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Abstract

Modern day analytics deals with big datasets from diverse fields. For many application

the data is in the form of an array which consists of large number of smaller arrays. Existing

techniques focus on sorting a single large array and cannot be used for sorting large number

of smaller arrays in an efficient manner. Currently no such algorithm is available which

can sort such large number of arrays utilizing the massively parallel architecture of GPU

devices. In this paper we present a highly scalable parallel algorithm, called GPU-ArraySort,

for sorting large number of arrays using a GPU. Our algorithm performs in-place operations

and makes minimum use of any temporary run-time memory. Our results indicate that we

can sort up to 2 million arrays having 1000 elements each, within few seconds. We compare

our results with the unorthodox tagged array sorting technique based on NVIDIA′s Thrust

library. GPU-ArraySort out-performs the tagged array sorting technique by sorting three

times more data in a much smaller time. The developed tool and strategy will be made

available at https://github.com/pcdslab/

GPU; Big Data; Sorting; Mass Spectrometry; Proteomics

1 Introduction

Sorting is one the most researched topics in computational science since it is integral part of

many algorithmic solutions [1]. Sorted data also brings an order to otherwise perplexing nature

of data which makes it useful for many big data applications [2]. Sorting has been widely used

in big data analytics problems in Geography [3], Geology [4], Combinatorics [1], Computational

Biology [5] [6], Astrophysics [7] and Particle Physics [8]. Recently with the advent of massively

parallel devices such as Graphic Processing Units (GPU) many sorting algorithms have come out

utilizing their versatile architecture and CUDA programming model. With each new algorithm

a better design for exploiting the two level parallelism is introduced. This has led to some

very fast and effective sorting techniques for very large number of elements. However, most

of these sorting techniques have been limited to 1-dimensional array of very large size. In
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practice, however, many domain sciences face the problem of sorting large number of short

arrays such as in Proteomics [5], Genomics [9], Geology [4], Environmental Engineering [10]

and Characterization of other Biomolecules [11]. For example mass spectrometry datasets may

consist of very large number of spectra where each spectra is a set of intensities corresponding

to mass-to-charge ratios. Majority of the algorithms dealing with such dataset require these

spectra to be sorted either with respect to intensities or mass to charge ratios [12][13][5]. In

literature no such technique can be found which can sort such huge number of moderately sized

arrays using modern high performance computing devices such as GPUs. Surveying around

one can encounter many unconventional/unpublished techniques of sorting such huge number

of arrays. One such technique is by using multiple runs of a stable key based sorting algorithm

from CUDAs Thrust library [14]. We have discussed this technique in section VII.

In this paper we present a parallel algorithm for sorting large number of arrays on a GPU.

Our technique exploits the inherent coarse-grained [15] nature of the data and further divides

each array into finely grained chunks of data to be sorted independently. This brings in a near

uniform distribution of data chunks for better load balancing across threads thus making our

algorithm highly scalable. GPU-ArraySort apart from being manifolds faster uses about three

times less memory because of its in-place nature.

2 Related Work

In literature there are a large number of GPU sorting algorithms available which can efficiently

sort one large array [6]. However, none of them can be directly applied for sorting large

number of arrays. Here we cover major GPU based sorting algorithms which have appeared

in recent times. Different algorithms use different approaches for breaking down large number

of elements in smaller bins such that they can be sorted by individual threads. The process of

breaking down can be tedious as best results can be achieved when load across the threads is

uniform. The two common ways of breaking down data into smaller bins include the creation

of independent m-bins and m-way merge approach[6]. In the latter case sorted buckets have

to be merged together once individual processing elements have sorted them while in case of

independent bins there is no need of any merging since it is a simple case of concatenating all

the bins.

In [16] a Hybrid sorting approach for GPUs has been introduced, the authors subdivide

a large array of elements into smaller lists using bucket sort approach. All buckets are then

sorted in parallel using merge sort technique. The authors claim to have best utilized the

highly parallel architecture of a GPU in an efficient way to outperform the GPU radix sort

[17]. In [18] authors have presented a highly optimized versions of GPU based radix and merge

sort algorithms. Authors claimed their radix sort algorithm to be the fastest known sorting

algorithm in literature at that time while their merge sort was fastest comparison based sorting

technique. They worked very closely in exploiting the fine grained parallelism of GPU along
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with maximum exploitation of shared memory. Their design utilizes an efficient GPU based

algorithm for calculating prefix-sum. A GPU based version of sample sort has been presented

in [6], this is the first GPU based study of sample sort technique. Their design consist of

more involved techniques such as use of predication to avoid branch divergence thus exploiting

the fine-grained parallelism. This along with introduction of a binary search tree structure

for traversal of splitter elements makes this algorithm a highly optimized GPU based sorting

technique.

Also in 2009 a GPU accelerated version of quick sort was introduced [19], the design of GPU

quick sort also follows the conventional breakdown of a large list into smaller lists such that

each small list takes a size equivalent to that of shared memory of GPU. This technique enables

the algorithm to take the most out of the fastest memory on GPU. The design also ensures that

consecutive threads are always accessing adjacent memory locations to ensure coalesced global

memory accesses. Authors claim that their design was the fastest sorting algorithm available

at that time.

Recently an improvement in Odd-Even Sorting algorithm [20] has been introduced, this

algorithm focuses on improving the efficiency of GPU based Odd-Even Sorting algorithm espe-

cially making it more feasible for CUDA programming model. Their results show considerable

improvement over existing versions of the algorithm.

All of the algorithms discussed above are dedicated sorting algorithms for a 1-dimensional

list containing large number of elements. In order to sort several thousand smaller arrays using

existing algorithms each array would have to be sorted one after the other thus making the

process sequential in nature. The 1-dimensional sorting algorithms which offer the option of

performing a stable sort on the elements with respect to an array of keys, can be employed to

sort multiple arrays, using a make-shift methodology. NVIDIAs Thrust library offers one such

option of sorting a given array with respect to an array of keys in a stable manner. Sorting

large number of arrays using this methodology has been discussed in section VII. We call this

technique; Sorting using Tagged Approach (STA). However this technique is very inefficient,

it performs a lot of redundant functions and uses about three times more memory than is

actually required. We present an algorithm dedicated for sorting large number of arrays in

parallel, utilizing full potential of a GPU. Our algorithm is capable of sorting much larger

number of arrays in a much shorter time as compared to the STA approach.

3 Graphic Processing Units and CUDA programing model

Graphic processing units were first introduced as dedicated graphics computing unit [21]. Ca-

pable of performing transforms and lighting with hardware accelerated support. This revolu-

tionized the gaming and graphics industry. Highly parallel architecture of a GPU provided a lot

more resources for compute intense problems, especially those related to graphics generation.

A Graphic Processing Unit consists of several Streaming Multiprocessors (SMs). Initially
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each SM contained about 8 CUDA cores but the recent devices with compute capability 3.0

and later house staggering 192 CUDA cores on each SM. NVIDIAs K-40 tesla device contains

a total of 2880 CUDA cores [22].

A GPU comes with a global memory which can be of the order of GBs and is commonly

used for storing the data to be processed, mostly this is the memory to which all the data is

transferred to and from the host before any processing begins. A much faster on-chip memory

also known as shared memory is available per multiprocessor. In early devices shared memory

varied from 16K to 32K and in devices having compute capability 2.0 and later it has been

pushed up to 48K bytes. Shared memory has a latency about 100x less than the global memory

which makes it a default choice for caching small amount of information needed frequently for

processing [22].

NVIDIAs CUDA platform provides very flexible programing model to write codes that can

be easily run on the GPUs. This model utilizes SIMT (Single Instruction Multiple Thread)

Architecture which comprises of two levels of parallelism. The programming model constitutes

of a grid of larger number of blocks while each block handles several hundred threads. For exe-

cution threads are scheduled onto a Multiprocessor in warps of 32 threads. Threads belonging

to the same block are executed concurrently on a same multiprocessor. Threads in a warp are

executed in a lock-step i.e. same instruction is executed across all the threads in a warp. In

order to get the maximum out of this programming model, one needs to take care of several

features [6] [19] of this architecture as discussed below:

3.1 Optimized Memory Accesses

Once a warp has been scheduled on a multiprocessor, the device coalesces the global memory

accesses for all the threads in a warp. So it becomes essential that the data required by all the

threads in a warp resides in a same locality otherwise device has to perform several transactions

which makes the process inefficient owing to large bandwidth of global memory. It needs to be

considered here that threads with consecutive thread id are scheduled together.

3.2 Minimizing Branch Divergence

As discussed above, all the threads in a warp execute in lock-step thus any divergence of paths

among threads of a warp results in a performance penalty. Our algorithm has been designed in

a way such that it avoids all the branch divergences.

3.3 Exploiting the shared memory

The shared memory is about 100x faster than the global memory. GPU-ArraySort considers

this advantage and brings the chunks of data in shared memory for processing. Also all the

frequently used data structures are also kept in the block shared memory.
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4 Problem Statement and Proposed Algorithm

Our approach has been designed keeping in view the Mass Spectrometric data. At most in a

proteomics dataset each spectrum can have up to 4000 peaks including the back ground noise

and peaks due to impurities [23]. This number of peaks can easily fit in the shared memory of

any device of compute capability 2.0 or later.

Most of the existing sorting algorithms recursively divide data into smaller chunks such that

it fits into the size of shared memory and then apply some common sorting algorithm. In the

case of an array of arrays each array is inherently small enough to fit in shared memory. We

further divide each array into still smaller chunks making each chunk of data independent of

others. This process is done using sample sort mechanism [6]. Each chunk is then independently

sorted using insertion sort technique running on individual thread. Later all the sorted chunks

are concatenated to obtain a sorted array. Now we formulate the problem statement:

Definition 1: let there be a set I of N unsorted arrays I = {A1, A2, A3, . . . , AN} where each

array is of size n and Ai = {a1, a2, a3, . . . , an}. I ′ is a set of sorted arrays I ′ = {A′
1, A

′
2, A

′
3, . . . , A

′
N}

such that each A′
i is of the form; A′i = {a1 ≤ a2 ≤ a3 ≤ · · · ≤ an}.

4.1 Algorithm

In literature sample sort has been used as a default choice of sorting algorithm when using a

parallel computing system [24]. Sample sort helps dividing large data set into smaller parts

which removes the data dependency and thus a lot of room for parallelism is created. Advantage

of sample sort over m-way merge sort is that there is no need of putting in extra effort for a

merge stage. The data we are dealing with already contains a lot of room for parallelism. We

utilize this property by distributing arrays across multiple thread blocks such that each block

is assigned one array. Then we further subdivide each array into smaller data independent

buckets, to utilize the thread level parallelism.

The GPU-ArraySort has been designed to minimize the on device memory usage so that

large number of arrays can be dealt in one go. In order to keep the usage of memory to a

minimum we apply in-place processing at each step.

The algorithm has been divided into three different phases, each phase runs in a separate

kernel launch. In first phase each block operates on the assigned array and gathers the required

number of splitters using regular sampling approach. In second phase each array is subdivided

into independent buckets based upon splitters from first phase. The buckets and bucket sizes

are sent forward to the third and final phase where in-place insertion sort takes place on each

bucket thus giving out sorted arrays. Fig. 1 shows an overview of the algorithm. Following

section contains detailed working of each phase.
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Figure 1: An overview of the GPU-ArraySort algorithm. The first phase accepts N arrays and
distributes them across blocks. In the second and third phase multiple threads operate on each
array. The buckets boundaries can be observed in red, in second and third phase.
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5 Implementation

5.1 Phase 1 (Splitter Selection)

The arrays are usually small enough to fit within the shared memory of the GPU, so first

each block moves its assigned array into its shared memory. The number of splitters required

depends upon the number of buckets each array is divided into. As this step decides the sizes of

smaller buckets which will be sorted by individual threads in the last phase, hence it becomes

very critical that we optimize the size of these buckets, for maximum efficiency. Our empirical

study showed that the best performance is obtained when there are at least 20 elements per

bucket. This choice of size of bucket is totally independent of size of individual array as well as

total number of arrays.

Definition 2: If n is the size of an array, let Bi be the set of buckets for array i, Bi =

{b1, b2, b3, . . . bp} where p = b n
20c.

For p buckets we need to have p − 1 splitters, these splitters are obtained from a sample

set obtained from the unsorted array Ai using regular sampling method. Our studies showed

that for uniformly distributed data 10% regular sampling gave most evenly balanced buckets

and hence the best running time. The samples obtained are first sorted using in-place insertion

sort. Then the p− 1 splitters are chosen by traversing the sorted sample-array while gathering

splitters at regular intervals. As each block returns its set of splitters, they are written to

global memory at indices calculated using each blocks id such that consecutive blocks write

in consecutive memory locations. Per block, single thread is used for performing all these

operations, we tried using more complex strategies but owing to the small size of sampled array,

over heads were too large. Also as sampled array is very small in size and can be conveniently

placed inside the shared memory.

The array of splitters thus formed can be defined as:

Definition 3: let S be the array of size N , each element si ∈ S is an array of size q which

consists of splitters for array Ai. S = {s1, s2, s3, . . . , sN} where si = {sp1, sp2, sp3 . . . , spq} and

q = p− 1. Algorithm 1 describes a per thread pseudo code for first phase.
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Algorithm 1 Per thread pseudo code for splitter selection

Data: An array Ai and required number of splitters q

Result: An array of splitters si for array Ai

samples = obtainSamples(Ai)

sortedSamples = insertionSort(samples)

index = 0

sampleIndex = 0

stride = calculateStride(sortedSamples)

while sizeOf (si) not equal to q do

si[index] = Ai[sampleIndex]

sampleIndex+ = stride

index + +
end

5.2 Phase 2 (Bucketing)

This phase constructs the buckets based upon the splitter values from previous phase and builds

a global array which keeps record of sizes of all the buckets of all the arrays.

Definition 4:Let Z be the array of size N , each element zi ∈ Z is an array of size q which

consists of bucket sizes for array Ai. Z = {z1, z2, z3, . . . , zN} where zi = {zb1, zb2, zb3 . . . , zbp},
here each zbj ∈ zi represents size of bucket j in array Ai.

Now again each array gets assigned to a unique block having threads equal to the number

of buckets p. The sub-array spi is moved to shared memory because of its very small size yet

high frequency of use. The pointers to spi are determined on the fly using each block′s and

thread′s id.

Each thread in the block is assigned a pair of splitters from sub-array spi depending upon

its thread id, such that each thread gets a unique pair of splitters.

Definition 5:Let ri denote a splitter pair for a thread i then ri = {spi[tid], spi[tid+ 1]} here

tid denotes each thread′s id.

The advantage of assigning a splitter pair to each thread is that it helps avoiding branch

divergence by completely removing any other paths from the code, this can be observed in

Algorithm 2. Assigning a pair of splitters can result in overlapping buckets which can upset the

normal sample sort mechanism. To avoid overlapping we introduce two additional splitters in

sub-array spi, by adding a splitter smaller than the smallest value in array Ai at the starting

index while a value larger than the largest value of Ai at the last index.

Now each thread traverses the array Ai in parallel and buckets the element lying within

the range of its splitter pair while keeping track of a counter zbj ∈ zi, where j is the bucket

under consideration and i is the array being treated. At the end of bucketing process, each
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such counter contains the size of corresponding bucket. We also explored the option of using

multiple threads on single bucket but that slows down the process considerably, most possibly

because of the additional overhead.

Once the buckets have been created, each bucket is written back to the actual memory

location of array Ai. In conventional approach this write back process had to be sequential

but using the calculated bucket sizes we were able to parallelize this write back process as well.

The tedious process of writing back to the same memory location comes with an advantage of

saving about 50% of device′s global memory.

Algorithm 2 describes a per thread pseudo code for second phase.

Algorithm 2 Per thread pseudo code for bucketing phase

Data: An array Ai and a pair of splitters ri

Result: A bucket of elements within splitter pair range

splitterPair = obtainSplitters(ri)

initializeBucket(bucket)

index = 0

bucketIndex = 0

while not the end of array Ai do

if splitterPair[1] < Ai[index] < splitterPair[2] then

bucket[bucketIndex] = Ai[index]

bucketIndex + +
end

index + +
end

5.3 Phase 3 (Sorting)

In the final phase the main focus is sorting of buckets. Each bucket can be sorted using

any conventional sorting algorithm but insertion sort has proven to the fastest known sorting

algorithms for very small number of elements [25]. As each bucket in our case is of size at

least 20 so we chose insertion sort for this purpose, besides an added advantage of insertion

sort is in-place sorting. Hence this phase does not use any additional memory other than that

occupied by the bucketed arrays.

The kernel launches with a copy of pointer to the buckets array and a pointer to the array

Z containing sizes of all the buckets. Each bucketed array Ai is assigned to a unique block

having threads equal to the number of buckets p. Within each block each thread is assigned a

unique bucket. The pointers(starting and ending) to each bucket are calculated based on the

thread ids and the size of each bucket.

The in-place insertion sort algorithm takes the pointers to each bucket as input and output
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is a sorted bucket. As all the independent buckets belonging to a same array are placed

in contiguous memory locations, hence the action of in-place insertion sort leaves behind a

completely sorted array. Using the sample sort mechanism we were able to save the additional

time which might have been required for a merge phase.

Algorithm 3 describes a per thread pseudo code for third phase.

Algorithm 3 Per thread pseudo code for sorting phase.

Data: An array Ai and pointers to a bucket

Result: A sorted bucket of elements

bucket = retrieveBucket(Ai)

sortedBucket = insertionSort(bucket)

6 Time Complexity

Each array gets assigned to an individual block and in theory each block is processed in parallel

[21], with this assumption, time complexity analysis becomes independent of number of Arrays.

Following is a phase by phase analysis of the algorithm:

• For the first phase time complexity is simply a sum of time taken to sort the samples and

time for picking out splitters i.e. O(q + (r ∗ n ∗ log(r ∗ n))). Here r is the sampling rate.

Over here O(q) is seemingly a dominant factor as the value of q depends upon the value

of n hence with increasing n O(q) will become dominant.

• In the second phase dominating factor is the time taken for bucketing of elements, which

takes one traversal of array by each thread giving us time complexity of O(np ). This factor

acts as the most dominant factor among the three phases.

• The third phase is sorting of p buckets using insertion sort, so total time complexity can

be written as O(np ∗ log(np )).

After simplifying and omitting the non-dominating factors the resultant equation can be written

as:

O(((n + q) +
p ∗ r + 1

p
∗ n ∗ log(n)) ∗ N

N
) (1)

O((n + q) +
p ∗ r + 1

p
∗ n ∗ log(n)) (2)

In Eq. 1 the whole value has been multiplied and divided by N
N to show how assignment of

each array to a different block nullifies the largest factor. N can be huge in size but here it is

cancelled out, leaving n as the largest value.

10



0 500 1,000 1,500 2,000
0

200

400

600

800

1,000

size of array (n)

T
im

e
(m

il
li

se
co

n
d

s)
Time Complexity

Actual Time
Theoretical

Figure 2: The figure shows plots between theoretically calculated values for each value of n
and the practically obtained value. The plot for actual values follows the same trend as that of
theoretically calculated values.

From Eq. 2 we can conclude that two dominating factors will be O(n) from phase two and

the sorting time O(np ∗ log(n)). Eq. 2 can be further simplified as:

O(
n

p
+

n

p
∗ log(n)) (3)

The time complexity of algorithm effectively depends upon the number of elements in each

array. In order to verify the theoretical time complexity of the GPU-ArraySort we plotted the

processing time with varying value of n i.e. size of each array and compared this plot with the

theoretically calculated values. Fig. 2 a plot of actual values versus the theoretically calculated

values. Here while varying the value of n we keep N constant at 50000.

7 Performance Evaluation

We evaluated the performance of the proposed algorithm in two different phases; first we did a

runtime comparison with a known technique of sorting large number of arrays. The we perform

an analysis to see the maximum number of arrays each technique can sort on the given GPU.

7.1 Existing Array sorting methodology

As discussed earlier in literature there is no dedicated GPU based sorting algorithm which can

be used to sort large number of arrays. However NVIDIA′s Thrust library offers stable sort

with key approach which can be used for sorting large number of arrays after tagging them with

keys. This unorthodox technique of sorting arrays using Thrust library is explained below:
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Figure 3: A step by step process explaining the STA technique, here the arrays to be sorted
are referred as test arrays: I) A tag array is created for each array to be sorted. II) Arrays are
merged into one big array. III) Arrays are sorted using the array of tags as keys. IV) Again
arrays are sorted using the test arrays as key. V) Arrays are restored based upon their tags.

7.1.1 Sorting using Tagged Approach (STA)

Let I = {A1, A2, A3, . . . , Ai} be a list of arrays to be sorted where i = N , then in order to use

the STA approach we create another list of arrays and call it the array of tags.

Definition 6: Let T = {T1, T2, T3, . . . , Ti} be list of arrays of tags such that i = N and

|Ti| = |Ai|. Here each element t ∈ Ti represents a tag for array Ti and carries the same value

i.e. t = i.

Once the tags have been created all the arrays of I are merged into one single array and all

the tags are merged into another array. Then the sorting proceeds in two steps :

• Perform a stable sort on the array, containing the arrays to be sorted, using the array of

tags, as keys.

• Perform a stable sort on the array of tags, using the array of arrays to be sorted, as keys.

The process has been explained in the Fig. 3.

It can be observed that sorting arrays like this is not only tedious but can be very time

consuming. The whole process requires a lot of redundant work. Process of adding tags and
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Figure 4: The figure shows time versus number of arrays plots for GPU-ArraySort and the
tagged sorting approach using key based stable sorting algorithm from Thrust library.

then sorting them forms the brunt of time required for sorting multiple arrays using STA. In

order to sort the tags, the tag array has to be stored in GPUs global memory thus utilizing

twice the memory than actual data. Moreover Thrust librarys function which performs the

required stable sort with respect to keys utilizes radix sort as its core sorting algorithm. Radix

sort uses almost O(N) more space than the data under process [26]. Thus we can conclude that

theoretically STA uses about 3 times more memory than may actually be required to sort all

the arrays.

7.2 Runtime Analysis

First we perform an analysis to test the running time of GPU-ArraySort and the STA technique

discussed above. To perform these experiments we created four different datasets, each dataset

consisted of about 200000 arrays while the sizes of arrays were 1000, 2000, 3000 and 4000

respectively for four datasets. Each array was randomly generated using a uniform distribution

between 0 and 231 − 1. All the experiments discussed from here onwards were performed in

identical environment. We made use of a server with 24 CPU cores each operating at 1200 MHz.

The Graphic Processing Unit used was NVIDIAs Tesla K-40c, it consists of 15 Multiprocessors

while each Multiprocessor consisted of 192 CUDA cores making a total number of CUDA cores

equal to 2880. Total global memory available on the device was 11520 MBytes and the shared

memory of 48 KBytes was available per block. Furthermore all the experiments were performed

using float as the data type used.

Figs. 4 through 7 show runtime comparison between STA and GPU-ArraySort. Its clear

from the figures that GPU-ArraySort out performs the STA technique for all the array sizes.
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Figure 5: The figure shows time versus number of arrays plots for GPU-ArraySort and the
tagged sorting approach using Thrust stable sort.
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Figure 6: The figure shows time versus number of arrays plots for GPU-ArraySort and the
tagged sorting approach using Thrust stable sort.
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Figure 7: The figure shows time versus number of arrays plots for GPU-ArraySort and the
tagged sorting approach using Thrust stable sort.

In the next section we demonstrate memory efficiency of GPU-ArraySort in comparison with

the STA Technique.

7.3 Data handling efficiency

In order to test the data handling capacity of each technique we performed the same experiments

as those of previous section but without any bound on the number of arrays.

Table 1 shows the total number of Arrays processed by each technique corresponding to size

of array in the dataset. It can be observed that the GPU-ArraySort algorithm can sort about

three times more arrays than STA technique in a much more efficient manner.

8 Conclusion

The modern scientific equipmenti is capable of generating GBs of data per second. Most of the

data requires to be in a certain order for it to make any sense. Most of the Big Data analytics

algorithm expect the input data to be in a sorted order or perform this as their initial step.

Dealing with huge datasets involving very large number of lists can be very cumbersome even

for modern machines. This calls for high performance solutions using modern GPU devices as

coprocessors along with the host CPU.

In this paper we have presented a high performance, in-place, GPU based array sorting

algorithm as a solution for a popular problem. This algorithm can be included as an integral

part of many existing software to act as a vital GPU boost. Our algorithm is capable of sorting

huge number of arrays without any redundancy and minimized storage of temporary data. Our
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Array Size GPU-ArraySort STA

1000 2000000 700000

2000 1050000 350000

3000 700000 200000

4000 500000 150000

Table 1: The table shows number of arrays sorted by STA technique and GPU-ArraySort. The
center column shows that GPU-ArraySort can sort upto 2 million arrays of size 1000 while in
comparison STA technique was able to sort only 0.7 million arrays. This comparison is for
Tesla K-40c GPU.

design out performs the existing solutions by quite a margin both in speed and data handling

efficiency. Our experiments have shown considerable speed up over the STA technique which

makes use of NVIDIAs Thrust library. Also our algorithm has demonstrated efficient use of

GPU global memory by sorting about three times more data.

9 Future Work

This algorithm is a part of an on-going research which involves development of high performance

GPU based algorithms for proteomics. We intend to extend this algorithm into an out-of-core

GPU based array sort algorithm which will be able to sort huge datasets involving moderate

sized arrays without any concern of GPU global memory. The global memory of GPU highly

limits the performance of all the GPU based algorithms, because once the memory limit is

reached, the host has to wait for GPU to finish processing and then transfer more data to be

processed. This results in very large communication delays. A very effective solution for this

problem would involve a carefully designed algorithm which hides data transfer latencies in

runtime and gives a high throughput out-of-core array sort algorithm. Our design will involve

the use of multiple sampling techniques in accordance with the distribution of the dataset under

consideration.

Many proteomics algorithms make this assumption that incoming data will be in a sorted

form however some pre-processing algorithms tend to perform functions which renders this data

out of sequence thus making sorting a vital part of such algorithms. Also in literature there

are algorithms which sort the input data in a certain sequence to make it better suitable for

their processing, providing a GPU accelerated solution for this would improve the performance

of these algorithms by considerable amount. Furthermore the out-of-core array sort algorithm

will be integrated in several proteomics related softwares to boost their performance and make
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them more scalable for ever increasing size of biological data.
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