.

Regular Cases.

Benchmarks GC and CCL are regular cases whose
child kernel launches’ patterns can be analyzed stati-
cally during compile time.

For GC, the SKL version launches a kernel with 4
thread blocks and each contains 256 threads. Each
thread launches a child kernel. As a result, there are

Table 4: Details of each kernel.

“Concurrency”: the number of subtasks a parent thread block does concurrently in the free launch versions;
[...]: parameters on the grid and block dimensions of a kernel;“R”: the number of registers in a kernel

Kernels Parent Kernel Child Kernel C}lléfni(}?:slel Concurrency TT M,I?‘; subrtra?)sks by;4PTB org Sveelrescitoe:
GC [4,256],R:18 [2,32],R:8 1024 8 20 20 64 512 376 T2,R:20
SP [65,384],R:27 | [unknown,32],R:8 10 12 1 1 10 320 240 | T2,R:27
BFS [10,1024],R:18 [unknown,32],R:8 1000 32 99 139 | 1279 | 32768 | 32032 | T2,R:26
SSSP [10,1024],R:20 | [unknown,32],R:12 1001 32 101 | 139 | 1311 | 32768 | 32032 | T2,R:32
CCL [1,2],R:45 [4,256],R:6 2 I I 1 3 1024 NA | TL,R:37
BT 400,64],R:26 | [unknown,32],R:18 25600 2 64 | o4 64 64 NA | T4,R:23
MST_dfind2 4,1024],R:40 unknown,32],R:40 3947 32 345 | 358 | 1143 7168 6432 T2,R:40
MST _verfiy 4,1024],R:40 unknown,32],R:40 3947 32 345 | 357 | 1143 7168 6432 T2,R:40
80 STl @T2 T3 HET4 [Hauto-selection B original is 64. For T4, one thread would process the entire

(a) on K20c

EBT4 Eauto-selection B original

NT1 @T2 T3

Figure 12: Speedups over the version that uses
subkernel launches. The “original” bars show the
performance of the original version of the code
without using subkernel launches (CCL and BT
already uses subkernel launches in their origi-
nal version, hence excluded from that category).
Table 3 shows the detailed results of CCL and
BT.

1024 child kernel launches. The selected transformed
version launches the maximum number of thread blocks,
which is 8*13 instead of 4, for the parent GPU kernel.
Since the configuration of each child kernel launch can
be known during compile time, the transformed code
doesn’t need inter-block synchronization to record each
configuration. The assignments in T1 and T2 are actu-
ally the same—that is, each parent block handles at
most 20 subtasks as Table 4 shows, which helps T2
achieve a 64X speedup. However, for T1, it has ex-
tra overhead in getting the configuration of each sub-
task; hence a lower speedup (47X). For T3, the maxi-
mum number of subtasks handled by one parent block

work of child kernel, which consists of at most 47 chil-
dren threads’ work. For T3 and T4, the occupancy is
low. The selected version is T2, which provides a 55X
speedup including the analysis overhead.

For CCL, in the original code execution, the parent
kernel has only 1 thread block with 2 threads, and each
thread launches a child kernel with 4 thread blocks (each
contains 256 threads). The T1 transformation creates
eight persistent thread blocks, and each parent thread
block processes one subtask. The overhead is trivial
here since there are only 8 subtasks to assign. T1 brings
the best performance with a 1.17x speedup. The other
transformations result in poor load balance on it. T1 is
chosen.

Irregular Cases.

In benchmarks BT, SP, BFS, SSSP, MST_dfind2 and
MST _verify, the static code analysis cannot determine
which parent threads make subkernel calls and how
many subtasks a subkernel contains.

BT is an opposite example compared with GC. The
parent kernel in the SKL version has occupied all re-
sources on all GPU streaming multiprocessors. So all
created children thread blocks would compete for re-
sources with parent thread blocks; launching children
kernels does not help improve the occupancy much but
increases a lot of launching overhead and scheduling
overhead. For the same reason, T1 and T2 do not help;
their overhead causes some slowdown. T4 works the
best by letting each thread do all tasks it creates with
no synchronization overhead, yielding a 2.05X speedup.
T4 is chosen.

For SP, the SKL version launches a kernel with the
maximum number of parent thread blocks. Inside the

kernel, 40 child kernels get launched; which thread launches

a kernel depends on some runtime conditions. T1 and
T2 have 65 persistent thread blocks. Their subtask as-
signments ensure that one persistent block processes at
most one subtask, giving a superior load balance. T1
gives a 5.89X speedup, while T2 gives a 9.31X speedup
for its lower runtime overhead. The local assignments
by T3 and T4 result in some imbalance with the max-
imum number of subtasks of one parent block reaching
40 and 320 respectively.

For other benchmarks, in the same vein, the four
transformations give different speedups. The auto se-

=
N

HSKL ®©T1 ©1T2 ET3 ET4 [Jauto-selection B original
> 1
§os
O
& 0.6
*
s'o4
%02 g I I
0 % . EI{I‘ EI'I‘ B:I‘ B‘; .
@)] o < N
S N S O
© XS S
Figure 13: SM efficiency.
1.2
> NSKL @ T1 [1T2 B T3 E T4 []auto-selection M original Mideal
E 1
§ 0.8
O,0.6
°
> 0.4 é
(Y] 5
£02
] ! :
< 0 B— ‘iﬂ‘. . A
& & &K & 9

Figure 14: Achieved SM occupancy.

lector selects version T2 for those programs because the
workload balance is good without extra overhead for re-
trieving parameters for each kernel launch.

On GC, SP, MST_dfind2, and MST _verify, the orig-
inal versions are similar to the T4 version, and hence
give performance similar to T4. On BFS and SSSP, the
original versions differ from T4 in that they use a warp
to process the neighbors of a node in parallel, while T4
processes the neighbors of a node through only the par-
ent thread that handles that node. As a result, on these
two benchmarks, T4 runs slower than the original.

The impact of the transformation to the whole appli-
cation depends on how much the kernel weighs in the
whole application, which varies with program inputs for
many of them. For the set of experiments we conducted,
the speedups of the whole applications range from 1.05X
to 1.3X with an average of 1.18X.

5.3 Analysis through Hardware Counters

We conduct some deeper analysis of the results through
nvprof [15], the profiling tool provided by NIVIDIA.
Figure 13 shows the SM efficiency, which is the per-
centage of time at least one warp is active on an SM,
averaged over all SMs on the GPU. Figure 14 shows
the achieved occupancy of an SM, which is ratio of the
average active warps per active cycle to the maximum
number of warps supported on an SM. The ideal-max
means the theoretical occupancy calculated by the us-
age of resources (registers, shared memory, etc.). The
tool fails in getting the SM efficiency and achieved oc-

NT1 @T2

gfmimé%i&gaé%é%ﬁé

auto-selection

Figure 15: Speedup of BFS across different in-
puts

cupancy of CCL.

In Figure 13, the kernels with dynamic parallelism
have an average 0.3 SM efficiency due to the expen-
sive launching overhead and block scheduling overhead,
which means most of warps are not active in an active
cycle. It helps explain the low achieved occupancy (av-
erage 0.067) in Figure 14.

For T1, it always has the highest SM efficiency (aver-
age 0.915) and achieved occupancy (average 0.68) com-
pared to the other five versions. There are two reasons:
the first is that there is no subkernel launching over-
head and the kernel has the maximum number of active
thread blocks; the second is that the extra code added
for T1 to retrieve the configuration of subtasks keeps the
SM more likely to be busy. However, T1 doesn’t always
provide the best performance due to the overhead of
synchronizations and parameter retrieval for each child
kernel launch.

T2 achieves a similar SM efficiency (average 0.88)
and Achieved occupancy(average 0.67) as T1 does. Thanks
to its low overhead, it outperforms T1. T1 and T2
have near 100% SM efficiency in Figure 13 and the
ideal-max occupancy(0.81) for SM Achieved occupancy
in Figure 14. The only exception is CCL; its low achieved
occupancy (0.125) is because the number of subkernels
launches by parent kernel is small and there is no need
to create the maximum number of persistent threads.

For T3 and T4, they work well when SM achieved
occupancy of original parent kernel is very high and the
amount of subtasks created by each parent thread block
is similar. BT is such an example, as we explained in
section 5.2.

5.4 Sensitivity to Different Inputs

The benefits of free launch may vary across different
program inputs. We choose one kernel, BFS, to study
the variations across different inputs. We consider only
two transformation versions (T1,T2) as the BFS kernel
is irregular.

Figure 15 shows the speedup of BFS on different in-
puts and iterations over the SKL version. The axis
shows the different inputs, with each characterized in a
tuple, showing the number of nodes, average degree of a
node, and the level that the kernel is looking for. For ex-
ample, <10000,100,0> means the kernel is searching for

nodes in level 0 and then assigns 1 to the levels of their
children nodes, the number of graph nodes is 10000, and
the average degree of each node is 100. The speedups
by the auto-selected free launch transformation show
vary between 3X and 87X. For all graphs, at level 0, T1
always achieves the best performance. The reason is
that only one child kernel is launched and the superior
load balance of T1 over T2 plays an important role. At
level 1 for all graphs, T2 achieves the best performance
because at this level, many parent threads launch sub-
kernels (over 1000 threads for <10000,1000,1>). T2
can also get a good load balance. For T1, it can also
achieve the best workloads balance. However, because
the overhead of retrieving parameters of child kernel for
each subtask is high, its performance is not as good as
T2.

6. RELATED WORK

There have been many studies published in optimiz-
ing GPU program performance. In this section, we fo-
cus on the work closely related with dynamic parallelism
in GPU.

To help expose enough parallelism to efficiently use
GPU, NVIDIA introduced dynamic parallelism [2], where
threads can launch subkernels dynamiclly. Using the
feature, CUDA SDK [15] achieves a better speed on
QuickSort. DiMarco and others show the performance
impact of the feature on clustering algorithms [16].

A drawback of subkernel launch is the high launch-
ing overhead. In a recent work, Wang and Yalamanchili
have characterized and analyzed subkernel launches in
unstructured GPU applications [4] and have proposed a
new method called “Dynamic Thread Block Launch” [5],
which is a lightweight execution mechanism to reduce
the high launching overhead. The work shows good
potential in improving the efficiency, but requires ex-
tra hardware extensions. Yang and others develop a
compiler called “CUDA-NP” [6], which tries to exploit
nested parallelism by creating a large number of GPU
threads initially and use control flows to activate dif-
ferent numbers of threads for different code sections.
The parallelism is limited to the number of threads in
a thread block and has shown to work on nested loops
only. The SM-centric transformation recently proposed
by Wu and others [17] offers a simple approach to con-
trolling the placement of GPU tasks on GPU streaming
multiprocessors, and shows significant benefits for en-
hancing data locality across GPU threads and the co-
running performance of multiple kernels.

On optimizing irregular computations on GPU, Zhang
and others have developed G-Streamline, which removes
non-coalesced memory references and thread divergences
through a runtime thread-to-data remapping [18, 19].
Wu and others extend the work by proving the NP-
completeness of the remapping problem and propos-
ing two new optimizations to the irregular computa-
tions [20]. Other related studies concentrate on the

memory performance of irregular computations on GPU [21

22, 23, 24]. A software framework named PORPLE has
been recently proposed to dynamically finds and real-

izes the best placements of data on the various types of
memory on GPU [25]. Some other work [26, 27] con-
tributes benchmarks or quantitative studies for charac-
terizing and analyzing irregular applications.

Manson and others have identified some possible cor-
rectness concerns of thread inlining in a study on Java
memory models [28]. GPU memory models are cur-
rently not strictly defined. We did not find issues with
the out-of-thin-air values in the proposed transforma-
tions.

7. CONCLUSION

In this paper, we have presented free launch, the
first pure software solution that removes the large over-
head of GPU dynamic subkernel launches from a pro-
gram through four kinds of automatic launch removal
and an adaptive version selection technique. The tech-
nique demonstrates the promise for overcoming short-
comings of prior solutions for efficiently supporting dy-
namic parallelism on GPU. With it, programmers can
enjoy the convenience and expressiveness of subkernel
launches for GPU programming, while avoiding the as-
sociated large cost and achieving a superior load bal-
ance. The technique even outperforms manual worklist-
based support of dynamic parallelism by 3X in terms of
average speedups. By turning subkernel launch into a
programming feature independent of hardware support,
free launch makes subkernel launch even possible to use
beneficially on GPUs that do not offer hardware sup-
port of subkernel launches.

Acknowledgement

We thank the Micro’15 reviewers for their helpful sug-
gestions. This material is based upon work supported
by the DOE Early Career Award, the National Sci-
ence Foundation (NSF) (under Grants No. 1455404,
1525609, and Career Award), IBM CAS Fellowship, and
Google Faculty Award. The experiments benefit from
the GPU devices donated by NVIDIA. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and do not nec-
essarily reflect the views of DOE, NSF, IBM, Google,
or NVIDIA.

References

[1] M. Kulkarni, M. Burtscher, K. Pingali, and C. Cascaval,
“Lonestar: A suite of parallel irregular programs,” in Pro-
ceedings of IEEE International Symposium on Performance
Analysis of Systems and Software, 2009.

[2] S. Jones, “Introduction to dynamic parallelism,” in Nvidia
GPU Technology Conference, (San Jose, CA), May 2012.

3

“OpenCL.” http://www.khronos.org/opencl/.

[4] J. Wang and S. Yalamanchili, “Characterization and analysis
of dynamic parallelism in unstructured gpu applications,” in
2014 IEEE International Symposium on Workload Charac-
terization, October 2014.

[5] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dy-
namic thread block launch: A lightweight execution mecha-
nism to support irregular applications on gpus,” in Proceed-

http://www.khronos.org/opencl/

[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

[14]

(15]
(16]

(17]

ing of the 42nd Annual International Symposium on Com-
puter Architecuture (ISCA-42), June 2015.

Y. Yang and H. Zhou, “Cuda-np: Realizing nested thread-
level parallelism in gpgpu applications,” SIGPLAN Not.,
vol. 49, pp. 93-106, Feb. 2014.

J. Kim and C. Battern, “Accelerating irregular algorithms on
gpgpus using fine-grain hardware worklists,” in Proceedings
of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, 2014.

K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persis-
tent threads style gpu programming for gpgpu workloads,”
in Innovative Parallel Computing (InPar), 2012, pp. 1-14,
IEEE, 2012.

S. Lee, T. Johnson, and R. Eigenmann, “Cetus - an extensi-
ble compiler infrastructure for source-to-source transforma-
tion,” in In Proceedings of the 16th Annual Workshop on
Languages and Compilers for Parallel Computing (LCPC),
pp- 539-553, 2003.

J. Stratton, S. Stone, and W. Hwu, “MCUDA: An Efficient
Implementation of CUDA Kernels for Multi-Core CPUs,” in
Languages and Compilers for Parallel Computing: 21th In-
ternational Workshop (LCPC), 2008.

A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, “The
scalable heterogeneous computing (shoc) benchmark suite,”
in GPGPU, 2010.

A. V. P. Grosset, P. Zhu, S. Liu, S. Venkatasubramanian, and
M. Hall, “Evaluating graph coloring on gpus,” in Proceedings
of the 16th ACM Symposium on Principles and Practice of
Parallel Programming, PPoPP ’11, (New York, NY, USA),
pp. 297-298, ACM, 2011.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. MIT Press and McGraw - Hill,
2002.

Y. Ukidave, F. N. Paravecino, L. Yu, C. Kalra, A. Momeni,
Z. Chen, N. Materise, B. Daley, P. Mistry, and D. Kaeli,
“Nupar: A benchmark suite for modern gpu architectures,”
in Proceedings of the 6th ACM/SPEC International Con-
ference on Performance Engineering, ICPE ’15, (New York,
NY, USA), pp. 253-264, ACM, 2015.

“NVIDIA CUDA.” http://www.nvidia.com/cuda.

J. DiMarco and M. Taufer, “Performance impact of dynamic
parallelism on different clustering algorithms,” in SPIE De-
fense, Security, and Sensing, International Society for Op-
tics and Photonics, 2013.

B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter, “Enabling and
exploiting flexible task assignment on gpu through sm-centric
program transformations,” in Proceedings of the ACM Inter-
national Conference on Supercomputing, 2015.

(18]

(19]

20]

(21]

(22]

23]

[24]

25]

[26]

27]

(28]

E. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen, “On-the-
fly elimination of dynamic irregularities for gpu computing,”
in Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, 2011.

E. Z. Zhang, Y. Jiang, Z. Guo, and X. Shen, “Streamlining
gpu applications on the fly,” in Proceedings of the ACM In-
ternational Conference on Supercomputing (ICS), pp. 115—
125, 2010.

B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen, “Com-
plexity analysis and algorithm design for reorganizing data
to minimize non-coalesced memory accesses on gpu,” in Pro-
ceedings of the 18th ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming, 2013.

P. Carribault, A. Cohen, and W. Jalby, “Deep jam: con-
version of coarse-grain parallelism to instruction-level and
vector parallelism for irregular applications,” in Proceedings
of International Conference on Parallel Architectures and
Compilation Techniques, (St. Louis, MO), 2005.

M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and
C. Casgaval, “How much parallelism is there in irregular ap-
plications?,” in PPoPP ’09: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel
programmang, (New York, NY, USA), pp. 3-14, ACM, 2009.

S. Kim, H. Han, and K. Choe, “Region-based parallelization
of irregular reductions onAéaexplicitly managed memory hi-
erarchies,” Journal of Supercomputing, 2009.

M. Burtscher, M. Kulkarni, D. Prountzos, and K. Pingali,
“On the scalability of an automatically parallelized irregu-
lar application,” in Languages and Compilers for Parallel
Computing: 21th International Workshop, LCPC 2008, Ed-
monton, Canada, July 31 - August 2, 2008, Revised Selected
Papers, (Berlin, Heidelberg), pp. 109-123, Springer-Verlag,
2008.

G. Chen, B. Wu, D. Li, and X. Shen, “Porple: An extensible
optimizer for portable data placement on gpu,” in Proceed-
ings of the Annual IEEE/ACM International Symposium on
Microarchitecture, 2014.

S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron,
“Pannotia: Understanding irregular gpgpu graph applica-
tions,” in Workload Characterization (IISWC), 2018 IEEE
International Symposium on, pp. 185-195, IEEE, 2013.

M. Burtscher, R. Nasre, and K. Pingali, “A quantitative
study of irregular programs on gpus,” in IISWC, 2012.

J. Manson, W. Pugh, and S. Adve, “The java memory
model,” in Proceedings of the ACM SIGPLAN Conference
on Principles of Programming Languages (POPL), 2005.

http://www.nvidia.com/cuda

	Introduction
	Launch Removal Transformation
	A Running Example
	Four Types of Subtask Assignments
	Transformation for CB*PB*
	Transformation for CK*PB*
	Transformation for CKiPBi
	Transformation for CKiPTi
	Other Complexity

	Task Assignment Selection
	Implementation
	Evaluation
	Methodology
	Overall Performance
	Analysis through Hardware Counters
	Sensitivity to Different Inputs

	Related Work
	Conclusion

