
Lecture 3: control flow and
synchronisation

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Lecture 3 – p. 1

Warp divergence

Threads are executed in warps of 32, with all threads in the
warp executing the same instruction at the same time

What happens if different threads in a warp need to do
different things?

if (x<0.0)
z = x-2.0;

else
z = sqrt(x);

This is called warp divergence – CUDA will generate correct
code to handle this, but to understand the performance you
need to understand what CUDA does with it

Lecture 3 – p. 2

Warp divergence

This is not a new problem.

Old CRAY vector supercomputers had a logical merge
vector instruction

z = p ? x : y;

which stored the relevant element of the input vectors x,y
depending on the logical vector p

for(i=0; i<I; i++) {
if (p[i]) z[i] = x[i];
else z[i] = y[i];

}

Lecture 3 – p. 3

Warp divergence

Similarly, NVIDIA GPUs have predicated instructions which
are carried out only if a logical flag is true.

p: a = b + c; // computed only if p is true

In the previous example, all threads compute the logical
predicate and two predicated instructions

p = (x<0.0);
p: z = x-2.0; // single instruction
!p: z = sqrt(x);

Lecture 3 – p. 4

Warp divergence

Note that:

sqrt(x) would usually produce a NaN when x<0, but
it’s not really executed when x<0 so there’s no problem

all threads execute both conditional branches, so
execution cost is sum of both branches
=⇒ potentially large loss of performance

Lecture 3 – p. 5

Warp divergence

Another example:

if (n>=0)
z = x[n];

else
z = 0;

x[n] is only read here if n>=0

don’t have to worry about illegal memory accesses
when n is negative

Lecture 3 – p. 6

Warp divergence

If the branches are big, nvcc compiler inserts code to
check if all threads in the warp take the same branch
(warp voting) and then branches accordingly.

p = ...

if (any(p)) {
p: ...
p: ...

}

if (any(!p)) {
!p: ...
!p: ...

}

Lecture 3 – p. 7

Warp divergence

Note:

doesn’t matter what is happening with other warps
– each warp is treated separately

if each warp only goes one way that’s very efficient

warp voting costs a few instructions, so for very simple
branches the compiler just uses predication without
voting

Lecture 3 – p. 8

Warp divergence

In some cases, can determine at compile time that all
threads in the warp must go the same way

e.g. if case is a run-time argument

if (case==1)
z = x*x;

else
z = x+2.3;

In this case, there’s no need to vote

Lecture 3 – p. 9

Warp divergence

Warp divergence can lead to a big loss of parallel efficiency
– one of the first things I look out for in a new application.

In worst case, effectively lose factor 32× in performance if
one thread needs expensive branch, while rest do nothing

Typical example: PDE application with boundary conditions

if boundary conditions are cheap, loop over all nodes
and branch as needed for boundary conditions

if boundary conditions are expensive, use two kernels:
first for interior points, second for boundary points

Lecture 3 – p. 10

Warp divergence

Another example: processing a long list of elements where,
depending on run-time values, a few require very expensive
processing

GPU implementation:

first process list to build two sub-lists of “simple” and
“expensive” elements

then process two sub-lists separately

Note: none of this is new – this is what we did more than 25
years ago on CRAY and Thinking Machines systems.

What’s important is to understand hardware behaviour and
design your algorithms / implementation accordingly

Lecture 3 – p. 11

Synchronisation

Already introduced __syncthreads(); which forms a
barrier – all threads wait until every one has reached this
point.

When writing conditional code, must be careful to make
sure that all threads do reach the __syncthreads();

Otherwise, can end up in deadlock

Lecture 3 – p. 12

Typical application

// load in data to shared memory
...
...
...

// synchronisation to ensure this has finished

__syncthreads();

// now do computation using shared data
...
...
...

Lecture 3 – p. 13

Synchronisation

There are other synchronisation instructions which are
similar but have extra capabilities:

int __syncthreads_count(predicate)

counts how many predicates are true

int __syncthreads_and(predicate)

returns non-zero (true) if all predicates are true

int __syncthreads_or(predicate)

returns non-zero (true) if any predicate is true

I’ve not used these, and don’t currently see a need for them

Lecture 3 – p. 14

Warp voting

There are similar warp voting instructions which operate at
the level of a warp:

int __all(predicate)

returns non-zero (true) if all predicates in warp are true

int __any(predicate)

returns non-zero (true) if any predicate is true

unsigned int __ballot(predicate)

sets nth bit based on nth predicate

Again, I’ve never used these

Lecture 3 – p. 15

Atomic operations

Occasionally, an application needs threads to update a
counter in shared memory.

__shared__ int count;

...

if (...) count++;

In this case, there is a problem if two (or more) threads try
to do it at the same time

Lecture 3 – p. 16

Atomic operations

Using standard instructions, multiple threads in the same
warp will only update it once.

❄

time

thread 0 thread 1 thread 2 thread 3

read read read read

add add add add

write write write write

Lecture 3 – p. 17

Atomic operations

With atomic instructions, the read/add/write becomes a
single operation, and they happen one after the other

❄

time

thread 0 thread 1 thread 2 thread 3

read/add/write

read/add/write

read/add/write

read/add/write

Lecture 3 – p. 18

Atomic operations

Several different atomic operations are supported,
almost all only for integers:

addition (integers, 32-bit floats – also 64-bit in Pascal)

minimum / maximum

increment / decrement

exchange / compare-and-swap

These are

not very fast for data in Kepler shared memory, better
in Maxwell and Pascal

only slightly slower for data in device global memory
(operations performed in L2 cache)

Lecture 3 – p. 19

Atomic operations

Compare-and-swap:
int atomicCAS(int* address,int compare,int val);

if compare equals old value stored at address then
val is stored instead

in either case, routine returns the value of old

seems a bizarre routine at first sight, but can be very
useful for atomic locks

also can be used to implement 64-bit floating point
atomic addition (now available in hardware in Pascal)

Lecture 3 – p. 20

Global atomic lock

// global variable: 0 unlocked, 1 locked
__device__ int lock=0;

__global__ void kernel(...) {
...

if (threadIdx.x==0) {
// set lock
do {} while(atomicCAS(&lock,0,1));

...

// free lock
lock = 0;

}
} Lecture 3 – p. 21

Global atomic lock

Problem: when a thread writes data to device memory the
order of completion is not guaranteed, so global writes may
not have completed by the time the lock is unlocked

__global__ void kernel(...) {
...

if (threadIdx.x==0) {
do {} while(atomicCAS(&lock,0,1));
...
__threadfence(); // wait for writes to finish

// free lock
lock = 0;

}
} Lecture 3 – p. 22

__threadfence

__threadfence_block();

wait until all global and shared memory writes are
visible to

all threads in block

__threadfence();

wait until all global and shared memory writes are
visible to

all threads in block
all threads, for global data

Lecture 3 – p. 23

Atomic addition for double

// atomic addition from Jon Cohen at NVIDIA

static double atomicAdd(double *addr, double val)
{
double old=*addr, assumed;

do {
assumed = old;
old = __longlong_as_double(

atomicCAS((unsigned long long int*)addr,
__double_as_longlong(assumed),
__double_as_longlong(val+assumed)));

} while(assumed!=old);

return old;
} Lecture 3 – p. 24

Summary

lots of esoteric capabilities – don’t worry about most of
them

essential to understand warp divergence – can have a
very big impact on performance

__syncthreads() is vital – will see another use of it
in next lecture

the rest can be ignored until you have a critical need
– then read the documentation carefully and look for
examples in the SDK

Lecture 3 – p. 25

Key reading

CUDA Programming Guide, version 7.5:

Section 5.4.2: control flow and predicates

Section 5.4.3: synchronization

Appendix B.5: __threadfence() and variants

Appendix B.6: __syncthreads() and variants

Appendix B.12: atomic functions

Appendix B.13: warp voting

Lecture 3 – p. 26

2D Laplace solver

Jacobi iteration to solve discrete Laplace equation on a
uniform grid:

for (int j=0; j<J; j++) {
for (int i=0; i<I; i++) {

id = i + j*I; // 1D memory location

if (i==0 || i==I-1 || j==0 || j==J-1)
u2[id] = u1[id];

else
u2[id] = 0.25*(u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I]);
}

}

Lecture 3 – p. 27

2D Laplace solver

How do we tackle this with CUDA ?

each thread responsible for one grid point

each block of threads responsible for a block of the grid

conceptually very similar to data partitioning in MPI
distributed-memory implementations, but much simpler

(also similar to blocking techniques to squeeze the best
cache performance out of CPUs)

great example of usefulness of 2D blocks and 2D “grid”s

Lecture 3 – p. 28

2D Laplace solver

❅❅
��

Lecture 3 – p. 29

2D Laplace solver

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

Lecture 3 – p. 30

2D Laplace solver

ss
ss
ss
ss

ss
ss
ss
ss

s s s s s s s s

s s s s s s s s

Each block of threads processes one of these grid blocks,
reading in old values and computing new values

Lecture 3 – p. 31

2D Laplace solver

__global__ void lap(int I, int J,
const float* __restrict__ u1,

float* __restrict__ u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {
u2[id] = u1[id]; // Dirichlet b.c.’s

}
else {
u2[id] = 0.25 * (u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I]);
}

} Lecture 3 – p. 32

2D Laplace solver

Assumptions:

I is a multiple of blockDim.x

J is a multiple of blockDim.y

hence grid breaks up perfectly into blocks

Can remove these assumptions by testing whether
i, j are within grid

Lecture 3 – p. 33

2D Laplace solver

threads

✲ I

✻

J

real grid

Lecture 3 – p. 34

2D Laplace solver

__global__ void lap(int I, int J,
const float* __restrict__ u1,

float* __restrict__ u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {
u2[id] = u1[id]; // Dirichlet b.c.’s

}
else if (i<I && j<J) {
u2[id] = 0.25f * (u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I]);
}

} Lecture 3 – p. 35

2D Laplace solver
How does cache function in this application?

qqq
qqq
qq

qqq
qqq
qq

q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

if block size is a multiple of 32 in x-direction, then
interior corresponds to set of complete cache lines

“halo” points above and below are full cache lines too

“halo” points on side are the problem – each one
requires the loading of an entire cache line

optimal block shape has aspect ratio of roughly 32:1
(or 8:1 if cache line is 32 bytes) Lecture 3 – p. 36

3D Laplace solver

practical 3

each thread does an entire line in z-direction

x, y dimensions cut up into blocks in the same way
as 2D application

laplace3d.cu and laplace3d kernel.cu
follow same approach described above

this used to give the fastest implementation, but a new
version uses 3D thread blocks, with each thread
responsible for just 1 grid point

the new version has lots more integer operations, but
is still faster (due to many more active threads?)

Lecture 3 – p. 37

