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Ultimate Gcoal

* Understand the principles
giving rise to intelligence



Focus

» Learning: mathematical
and computational
principles allowing one to
learn from examples in
order to acquire knowledge




Breakthrough

» Deep Learning: machine
learning algorithms inspired
by brains, based on learning
multiple levels of
representation / abstraction.



Impacl:

Deep learning has revolutionized
* Speech recognition
* Object recognition

More coming, including other
areas of computer vision, NLP,
machine translation, dialogue,
reinforcement learning..



Technical Goals Hi.amrckv

To reach Al:

* Needs knowledge
* Needs learning

* Needs generalization

e Needs ways to fight the curse of dimensionality

* Needs disentangling the underlying explanatory factors



Easv Learning

learned function: prediction = f(x)




ML 101, What We Are Fighting Against:
The Curse of Dimensionality

To generalize locally,
need representative
examples for all
relevant variations!

1 dimension:
10 positions
©

2 dimensions:
100 positions
o

» 3 dimensions:
1000 positions!



Nokt T)E.me.v\simmti.&j so much as
Number of Variations ‘

(Bengio, Dellalleau & Le Roux 2007)
e Theorem: Gaussian kernel machines need at least k examples

to learn a function that has 2k zero-crossings along some line

M
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e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(29)
examples




For Al Tasks: Manifold skructure

IH

e examples concentrate near a lower dimensional “manifold

e Evidence: most input configurations are unlikely
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Representation Learning

e Good features essential for successful ML: 90% of effort

raw represented MACHINE
input > by e ml | | EARNING
data features

 Handcrafting features vs learning them

e Good representation?
e guesses
the features / factors / causes
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Automating
Feabure biscoverj
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Learning multiple levels of
representation

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and compose them

It works! Speech + vision breakthroughs =~
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Composing Features on Features

Higher-level features Ot
(object identity)
Y

are defined in terms of

3rd hidden layer
(object parts)

lower-level

2nd hidden layer
(corners and
contours)

features

1st hidden layer
(edges)

Visible layer
(input pixels)
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Google Image Search:

Different object types represented in the
same space

DDDDDDD

DOLPHIN
— OBAMA
—EIFFEL TOWER

fGoogIe:

'S. Bengio, J.
Weston & N.
w Usunier

C%¢ (1JCAI 2011,
NIPS’2010,

JMLR 2010,
PR \VILJ 2010)
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100-dim
embedding space

Learn ®(+) and ®,-) to optimize precision@k.



Following up ol (Bengio et al NIPS'Ro00)
Neural word embeddings - visualizalion

need help
come
go
take
qive keep
make get
meet .o continue
expect want become
think
say remain
are .
IS
be
wergas
being
been
haq\as
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Neural Language Models

e Meanings and their combination all ‘learned’ together.
Minimal structure imposed.

representation
x1 x2 x3 x4 x5 ...

1 A guess

PARAMETERS

(

Poutine IS a curious
al bl cl dl
a2 b2 c2 d2
a3 b3 a3 43 | MORE

ad b4 cA d4 | PARAMETERS




Analogical Representations for Free
(Ms.kctov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King — Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome
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The Next Challenqge: Rich Semawntic
Represen&a&ians or Word Sequences

* Impressive progress in
capturing word semantics
Easier learning: non-parametr
(table look-up)

e QOptimization challenge for
mapping sequences to rich &
complete representations

e @Good test case: machine
translation

19



Breakthroughs in Machine Translation

e (Cho et al, EMNLP 2014) Learning Phrase Representations using
RNN Encoder—Decoder for Statistical Machine Translation

e (Sutskever et al, NIPS 2014) Sequence to sequence learning with
neural networks, 3 BLEU points improvement for English-French

e (Devlin et al, ACL 2014) Fast and Robust Neural Network Joint
Models for Statistical Machine Translation

Best paper award, 6 BLEU points improvement for Arabic-English

Decoder

English sentence English sentence ?«— /y-.
e I
- - | | s T
2 S = —
® - \decoder | Fener
+— >
X eT0]
(] c
x =
o) =
s French > ? .
~  encoder 2 ;
1
French sentence English sentence

20 Encoder



subroutine? includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub subsubsub?2

subsubsu //////////EEPS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Sharing Compohents in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(21709)(XoX3) + (r129) (2324) + ()r:2x;>,)2 + (x9x3)(7374)

Sum-product
network

Theorems in
(Bengio & Delalleau, ALT 2011;
Delalleau & Bengio NIPS 2011)



Deep Architectures are More.
X Presswe.

Theoretical arguments:

Logic gates

2 layers of | Formal neurons = universal opproximo’ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007,

Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014)

Some functions compactly
represented with k layers may
require exponential size with 2
layers




New theoretical resulkb:
Expressiveness of deep hets with
plecewise-linear activation fns

(Pascanu, Montufar, Cho & Bengio; ICLR 2014)

Deeper nets with rectifier/maxout units are exponentially more
expressive than shallow ones (1 hidden layer) because they can split
the input space in many more (not-independent) linear regions, with
constraints, e.g., with abs units, each unit creates mirror responses,
folding the input space:
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Nown~-distributed representations

e (lustering, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,

Clustering

decision trees, etc.

e Parameters for each
distinguishable region

LOCAL PARTITION

o # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples
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The need for distributed
represeu&a&iovxs

27

Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions
grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

C1

artition 1

Cl=1
C2=0
C3=0

Cl=0
C2=1
C3=0

Sub—partition 3
\

Sub—partition 2
v Cl=1 5
\C2=0 ¢
\C3=1 ¢

\ C1=0
C2=1
\ C3=1

\

DISTRIBUTED PARTITION \

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



The need for distributed

[ 3
re.prese.w&ahov\s
Clusterin i
. —par 1t1 3

& Clustering " \\"Z:'“Ojéub_partition 2
8 X\ o= \\Sijl) s

e o v

- Sub—partition 1 S ool
X 3
X
C:Li()

DISTRIBUTED PARTITION
LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than
having nearest-neighbor-like or clustering-like models
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Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

- /4 R g= g

, , vE’%ntréaI
e  Sparse coding variants Torontg R
Hinto P

¥#8 Le Cun
~127 New York
(Bengio & LeCun 2007), Scaling Learning Algorithms towards Al




Issues with Ba«cw-?rop

e Invery deep nets or recurrent nets with many steps,
non-linearities compose and yield sharp non-linearity
- gradients vanish or explode

* Training deeper nets: harder optimization

* |n the extreme of non-linearity: discrete functions,
can’t use back-prop

 Not biologically plausible?



Effect of Inikial Conditions
n ‘De.ep Nets

(Erhan et al 2009, JMLR)

e Supervised deep net with vs w/o
unsupervised pre-training =2 very different minima

Neural net trajectories in w/o unsupervised pre-trainin
function space, visualized by e
t'SNE e ‘ ﬁ

No two training trajectories . t_‘ O € L 2
end up in the same place 2

huge number of effective
local minima

with unsupervised pre-training
31



Order & Selection of Examples MaEEers
(Bengio, Louradour, Collobert & Weston, ICML’2009)

e Curriculum learning

e (Bengio et al 2009, Krueger & Dayan 2009) Ik ak VN

e Start with easier examples

—curriculum

e Faster convergence to a better local = = no-curriculum
minimum in deep architectures

32



Curriculum Learning

Guided learning helps fraining humans and animails

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)



Continuation Mebthods

Final solution

Track local minima

asy to find minimum



Guided Training, Intermediate
Concepls

* In (Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,
trees, boosting etc

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape
effective local minima HINTS

35



Saddle Poinks, not Local Minima

Traditional thinking is that major obstacle for training deep nets is
local minima

Theoretical and empirical evidence suggest instead that saddle

points are exponentially more prevalent critical points, and local
minima tend to be of cost near that of global minimum

e (Pascanu, Dauphin, Ganguli, Bengio 2014): On the saddle point
problem for non-convex optimization.

120

100

36



Saddle Poinks

Wolfram Global Problem

Local minima dominate in low-D, but*{¥&&

saddle points dominate in high-D

Most local minima are close to the
bottom (global minimum error)

MNIST
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Ik is Passibte to escape saddle poi.v\!:s!

e NIPS’2014 paper, Dauphin et al.
e More work is ongoing to make it online

e Challenge: track the most negative eigenvector, which is easy in
batch mode with power method, if we also track most positive,

via v < (H — Al)v

— Gradient Descent
—— Saddle-Free Gradient Descent ||

38
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Saddle-Free Oglzimi..mlzion
(Dauphin et al NIP§2014)

e Replace eigenvalues A of Hessian by |A]

10| 8

m
Mg l“l"W”l”llm 1l

WWWWWWWWWWWWMI’

Training error (%)

10°
e ® minibatch SGD
¢¢ Damped Newton method
=8 Saddle-Free Newton method
_]_ ‘
1075 25 50

2 Number of hidden units



‘Dee;p Supe.rvi.sed Neural Nets

e Now can train them even without
unsupervised pre-training:
better initialization and non-
linearities (rectifiers, maxout),
generalize well with large labeled
sets and regularizers (dropout)

 Unsupervised pre-training:
rare classes, transfer, smaller

labeled sets, or as extra
regularizer.

40



Why Unsupervised Learning?

e Recent progress mostly in supervised DL

e Jreal challenges for unsupervised DL

e Potential benefits:
* Exploit tons of unlabeled data
* Answer new questions about the variables observed
* Regularizer — transfer learning — domain adaptation
* Easier optimization (local training signal)

* Structured outputs

41



Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

42



Emergence of ‘bc.sav\&avxglwxg

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot etal. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)
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How do humans generalize
from very few examples?

* They transfer knowledge from previous learning:
* Representations

Explanatory factors

* Previous learning from: unlabeled data
+ labels for other tasks

* Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)

44



Unsupervised and Transfer Learning
Challenge + Transfer Learning
Challenge: Deep Learning 1st Place

NIPS’2011
Transfer
Learning

Challenge
0 Paper:

1 e A atees s | ’ ! Eoa e b vaining exarpien : ¢ I C M L, 2 0 1 2
ICM L,2011 o085 SYLVESTER VALID: ALC=0.9316

Raw data _+-

2 layers

workshop on T o - = = -
Unsup. & g o
Transfer Learning: ™| 3 layers 5o
: 4 layers
£ oest g 08
: g[}.?5
055 %
ogf 1 of training examples) E e
05

Logz[N umber ot training examples)




Auto-Encoders Learn Salient
Variations, Like a non-Linear PCA

... .(

* Minimizing reconstruction error forces to

keep variations along manifold. »
* Regularizer wants to throw away all

variations. o
e With both: keep ONLY sensitivity to

variations ON the manifold.

46



Space-Filling in Representation-Space
* Deeper representations = abstractions = disentangling

e Manifolds are expanded and flattened

4 Pixel space A Representation space

Y g5 manold q osmanitod Lo hitos X
)/H(

Linear interpolation at layer 2
v

X-space

3’s manifold

9’s manifold -
9

Linear interpolation at layer 1 ®

3
—o——@

Linear interpolation in pixel space




ka Unsupervised Represenkaltion
Learning? Because of Causalily.

e |fYs of interest are among the causal factors of X, then
P(X|Y)P(Y
pvix) - PP
P(X)
is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X]Y), i.e.

e The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

e Representation learning SEEKS the latent variables H that
explain the variations of X, making it likely to also uncover.

e We need 3 pieces:
 |latent variable model P(H),
e generative decoder P(X|H), and

* approximate inference encoder Q(H | X).
48



Challenqes with Gmphi.cat Models wilth
Latent Variables

e Latent variables help to avoid the curse of dimensionality

e But they come with intractabilities due to sums over an
exponentially large number of terms (marginalization):

e Exact inference (P(h|x)) is typically intractable

* With undirected models, the normalization constant and its
gradient are intractable

49



Issues with Boltzmann Machines

e Sampling from the MCMC of the model is required in the inner
loop of training

* As the model gets sharper, mixing between well-separated
modes stalls

O NN

Training updates

Gicious circ/9

Mixing

50 N



Bypassing Normalization Cownstants
with Grenerative Black Boxes

e Instead of parametrizing p(x),
parametrize a machine which

generates samples

random
numbers

generated

parameters
samples
®* (Goodfellow et al, NIPS 2014,
Generative adversarial nets) for the previous state
case of ancestral sampling in a deep random
generative net. Variational auto- numbers generated

encoders are closely related. sdmples

parameters
next state

e (Bengioetal, ICML 2014, Generative
Z generated

Stochastic Networks), learning the samples

transition operator of a Markov chain

that generates the data.
generated

51 sdmples



movies

Each movie = linear interpolation
between 2 random samples in
representation-space
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Ancestral Sampling with Learned

Approximate Inference

53

-~ N latent

Helmholtz machine & Wake-Sleep algorithm g

e (Dayan, Hinton, Neal, Zemel 1995) $
Variational Auto-Encoders Q ;ﬁ
e (Kingma & Welling 2013, ICLR 2014)  Traine ate

inference
e (Gregor et al ICML 2014)

e (Rezende et al ICML 2014)

e (Mnih & Gregor ICML 2014)

Reweighted Wake-Sleep (Bornschein & Bengio 2014)
Target Propagation (Bengio 2014)

visible

Deep Directed Generative Auto-Encoders (Ozair & Bengio 2014)
NICE (Dinh et al 2014)



Extracting Structure By Gradual
Disentangling and Manifold Unfolding

(Bengio 2014, arXiv 1407,7906) 3
ah) ="

Each level transforms the R
data into a representation in T Tg
which it is easier to model, L L
unfolding it more,
cc.mtrac.t'mg the noise | a5, lgz P(h,h.)
dimensions and mapping the
signal dimensions to a an) T
fgctquze_d (uniform-like) g PiIhy)
distribution. Q(th,[x) P+

min K L(Q(x,h)||P(x, h))

for each intermediate level h
54
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NICE:

Nowlinear vadepevxdev\!: Compovxeuk Estimalkion

(Dinh, Krueger & Bengio 2014, arxiv 1410.8516)

P(
e Perfect auto-encoder g=f )
h
* No need for reconstruction error //\J an
e Deterministic encoder, no need for entropy term A
e But need to correct for density scaling ; of
e Exact tractable likelihood v
0f(z)
logpx (z) = log pr (f(2)) + log |det ==

factorized prior

Py (h) = HPHi(hi)
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Unfolding AND Disentangling

e The previous criteria may allow us to unfold and flatten the data
manifold

e What about disentangling the underflying factors of variation?
e |s it enough to assume they are marginally independent?
e They are not conditionally independent...

e There may be intrinsinc ambiguities what makes the
disentangling job impossible 2 need more prior knowledge.
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Broad Priors as Hints to Disentangle
the Factors of Variakion

e Multiple factors: distributed representations

e Multiple levels of abstraction: depth

e Semi-supervised learning: Y is one of the factors explaining X
e Multi-task learning: different tasks share some factors

e Manifold hypothesis: probability mass concentration

e Natural clustering: class = manifold, well-separated manifolds
e Temporal and spatial coherence

e Sparsity: most factors irrelevant for particular X

e Simplicity of factor dependencies (in the right representation)
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Learning Multiple Levels of
Abstraction

* The big payoff of deep learning is to allow learning
higher levels of abstraction

 Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity

59




Cownclusions

e Deep Learning has become a crucial machine learning tool:
e Int. Conf. on Learning Representation 2013 & 2014 a huge success!
Conference & workshop tracks, open to new ideas ©

e Industrial applications (Google, IBM, Microsoft, Baidu, Facebook,
Samsung, Yahoo, Intel, Apple, Nuance, BBN, ...)

e Potential for more breakthroughs and approaching the
“understanding” part of Al by

* Scaling computation
* Numerical optimization (better training much deeper nets, RNNs)

* Bypass intractable marginalizations and exploit broad priors and
layer-wise training signals to learn more disentangled
abstractions for unsupervised & structured output learning
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