arXiv:2408.01584v1 [cs.Al] 2 Aug 2024

GPUDrive: Data-driven, multi-agent driving
simulation at 1 million FPS

Saman Kazemkhani*§ Aarav Pandya*f Daphne Cornelisse*
New York University New York University New York University
Brennan Shacklett Eugene Vinitsky
Stanford University New York University
Abstract

Multi-agent learning algorithms have been successful at generating superhuman
planning in a wide variety of games but have had little impact on the design of
deployed multi-agent planners. A key bottleneck in applying these techniques
to multi-agent planning is that they require billions of steps of experience. To
enable the study of multi-agent planning at this scale, we present GPUDrive, a
GPU-accelerated, multi-agent simulator built on top of the Madrona Game Engine
that can generate over a million steps of experience per second. Observation, re-
ward, and dynamics functions are written directly in C++, allowing users to define
complex, heterogeneous agent behaviors that are lowered to high-performance
CUDA. We show that using GPUDrive we are able to effectively train reinforce-
ment learning agents over many scenes in the Waymo Motion dataset, yielding
highly effective goal-reaching agents in minutes for individual scenes and generally
capable agents in a few hours. We ship these trained agents as part of the code base
athttps://github.com/Emerge-Lab/gpudrive.

1 Introduction

Multi-agent learning has been impactful across a wide range of fully cooperative and zero-sum
games [1, 2, 3, 4, 5, 6]. However, its impact on multi-agent planning for settings that mix humans
and robots has been muted. In contrast to the ubiquity of multi-agent learning-based agents in
zero-sum games, multi-agent planners for most practical robotic systems are not derived from the
output of game-theoretically sound learning algorithms. While it is hard to characterize the space of
deployed planners since many of them are proprietary, the majority likely use a mixture of collected
data for the prediction of human motion and hand-tuned costs. These are then fed into a robust
trajectory optimizer or may be based on imitation learning [7, 8]. This approach has been highly
effective in scaling up real-world autonomy but can struggle with reasoning about long-term behavior,
contingency planning, and interaction with humans in rare, complex scenarios.

The divergence in preferred technique between these two domains is partially the outcome of two
distinct, challenging components of real-world multi-agent planning. First, unlike zero-sum games, it
is necessary to play a human-compatible strategy that is difficult to identify without data. Second,
generating the billions of samples needed for multi-agent learning algorithms is difficult with existing
simulators. The former challenge is difficult for multi-agent learning since there is not a clear
equilibrium concept that algorithms should be pursuing. The latter problem is a challenge for
simulators since it is difficult to simulate embodied multi-agent environments at appropriately high
rates.

“These authors contributed equally to this work
"Corresponding authors: skazemkhani @gmail.com, pandya.aarav.97 @ gmail.com, cornelisse.daphne @nyu.edu.

Preprint. Under review.

https://github.com/Emerge-Lab/gpudrive

To address these challenges and unlock multi-agent learning as a tool for generating capable self-
driving planners, we introduce GPUDrive. GPUDrive is a simulator intended to mix real-world
driving data with simulation speeds that enable the application of sample-inefficient but effective RL
algorithms to planner design. GPUDrive runs at over a million steps per second on both consumer-
grade and datacenter-class GPUs and has a sufficiently light memory footprint to support hundreds
to thousands of simultaneous worlds (environments) with hundreds of agents per world. GPUDrive
supports the simulation of a variety of sensor modalities, from LIDAR to a human-like view cone,
enabling GPUDrive to be used for studying the effects of different sensor types on resultant agent
characteristics. Finally, GPUDrive takes in driving logs and maps from existing self-driving datasets,
enabling the mixing of tools from imitation learning with reinforcement learning algorithms. This
enables the study of both the development of autonomous vehicles and the learning of models of
human driving, cycling, and walking behavior.

Our contributions are:

* We provide a multi-agent, GPU-accelerated, and data-driven simulator that runs at over a
million steps per second. Our simulator provides provides a testbed for:

1. Investigating the capability of learning algorithms to solve challenges related to self-
play or autonomous coordination.

2. Researching the effects of limited or human-like perception on agent behavior.

* We provide gym environments in both torch and jax that can be easily configured with
standard open-source multi-agent RL. and imitation learning libraries. Additionally, we
have open-sourced a basic policy-gradient training loop that can be readily used to develop
agents.

* We release implementations of tuned RL algorithms that can process 20 million steps of
experience per hour on consumer-grade GPUs. These can be used to train 95% goal-reaching
agents across 100 different scenes in two hours on relatively accessible hardware.

* We open-source strong driving baseline agents that achieve 97% of their goals on a subset
of scenes they have been trained to solve. These are integrated into the simulator so that the
simulator comes with default, capable, reactive agents.

2 Related work

Frameworks for batched simulators. There are various open-source frameworks available that
support hardware-accelerated reinforcement learning environments. These environments are generally
written directly in an acceleration framework such as Numpy [9], Jax [10], or Pytorch [11]. In terms
of multi-agent accelerated environments, standard benchmarks include JaxMARL[12], Jumanji [13],
and VMAS [14] which primarily feature fully cooperative or fully competitive tasks. Each benchmark
requires the design of custom accelerated structures per environment. In contrast, GPUDrive focuses
on a mixed motive setting and is built atop Madrona, an extensible ECS-based framework in C++,
enabling GPU acceleration and parallelization across environments [15]. Madrona comes with
vectorization of key components of embodied simulation such as collision checking and sensors such
as LIDAR. GPUDrive can support hundreds of controllable agents in more than 100,000 distinct
scenarios, offering a distinct generalization challenge and scale relative to existing benchmarks.
Moreover, GPUDrive includes a large dataset of human demonstrations, enabling imitation learning,
inverse RL, and combined IL-RL approaches.

Simulators for autonomous driving research and development. Table 1 shows an overview of
current simulators used in autonomous driving research. The purpose of GPUDrive is to facilitate
the systematic study of behavioral, coordination, and control aspects of autonomous driving and
multi-agent learning more broadly. As such, visual complexity is reduced, which differs from several
existing simulators, which (partially) focus on perception challenges in driving [16, 17]. Driving
simulators close to GPUDrive in terms of either features or speed include MetaDrive [18], nuPlan [19],
Nocturne [20], and Waymax [21] which all utilize real-world data. Unlike MetaDrive and nuPlan,
our simulator is GPU-accelerated. Like GPUDrive, Waymax is a JAX-based GPU-accelerated
simulator that achieves high throughput through JIT compilation and efficient use of accelerators.
With respect to Waymax, our simulator supports a wider range of possible sensor modalities (Section

3.2) including LIDAR and human-like views, and can scale to nearly thirty times more worlds
(Section 4.1, and comes with performant reinforcement learning baselines.

Driving agents in simulators and algorithms. Existing simulators often feature baseline agents
for interaction, such as low-dimensional car following models that describe vehicle dynamics through
a limited set of variables or parameters [22, 23, 24]. Rule-based agents exhibit predetermined
behaviors, like car-following agents [21, 19, 25, 26] such as the IDM model, or parameterized
behavior agents like CARLA’s TrafficManager [16]. Some simulators offer recorded human driving
logs for interaction through replaying the human driving logs [8, 20, 21, 19]. Additionally, certain
simulators provide learning-based agents, leveraging reinforcement learning techniques [18]. In our
simulator, we provide both human driving logs and high-performing reinforcement learning agents.

Table 1: Comparison of GPUDrive to related driving simulators. Columns represent whether the
simulator supports multi-agent simulation, GPU acceleration, simulation of sensors such as LIDAR
or human views, is built atop data, comes with existing driver models, and whether the agents are
provided explicit goal points or waypoints along the way to the goal.

Simulator | Multi-agent | GPU-Accel | Sensor Sim | Expert Data | Sim-agents | Routes / Goals
TORCS [27] v v -
GTA V [28] v -
CARLA [16] v v Waypoints
Highway-env [29] -
Sim4CV [30] v Directions
SUMMIT [17] v’ (> 400) v v -
MACAD [31] v v v Goal point
SMARTS [32] v Waypoints
MADRaS [33] v (> 10) v Goal point
DriverGym [34] v v -
VISTA [35] v v v -
nuPlan [19] v v v Waypoints
Nocturne [20] v (> 128) v v Goal point
MetaDrive [18] v v v v -
InterSim [36] v v v Goal point
TorchDriveSim [37] v v v -
BITS [38] v v v Goal point
Waymax [21] v (> 128) v v v Waypoints
GPU Dirive (ours) v (> 128) v v v v Goal point

3 Simulation Design

3.1 Simulation Engine

Learning to safely navigate complex scenarios in a multi-agent setting requires generating many
billions of environment samples. To feed sample-hungry learning algorithms, GPUDrive is built on
top of Madrona [15], an Entity-Component-State system designed for high-throughput reinforcement
learning environments. In the Madrona framework, multiple independent worlds (each containing an
independent number of agents') are executed in parallel on accelerators via a shared engine.

However, driving simulation offers a particular set of challenges that require several technical choices.
First, road objects, such as road edges and lane lines are frequently represented as polylines (i.e.
connected sets of points). These polylines can consist of hundreds of points as they are sampled at
every 0.1 meters, leading to even small maps having upwards of tens of thousands of points. This can
blow up the memory requirements of each world as well as lead to significant redundancy in agent
observations. Second, the large numbers of agents and road objects can make collision checking a
throughput bottleneck. Finally, there is immense variability in the number of agents and road objects
in a particular scene. Each world allocates memory to data structures that track its state and accelerate
simulation code. Though independent, each world incurs a memory footprint proportional to the
maximum number of agents across all worlds. In this way, the performance of GPUDrive is sensitive
to the variation in agent counts across all the worlds in a batch.

In the Waymo Open Motion Dataset, an agent constitutes a vehicle, cyclist, or pedestrian.

These challenges are partially resolved via the following mechanisms. First, a primary acceleration
data structure leveraged by GPUDrive is a Bounding Volume Hierarchy (BVH). The BVH keeps
track of all physics entities and is used to easily exclude candidate pairs for collisions. This allows us
to then run a reduced-size collision check on potential collision candidate pairs. The use of a BVH
avoids invoking a collision check that would otherwise always be quadratic in the number of agents
in a world. Secondly, we observed that a lot of the lines in the geometry of the roads are straight. This
allows us to omit many intermediate points while only suffering a minor hit in the quality of the curves.
We apply a polyline decimation algorithm (Viswalingham-Whyatt Algorithm) [39] to approximate
straight lines and filter out low-importance points in the polylines. With this modification, we can
reduce the number of points by 10-15 times and significantly improve the step times while decreasing
memory usage.

3.2 Simulator features

We provide an overview of some of the pertinent simulator features as well as sharp edges and
limitations of the simulator as a guide to potential users.

Radius Obs LIDAR View Cone

Figure 1: Visualization of different observation spaces available in GPUDrive. The top scene is an
example scenario from the dataset, rendered from the ego-centric perspective of the red vehicle. Grey
cars are parked cars while white cars are other controlled agents. From left to right: the Radius Obs
returns all objects within 100 meters, the LIDAR observation with 3000 rays spread around 360
degrees, and a view cone consisting of 3000 rays emanating in a 120-degree view cone.

Dataset. GPUDrive represents its map as a series of polylines and does not require a connectivity
map of the lanes. As such, it can be made compatible with most driving datasets given the pre-
processing of the roads into the polyline format. Currently, GPUDrive supports the Waymo Open
Motion Dataset (WOMD) [40] which is available under a non-commercial license. The WOMD
consists of a set of over 100,000 multi-agent traffic scenarios, each of which contains the following
key elements: 1) Road map - the layout and structure of a road, such as a highway or parking garage.
2) Expert human driving demonstrations. 3) Road objects, such as stop signs and crosswalks. Figure
1 depicts an example of an intersection traffic scenario as rendered in GPUDrive.

Sensor modalities. GPUDrive supports a variety of observation spaces intended to enable hetero-
geneous types of agents. Fig. 1 depicts the three types of supported state spaces. The first mode
is somewhat unphysical in which all agents and road objects within a fixed radius are observable

to the agent. This mode is intended primarily for debugging and quick testing, enabling a user to
minimize the amount of partial observability in the environment. The other two modes are based on a
GPU-accelerated LIDAR scan, representing what an autonomous vehicle would be able to see and
what a human would likely be able to see respectively. Both modes are based on casting LIDAR rays;
to model human vision we simply restrict the LIDAR rays to emanate in a smaller, controllable-sized
cone that can be rotated through an action corresponding to head rotation. Note that since all objects
are represented as bounding boxes of fixed height, the LIDAR observations are over-conservative as
humans while LIDAR scans in reality are usually able to see over the hoods of cars.

Agent dynamics. Agents are stepped using a standard Ackermann bicycle model with actions
corresponding to steering and acceleration. This model enables the dynamics of objects to be affected
by their length, creating different dynamics for small cars vs. trucks. However, this model is not
fully invertible which can make it challenging to use this model for imitation learning. To enable
full invertibility for imitation learning, we also support the simplified bicycle model, taken from
Waymax [21], which is a double-integrator in the position and velocity and updates its yaw as:

1
0,5_;,.1 =0 + St(’l}tAt + iatAtz)

where 0 is the yaw, s is the steering command, v is the velocity, and a is the acceleration at time ¢
respectively. At is the timestep. This model is always invertible given an unbounded set of steering
and acceleration actions but is independent of the vehicle length. See the appendix for full details on
the models.

Note that this model does not factor in the length of the car, causing both long and short objects to
have identical dynamics. However, computing the expert actions and then using them to mimic the
expert trajectory under this model leads to lower tracking error than the default bicycle model.

Rewards. All agents are given a target goal to reach; this goal is selected by taking the last
point observed in the vehicle’s logged trajectory. A goal is reached when agents are within some
configurable distance ¢ of the goal. By default, agents in GPUDrive receive a reward of 1 for
achieving their goal and otherwise receive a reward of 0. There are additional configurable collision
penalties or other rewards based on agent-vehicle distances or agent-road distances though these are
not used in this work.

Available driving simulation agents. We use reinforcement learning to train a set of agents that
reach their goals 95 % of the time on a subset of 500 training scenes. While this number is far below
the capability of human drivers, these agents are reactive in a distinct fashion from parametrized
driver models in other simulators. In particular, many logged-data simulators construct reactivity
by having the driver follow along its logged trajectory but decelerate if an agent passes in front of
it. In contrast, these agents can maneuver and negotiate without remaining constrained to a logged
trajectory. These trained agents are extremely aggressive about reaching their goals and can be used
as an out-of-distribution test for proposed driving agents. The training procedure and more details
can be found in Section 4.2.

Simulator sharp-edges. We note the following limitations of the benchmark:

e Absence of a map. The current version of the simulator does not have a well-defined notion
of lanes or a higher-level road map which makes it challenging for algorithmic approaches
that require maps. The absence of this feature also makes it challenging to define rewards
such as "stay lane-centered."

» Convex objects only. Collision checking relies on the objects being represented as convex
objects.

* Unsolvable goals. Due to mislabelling in the Waymo dataset, some agent goals (roughly
2%) are unreachable. For these agents, we default them to simply replaying their logged
trajectory and do not treat them as agents.

* Variance in controllable agents per scenario. In the majority of scenes, there are approxi-
mately 8-10 agents and an average of 50 parked cars. Additionally, the dataset is gathered
from the sensors of an autonomous vehicle, leading to some agents having their initial states

recorded only after the first time-step of the simulator. These agents are not included, as
incorporating them would necessitate "teleporting” them into the scene, potentially leading
to unavoidable collisions with agents deviating from their logged trajectories.

4 Simulator performance

The following Sections describe the simulator speed. Section 4.1 first shows the raw simulator speed
and peak goodput. Section 4.2 then investigates the impact on reinforcement learning workflows by
evaluating the time it takes to train reinforcement learning agents through Independent PPO (IPPO)
[41], a widely used multi-agent learning algorithm.

4.1 Simulation speed

Since scenarios contain a variable number of agents, we introduce a metric called Agent Steps Per
Second (ASPS) to measure the sample throughput of the simulator. We define the ASPS as the total
number of agents across all worlds in a batch that can be fully stepped in a second:

S x S Ak

ASPS =
AT

ey

where Ay is the number of agents in the k" world, S is the number of steps taken, and AT is
the number of seconds elapsed. Figure 2 examines the scaling of the simulator as the number of
simulated worlds, which represents the amount of parallelism, increases. To measure performance,
we sample random batches of scenarios of size equal to the number of worlds, so that every world is
a unique scenario with K agents. On the left-hand side of Figure 2, we compare the performance of
GPUDrive to the original Nocturne version [20] (CPU, no parallelism) and a CPU-accelerated version
of Nocturne via Pufferlib (16 CPU cores) [42]. Empirically, the maximum achievable AFPS of
Nocturne is 15,000 (blue dotted line) though we caution that additional speedups may be possible. In
contrast, GPUDrive can reach over a million ASPS on a consumer-grade GPU at 512 worlds (average
agents per scenario is 60). This performance also surpasses that of Waymax [21], a JAX-based
simulator, where we could not run more than 32 environments in parallel due to Out of Memory
(OOM) issues. Note that GPUDrive exhibits near-linear scaling of ASPS between 32 and 128 worlds
on a datacenter-grade NVIDIA GPU and between 32 and 256 worlds on a consumer-grade GPU.

Agent steps per second Controlled agent steps per second
1 o o:: - Nocturne | Original] o ”:
106 o ,.—"’/-/. ----- Nocturne | Parallel (16 CPU cores) g /,.—*"'. o
E e Simulator 5 o’ y
E Rl 10° o " o
» ./ —.— Waymax] Rt ‘/
o — S —— GPUDrive w0] —-°
/ .
E e ./ ,/ Device & 1 i ‘/.___.
E ‘_/’/ ./ —e— NVIDIA A100-SXM4-80GB 5 /
e —e- NVIDIA GeForce RTX 4080 w044 /
Je
....................................... 3 /_
_______________________ ¢
T T T T T
10t 10? 10° 10t 102
Number of parallel environments Number of parallel environments

Figure 2: Peak goodput of GPUDrive on a consumer-grade and datacenter-class GPU compared
to original, CPU-based, implementations. Lef#: The total number of controllable agent steps per
second (CASPS) as we increase the number of worlds (parallelism). Right: The total number of agent
steps per second (ASPS) is the number of objects that our system computes observations for at each
time step.

To ensure a fair comparison, Figure 2 (LHS) resembles the conditions used in [21], where all cars,
bicyclists, and pedestrians are considered as valid experience-generating agents. However, by default,
our system only considers something an agent if it is necessary to move to achieve the goal. This
means that cars persistently parked throughout the episode are not considered agents, which aligns
correctly with what should constitute an agent. This significantly alters the characteristics of the agent

distribution, leading to the right-hand side of Figure 2, where we plot the Controlled Agent Steps Per
Second (CASPS). Under this definition of agents, CASPS represents the expected performance of
our system when using the Waymo Open Motion Dataset (this mostly excludes parked vehicles.

4.2 End-to-end speed and performance

The purpose of GPUDrive is to facilitate research and development in multi-agent algorithms by
1) reducing the completion time of experiments, and 2) enabling academic research labs to achieve
scale on a limited computing budget. Ultimately, we are interested in the rate at which a machine
learning researcher or practitioner can iterate on ideas using GPUDrive. This Section highlights what
our simulator enables in this regard by studying the end-to-end process of learning policies in our
simulator.

Figure 3 contrasts the number of steps (experience) and the corresponding time required to solve 10
scenarios from the WOMD between Nocturne and GPUDrive. For benchmarking purposes, we say
a scene is solved when 95% of agents across all 10 worlds can navigate to their designated target
position without colliding or going off-road across all worlds. Ceteris paribus (Details in Appendix
D), GPUDrive achieves a 25-40x training speedup, solving 10 scenarios in less than 15 minutes
compared to approximately 10 hours in Nocturne.

Training steps on 10 scenarios Training time on 10 scenarios Total time to 95% performance
100 A

£ 80+ S <
< < o

o8 o8 £ 10 4
S5 60 €5 2
cg e 3
== = = _
=g Fg °
o 404 5] =
= —— nocturne = —— nocturne =

20 —— gpudrive 204 —— gpudrive 103 4

T T T T T T T T T T
0.0 0.5 1.0 15 2.0 0 10000 20000 30000 40000 Nocturne GPUDrive
Global step le7 Wall-clock time (s) Simulator

Figure 3: From hours to minutes. Left: Training performance (goal-reaching rate) as a function
of the global step (AFPS). Center: Training performance as a function of wall-clock time. Right:
Comparison of the total time to solve the same 10 scenarios while replicating environmental and
experimental conditions as closely as possible. Runs are averaged across three seeds, see Appendix
D for the hyperparameters and training details. The green dotted line indicates optimal performance.

As shown above, GPUDrive allows us to solve scenes in minutes. Next, we investigate how the
individual scene completion time, the time it takes to solve a single scenario, changes as we increase
the total number of scenarios we train in. In practice, it may be desirable to train agents on thousands
of scenarios. Therefore, we ask whether it is feasible to fully leverage the simulator’s capabilities
with a single GPU.

Interestingly, we find that the amortized sample efficiency increases with the size dataset of scenes
we train in. Figure 4 shows the average completion time per scenario as we increase the dataset.
For instance, using IPPO with 32 scenarios takes 2 minutes per scenario. In contrast, solving 1024
unique scenarios takes about 200 minutes, which amounts to only 15 seconds per scenario. We expect
that these scaling benefits will continue as we further increase the size of the training dataset. This
suggests that GPUDrive should enable effective utilization of the large WOMD dataset comprising
100,000 diverse traffic scenarios, even with limited computational resources.

5 Conclusion

In this work, we present GPUDrive, a GPU-accelerated, data-driven simulator. GPUDrive is intended
to help generate the billions of samples that are likely needed to achieve effective reinforcement
learning for training multi-agent driving planners. By building atop the Madrona Engine [15], we
can scale GPUDrive to hundreds of worlds containing potentially hundreds of agents leading to
throughput of millions of steps per second. This throughput occurs while synthesizing complex
observations such as LIDAR. We show that this throughput has consequent implications for training
reinforcement learning agents, leading to the ability to train agents to solve any particular scene in

Total time to solve multiple scenarios Amortized time to solve multiple scenarios

¥ 2001 0 2.0
- -
=} =}
£ £
£ 150+ E 154
] (]
= =
@ 100 ~ & 1.0
o [e]
-~ -
(V] (]
£ 501 £ 0.5
= =

0- 0.0-

32 128 256 512 1024 32 128 256 512 1024
Number of unique scenarios Number of unique scenarios

Figure 4: Scale reduces individual scene completion time. Left: Total time required to solve a
fixed number of scenarios to a goal-reaching rate of 95%. Note that time-to-completion is sub-linear
concerning the number of scenes. Right: Each additional scenario costs less to solve than the previous
scenario. At 1024 scenes, the per-scene cost of solving an additional scene is on the order of 15
seconds.

minutes and in seconds when amortized across many scenes. We release the simulator and integrated
trained agents to enable further research.

This paper is a first step in scaling up reinforcement learning for multi-agent planning in safety-
critical, mixed human-autonomous settings. However, several important challenges remain for future
work. Firstly, we have not yet identified the optimal hyperparameter settings to effectively utilize the
collected data, resulting in training being the bottleneck instead of data collection time. Secondly,
while the simulator is fast, collecting data for reinforcement learning leads to frequent reset calls that
significantly impact throughput. Lastly, training fully human-level drivers in the simulator to navigate
without crashing in any scenario remains an ongoing challenge.

Acknowledgments and Disclosure of Funding

This work is funded by the C2SMARTER Center through a grant from the U.S. DOT’s University
Transportation Center Program. The contents of this report reflect the views of the authors, who are
responsible for the facts and the accuracy of the information presented herein. The U.S. Government
assumes no liability for the contents or use thereof. This work was also supported in part through the
NYU IT High-Performance Computing resources, services, and staff expertise.

References

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Brandon Cui et al. “Adversarial Diversity in Hanabi”. In: The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. 2023. URL:
https://openreview.net/pdf?id=uLE3WF3-H_5.

Peter R. Wurman et al. “Outracing champion Gran Turismo drivers with deep reinforcement
learning”. In: Nat. 602.7896 (2022), pp. 223-228. DOI: 10.1038/S41586-021-04357-7.
URL: https://doi.org/10.1038/s41586-021-04357-7.

Julien Pérolat et al. “Mastering the Game of Stratego with Model-Free Multiagent Reinforce-
ment Learning”. In: CoRR abs/2206.15378 (2022). DOI: 10 .48550/ARXIV.2206.15378.
arXiv: 2206.15378. URL: https://doi.org/10.48550/arXiv.2206.15378.

David Silver et al. “Mastering the game of Go without human knowledge”. In: Nat. 550.7676
(2017), pp. 354-359. DOI: 10.1038/NATURE24270. URL: https://doi.org/10.1038/
nature24270.

Max Jaderberg et al. “Human-level performance in first-person multiplayer games with
population-based deep reinforcement learning”. In: CoRR abs/1807.01281 (2018). arXiv:
1807.01281. URL: http://arxiv.org/abs/1807.01281.

Anton Bakhtin et al. “Mastering the Game of No-Press Diplomacy via Human-Regularized
Reinforcement Learning and Planning”. In: The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. 2023.

Eli Bronstein et al. “Hierarchical Model-Based Imitation Learning for Planning in Autonomous
Driving”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2022, Kyoto, Japan, October 23-27, 2022. IEEE, 2022, pp. 8652-8659. DOI: 10. 1109/
IR0S47612.2022.9981695. URL: https://doi.org/10.1109/IR0S47612.2022.
9981695.

Yiren Lu et al. “Imitation is not enough: Robustifying imitation with reinforcement learning
for challenging driving scenarios”. In: 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2023, pp. 7553-7560.

Charles R. Harris et al. “Array programming with NumPy”. In: Nat. 585 (2020), pp. 357-362.
DOI: 10.1038/541586-020-2649-2. URL: https://doi.org/10.1038/s41586-020-
2649-2.

James Bradbury et al. JAX: composable transformations of Python+NumPy programs. Ver-
sion 0.3.13. 2018. URL: http://github.com/google/jax.

Jason Ansel et al. “PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode
Transformation and Graph Compilation”. In: Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 2, ASPLOS 2024, La Jolla, CA, USA, 27 April 2024- 1 May 2024. ACM, 2024, pp. 929—
947. pOI: 10.1145/3620665 . 3640366. URL: https://doi.org/10.1145/3620665.
3640366.

Alexander Rutherford et al. “Jaxmarl: Multi-agent rl environments in jax”. In: arXiv preprint
arXiv:2311.10090 (2023).

Clément Bonnet et al. Jumanji: a Diverse Suite of Scalable Reinforcement Learning Environ-
ments in JAX. 2024. arXiv: 2306.09884 [cs.LG]. URL: https://arxiv.org/abs/2306.
09884.

Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. “VMAS: A Vec-
torized Multi-agent Simulator for Collective Robot Learning”. In: Distributed Autonomous
Robotic Systems - 16th International Symposium, DARS 2022, Montbéliard, France, 28-30
November 2022. Vol. 28. Springer Proceedings in Advanced Robotics. Springer, 2022, pp. 42—
56. DOI: 10.1007/978-3-031-51497-5_4. URL: https://doi.org/10.1007/978-3-
031-51497-5_4.

Brennan Shacklett et al. “An extensible, data-oriented architecture for high-performance,
many-world simulation”. In: ACM Transactions on Graphics (TOG) 42.4 (2023), pp. 1-13.
Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
“CARLA: An open urban driving simulator”. In: Conference on robot learning. PMLR. 2017,
pp. 1-16.

https://openreview.net/pdf?id=uLE3WF3-H_5
https://doi.org/10.1038/S41586-021-04357-7
https://doi.org/10.1038/s41586-021-04357-7
https://doi.org/10.48550/ARXIV.2206.15378
https://arxiv.org/abs/2206.15378
https://doi.org/10.48550/arXiv.2206.15378
https://doi.org/10.1038/NATURE24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://arxiv.org/abs/1807.01281
http://arxiv.org/abs/1807.01281
https://doi.org/10.1109/IROS47612.2022.9981695
https://doi.org/10.1109/IROS47612.2022.9981695
https://doi.org/10.1109/IROS47612.2022.9981695
https://doi.org/10.1109/IROS47612.2022.9981695
https://doi.org/10.1038/S41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://github.com/google/jax
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://arxiv.org/abs/2306.09884
https://arxiv.org/abs/2306.09884
https://arxiv.org/abs/2306.09884
https://doi.org/10.1007/978-3-031-51497-5_4
https://doi.org/10.1007/978-3-031-51497-5_4
https://doi.org/10.1007/978-3-031-51497-5_4

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]
[27]
(28]
[29]
[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

Panpan Cai, Yiyuan Lee, Yuanfu Luo, and David Hsu. “Summit: A simulator for urban driving
in massive mixed traffic”. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2020, pp. 4023-4029.

Quanyi Li et al. “Metadrive: Composing diverse driving scenarios for generalizable reinforce-
ment learning”. In: IEEE transactions on pattern analysis and machine intelligence 45.3
(2022), pp. 3461-3475.

Holger Caesar et al. “nuplan: A closed-loop ml-based planning benchmark for autonomous
vehicles”. In: arXiv preprint arXiv:2106.11810 (2021).

Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, and Jakob Foerster. “Noc-
turne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real
world”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 3962-3974.
Cole Gulino et al. “Waymax: An accelerated, data-driven simulator for large-scale autonomous
driving research”. In: Advances in Neural Information Processing Systems 36 (2024).
Karsten Kreutz and Julian Eggert. “Analysis of the generalized intelligent driver model (GIDM)
for uncontrolled intersections”. In: 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC). IEEE. 2021, pp. 3223-3230.

Arne Kesting, Martin Treiber, and Dirk Helbing. “General lane-changing model MOBIL for
car-following models”. In: Transportation Research Record 1999.1 (2007), pp. 86-94.
Martin Treiber, Ansgar Hennecke, and Dirk Helbing. “Congested traffic states in empirical
observations and microscopic simulations”. In: Physical review E 62.2 (2000), p. 1805.
Pablo Alvarez Lopez et al. “Microscopic Traffic Simulation using SUMO”. In: The 21st
IEEE International Conference on Intelligent Transportation Systems. IEEE, 2018. URL:
https://elib.dlr.de/124092/.

Jordi Casas, Jaime L Ferrer, David Garcia, Josep Perarnau, and Alex Torday. “Traffic simulation
with aimsun”. In: Fundamentals of traffic simulation (2010), pp. 173-232.

Bernhard Wymann et al. “Torcs, the open racing car simulator”. In: Software available at
http://torcs. sourceforge. net 4.6 (2000), p. 2.

Mark Martinez et al. “Beyond grand theft auto V for training, testing and enhancing deep
learning in self driving cars”. In: arXiv preprint arXiv:1712.01397 (2017).

Edouard Leurent et al. An environment for autonomous driving decision-making. 2018.
Matthias Miiller, Vincent Casser, Jean Lahoud, Neil Smith, and Bernard Ghanem. “Sim4cv:
A photo-realistic simulator for computer vision applications”. In: International Journal of
Computer Vision 126 (2018), pp. 902-919.

Praveen Palanisamy. “Multi-agent connected autonomous driving using deep reinforcement
learning”. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE. 2020,
pp. 1-7.

Ming Zhou et al. “Smarts: An open-source scalable multi-agent rl training school for au-
tonomous driving”. In: Conference on Robot Learning. PMLR. 2021, pp. 264-285.

Anirban Santara et al. “Madras: Multi agent driving simulator”. In: Journal of Artificial
Intelligence Research 70 (2021), pp. 1517-1555.

Parth Kothari, Christian Perone, Luca Bergamini, Alexandre Alahi, and Peter Ondruska.
“Drivergym: Democratising reinforcement learning for autonomous driving”. In: arXiv preprint
arXiv:2111.06889 (2021).

Alexander Amini et al. “Vista 2.0: An open, data-driven simulator for multimodal sensing and
policy learning for autonomous vehicles”. In: 2022 International Conference on Robotics and
Automation (ICRA). IEEE. 2022, pp. 2419-2426.

Qiao Sun, Xin Huang, Brian C Williams, and Hang Zhao. “InterSim: Interactive traffic
simulation via explicit relation modeling”. In: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 11416-11423.

Adam Scibior, Vasileios Lioutas, Daniele Reda, Peyman Bateni, and Frank Wood. “Imagining
the road ahead: Multi-agent trajectory prediction via differentiable simulation”. In: 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC). IEEE. 2021, pp. 720-725.
Danfei Xu, Yuxiao Chen, Boris Ivanovic, and Marco Pavone. “Bits: Bi-level imitation for

traffic simulation”. In: 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2023, pp. 2929-2936.

10

https://elib.dlr.de/124092/

[39]

[40]

[41]
[42]

[43]

M. Visvalingam and J. D. Whyatt. “Line generalisation by repeated elimination of points”. In:
The Cartographic Journal 30 (1 1993), pp. 46-51. DOI: 10.1179/000870493786962263.
Scott Ettinger et al. “Large Scale Interactive Motion Forecasting for Autonomous Driving : The
Waymo Open Motion Dataset”. In: 2021 IEEE/CVF International Conference on Computer
Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. IEEE, 2021, pp. 9690-9699.
DOI: 10.1109/ICCV48922.2021.00957. URL: https://doi.org/10.1109/ICCV48922.
2021.00957.

Chao Yu et al. “The surprising effectiveness of ppo in cooperative multi-agent games”. In:
Advances in Neural Information Processing Systems 35 (2022), pp. 24611-24624.

Joseph Suarez. “PufferLib: Making Reinforcement Learning Libraries and Environments Play
Nice”. In: arXiv preprint arXiv:2406.12905 (2024).

Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media, 2011.

11

https://doi.org/10.1179/000870493786962263
https://doi.org/10.1109/ICCV48922.2021.00957
https://doi.org/10.1109/ICCV48922.2021.00957
https://doi.org/10.1109/ICCV48922.2021.00957

A Reproducibility

A.1 Code Reproducibility

All code required to reproduce the paper is open-sourced at https://github. com/Emerge-Lab/
gpudrive under release number v0.1

A.2 Computational Resources

All RL experiments in this paper were run on an NVIDIA RTX 8000 or A100. Total resources for the
paper correspond to less than 24 GPU-days.

B Vehicle Model

Our vehicles are driven by a kinematic bicycle model [43] which uses the center of gravity as
reference point. The dynamics are as follows. Here (x4, y;) stands for the coordinate of the vehicle’s
position at time ¢, 0, stands for the vehicle’s heading at time ¢, v; stands for the vehicle’s speed at
time ¢, a stands for the vehicle’s acceleration and § stands for the vehicle’s steering angle. L is the
distance from the front axle to the rear axle (in this case, just the length of the car) and [, is the
distance from the center of gravity to the rear axle. Here we assume [, = 0.5L.

v=a

7 = clip(v; + 0.5 0 At, —Umax, Vmax)

B =tan™"' (htan(d))

L
=tan"!(0.5 tan(d))
z =10 cos(0 +)
y =0 sin(0+ B)
- v cos(B) tan(d)
L

We then step the dynamics as follows:

Tep1 = x¢ + T At
Yir1 = Yr + Y At
01 =0, + 60 At
V1 = clip(vy + 0 At, —Umax, Vmax)

C License Details and Accessibility

Our code is released under an MIT License. The Waymo Motion dataset is released under a Apache
License 2.0. The code is available at https://github. com/Emerge-Lab/gpudrive and at release
commit TODO.

12

https://github.com/Emerge-Lab/gpudrive
https://github.com/Emerge-Lab/gpudrive
https://github.com/Emerge-Lab/gpudrive

D Training details

D.1 End-to-end performance

The Table below depicts the hyperparameters used to produce the results in Section 4.2.

Table 2: Experiment hyperparameters used for comparing the training runs between Nocturne and
GPUDrive in Figure 3. The environment configurations are aligned as closely as possible, using
the same observations and field of view. The dataset includes the same 10 scenarios. It’s important
to note that the length of the GPUDrive rollout is approximately equal to the number of worlds
multiplied by the rollout length and then multiplied by the number of controllable agents. We have
set this value to be 92 x 50 ~ 4600 to approximately match the rollout length in Nocturne.

Parameter IPPO GPUDrive IPPO Nocturne
ot 0.99 0.99
AGAE 0.95 0.95
PPO rollout length 92 4096
PPO epochs 5 5
PPO mini-batch size 2048 2048
PPO clip range 0.2 0.2
Adam learning rate 3e-4 3e-4
Adam € le-5 le-5
normalize advantage yes yes
entropy bonus coefficient 0.001 0.001
value loss coefficient 0.5 0.5
seeds 42,12, 67 42,12, 67
number of worlds 50 1
Perc. goal achieved Perc. vehicle collisions Perc. off-road

Time (minutes) 0 Tim& (minutes) 0 Time (minutes)

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Figure 5: Key performance metrics as a function of training time grouped by the number of
unique scenes in a batch reported in Figure 4. Left: The aggregate percentage of agents that
achieved their goal. Center: The aggregate percentage of agents that collided with another vehicle.
Right: The aggregate number of vehicles that crossed a road edge.

13

- 256

- 128

	Introduction
	Related work
	Simulation Design
	Simulation Engine
	Simulator features

	Simulator performance
	Simulation speed
	End-to-end speed and performance

	Conclusion
	Reproducibility
	Code Reproducibility
	Computational Resources

	Vehicle Model
	License Details and Accessibility
	Training details
	End-to-end performance

