GRIM: Leveraging GPUs for Kernel Integrity
Monitoring

Lazaros Koromilas'* Giorgos Vasiliadis?
Elias Athanasopoulos® Sotiris Ioannidis*

! koromilaz@gmail.com

2 Qatar Computing Research Institute, HBKU
gvasileiadis@qf.org.qa

3 Vrije Universiteit Amsterdam
i.a.athanasopoulos@vu.nl

4 FORTH, Greece

sotiris@ics.forth.gr

Abstract. Kernel rootkits can exploit an operating system and enable
future accessibility and control, despite all recent advances in software
protection. A promising defense mechanism against rootkits is Kernel
Integrity Monitor (KIM) systems, which inspect the kernel text and data
to discover any malicious changes. A KIM can be implemented either in
software, using a hypervisor, or using extra hardware. The latter option
is more attractive due to better performance and higher security, since
the monitor is isolated from the potentially vulnerable host. To remain
under the radar and avoid detection it is paramount for a rootkit to
conceal its malicious activities. In order to detect self-hiding rootkits
researchers have proposed snooping for inferring suspicious behaviour
in kernel memory. This is accomplished by constantly monitoring all
memory accesses on the bus and not the actual memory area where the
kernel is mapped.

In this paper, we present GRIM, an external memory monitor that is
built on commodity, off-the-shelf, graphics hardware, and is able to ver-
ify OS kernel integrity at a speed that outperforms all so-far published
snapshot-based systems. GRIM allows for checking eight thousand 64-bit
values simultaneously at a 10 KHz snapshot frequency, which is sufficient
to accurately detect a self-hiding loadable kernel module insertion. Ac-
cording to the state-of-the-art, this detection can only happen using a
snoop-based monitor. GRIM does not only demonstrate that snapshot-
based monitors can be significantly improved, but it additionally offers
a fully programmable platform that can be instantly deployed without
requiring any modifications to the host it protects. Notice that all snoop-
based monitors require substantial changes at the microprocessor level.

* This work was performed while at FORTH, Greece.

1 Introduction

Despite the recent advances in software security, vulnerabilities can still be ex-
ploited if the adversary is really determined. No matter the protection enabled,
there is always a path for successful exploitation, although admittedly, today,
following this path is much harder than it was in the past. Since securing soft-
ware is still under ongoing research, the community has investigated alternative
methods for protecting software. One of the most promising is monitoring the
Operating System (OS) for possible exploitation. Once an abnormality is de-
tected then the monitor should be able to terminate the system’s operation and
alert the administrator.

This form of protection is commonly offered by tools known as Kernel In-
tegrity Monitors (KIMs). The core operation of these tools is to inspect, as fre-
quently as possible, both the kernel code and data for determining if something
has been illegally modified. In principle, compromising an operating system is
usually carried out using a kernel rootkit (i.e., a piece of malicious code that
is installed in the OS), which usually subverts the legitimate operation of the
system by injecting malicious functionality. For example, the simplest way for
achieving this is by inserting a new (malicious) system call, which, obviously al-
ters a fundamental structure in the kernel’s code: the system-call table. In order
to identify such a simple rootkit, it is enough to only monitor the memory region
where the system-call table is mapped for possible changes.

Implementing KIMs may sound trivial, however the level of sophistication
of modern kernel rootkits, gives space for many different choices. A straightfor-
ward approach is to implement the monitor solely in software, in the form of a
hypervisor which runs and frequently introspects the OS for possible (malicious)
changes [6,10,25,29]. This choice is really convenient, since there is no need for
installing custom hardware, nevertheless it is implied that the monitor’s code
is non vulnerable itself. Unfortunately, it has been demonstrated that a hyper-
visor can be compromised by code running at the guest OS [24]. In addition,
formally verifying the monitor’s code may need significant effort [17]. A viable
alternative is to offer monitors that are implemented in hardware. Copilot [13]
is a representative architecture, implemented in a PCI card and it is basically
a snapshot-based monitor. Essentially, a snapshot-based system monitors a par-
ticular memory region to identify possible malicious changes. As an example,
consider the simple case of monitoring the region where the system-call table
has been mapped, in order to detect if a new (malicious) system call has be
injected. Copilot has a transparent operation, allowing the OS to be unaware of
its existence, and thus it stands as a very attractive option, especially in terms of
deployment. Still, modern rootkits have evolved and developed techniques that
can evade detection, by exploiting the window of opportunity between two snap-
shots. As a matter of fact, a rootkit can simply perform a (malicious) change
right after a snapshot is taken and subsequently remove it before the next snap-
shot is available.

To overcome this inherent limitation of snaphost-based detection systems, re-
cent proposals have been focused on snooping based detection [18,22]. A snoop-

based system monitors all the operations that are sent over the memory bus.
In the context of the aforementioned example we used, the snoop-based detec-
tor would have achieved equivalent detection with the snapshot-based system
by capturing the write operations that aim at modifying the region where the
system-call table is mapped. It is evident, that the snoop-based approach per-
forms a lighter check, since instead of monitoring a particular region, it monitors
the bus for a particular operation. Nevertheless, snooping is possible only in
custom processors, since the memory controller is integrated to the CPU, which
poses critical deployment issues. The benefits of snoop-based systems were in-
troduced by Vigilare [22] and have been demonstrated in KI-Mon [18] where,
in short, the authors provide experimental evidence that a snapshot-based ap-
proach can only reach 70% of detection rate, while their snoop-based system,
KI-Mon, can reach 100% of detection rate.

In this paper, we acknowledge the benefit of snoop-based systems, such as
KI-Mon, but we stress that snapshot-based systems can essentially do better. We
implement GRIM, a novel snapshot-based KIM based on a GPU architecture.
Using GRIM we can easily reach 100% of detection rate using a snapshot-based
only architecture. GRIM does not aim to justify that excellent engineering can
simply optimize a system. Instead, in this paper we promote the design of a novel
architecture, which does not only demonstrate high detection rates in snapshot-
based integrity monitors, but, also, provides a generic extensible platform for
developing KIMs that can be instantly deployed. GRIM works transparently
and requires no modifications such as re-compilation of the kernel and installing
custom hardware on the system it protects. In addition, GRIM does not aim at
simply promoting the usage of GPUs in a new domain. To the contrary, GRIM
delivers a design that demonstrates many critical properties for KIMs. Beyond
the dramatic speed gains in detection rates, the system is easily programmable
and extensible, while it is not based on custom hardware but on commodity
devices.

To summarize, we make the following contributions:

— We design, implement, and evaluate GRIM, a novel GPU-based kernel in-
tegrity monitor.

— GRIM demonstrates that snapshot-based monitors can do substantially bet-
ter than it has been so far documented in current literature [18]. We are able
to reach easily 100% detection rate, surpassing substantially the reported
detection rate (70%) in the state of the art.

— GRIM is fully programmable and it provides a generic extensible platform
for developing KIMs that can be instantly deployed using just commodity
devices. It works transparently and requires no modifications such as re-
compilation of the kernel and installing custom hardware on the system it
protects.

2 Background

In this section, we describe the architecture of modern graphics cards, with an
emphasis on their general-purpose computing functionalities that provide for
non-graphics applications.

2.1 GPUs and CPUs

Graphics cards nowadays have significant more computing resources than they
used to have a couple of decades ago. The processing speeds they achieve and
their low cost makes them a good candidate for many applications beyond graph-
ics rendering [26,27]. They contain hundreds of processor cores, which can be
programmed by general-purpose programming frameworks such as OpenCL [3]
and CUDA [23], and thus transformed to general-purpose computing platforms.

In general, GPUs execute programs organized in units called kernels. The
main difference with programs that run on a CPU is that the execution model
is optimized for data-parallel execution. The majority of its chip area is devoted
to computation units, rather than data caching and flow control. As a result,
maximum gains on GPUs are achieved when the same instructions run on all
threads concurrently. In contrast, CPUs have big caches accounting for half of
the chip and large control logic, since their main target is optimizing a single
thread.

2.2 The GPU memory hierarchy

The NVIDIA CUDA architecture, which is used for the development of the pro-
totype presented in this paper, offers different memory spaces, optimized for
different usages. The host allocates memory for GPU kernels in global memory
space which maps to off-chip DRAM memory. Furthermore, the constant mem-
ory space is optimized for read-only accesses, while the texture memory space
for 2D spatial locality. Allocations to all these types of memory are visible to the
host and persistent across kernel launches in the same process context. Individ-
ual threads have access to local memory, which could reside in global memory
though, and is dedicated to a single thread as local storage for automatic vari-
ables. The GPU cores, called streaming processors (SP), are grouped together
in multiprocessors. Depending on the device generation/model (CUDA compute
capability) all different types of global (constant, texture, local) memory accesses
are cached in possibly separate caches in each multiprocessor.

Threads are organized in blocks and each block runs on cores of the same
multiprocessor. The shared memory space offers fast access to the whole thread
block. The absolute sizes differ across architectures but some typical sizes are
the following. Shared memory is 64 KB per group of 32 threads (warp) inside the
thread block, but some of it is also used as a first-level cache by the hardware
itself. Registers are not fully addressable, so they are not accessible from the host
side. Values can, however, spill to global memory due to excessive allocation [23]
which also makes accesses slower.

2.3 GPUs for Kernel Integrity Monitoring

In order to monitor the integrity of host memory, a coprocessor-based system,
like GRIM, must meet, at a minimum, the following set of requirements [13]:

— Independence. GRIM has to operate in complete isolation, using a single
dedicated GPU, and must not rely on the host for monitoring the system’s
integrity. The GPU must be used exclusively for memory monitoring, hence it
cannot be used for other purposes. Any extra GPUs can be easily appended
to serve other usages, if necessary, without affecting the proper usage of
the kernel monitor. Moreover, GRIM must continue to operate correctly
and report all malicious actions, regardless of the running state of the host
machine, especially when it has been compromised.

— Host-memory access. GRIM must be able to access the physical memory
of the host directly for periodically checking its integrity and detecting any
suspicious or malicious actions.

— Sufficient computational and memory resources. GRIM must con-
tain enough memory to keep a baseline of system state. Moreover, it must
have sufficient on-chip memory that can be used for private calculations
and ensure that secret data would not be leaked or held by an adversary
that has compromised the protected system. In addition, GRIM should be
able to process large amounts of data efficiently and perform any operation
requested.

— Out-of-band reporting. GRIM must be able to report the state of the host
system in a secure way. To do so, it needs to establish a secure communication
channel and exchange valid reports, even in the case the host has been fully
compromised.

In order to meet the above requirements, several characteristics of the GPU’s
execution model require careful consideration. For instance, GPU kernels typ-
ically run for a while, perform some computation and then terminate. While
running, a GPU kernel can be terminated by the host or swapped with another
one. This model is not secure, as the coprocessor needs to execute in isolation,
without being influenced by the host it protects. Essentially we stress that lever-
aging GPUs for designing an independent environment with unrestricted memory
access that will monitor the host’s memory securely, is not straight forward, but
rather challenging. Many GPU characteristics must be considered carefully and
in a particular way. In the following sections we describe how we implement and
enforce these requirements in a real system.

2.4 The GPU execution model

Execution on the GPU involves two sides, namely the host and the device. The
host prepares the device and then signals execution. The basic steps are: (i) copy-
ing the compiled kernel code to the device, (ii) transferring the input buffers to
device memory via DMA, (iii) running the kernel on the device, (iv) transferring
the output buffers back to host memory via DMA.

The NVIDIA architectural details are not public but there is substantial
work available on reversing the runtime and device drivers [14,21]. From what
we already know, there is a host-side memory-mapped buffer that is used by the
driver to control the device. API calls for data transfers and program execution
translate to commands through this driver interface. Finally, there are alterna-
tive runtime libraries and drivers that offer CUDA support such as Gdev [5],
Nouveau [1] and PSCNV [4].

2.5 Threat Model

We assume that the adversary has the capability to exploit vulnerabilities in any
software running in the machine after bootup. This includes the OS and all of its
privileged components. We also assume that the adversary does not have access
to the hardware, and thus cannot replace the installed GPU with a malicious
one using the same driver interface.

In-Scope Threats. Snapshot-based kernel integrity monitor techniques aim to
ensure the integrity of the operating system of the already compromised host,
and primarily to detect modifications on memory regions that are considered
immutable after boot, such as the text of the kernel and any of the loaded
LKMs, as well as the contents of their critical data structures.

Out-of-Scope Threats. Sophisticated rootkits [7,11,12,28] that evade snapshot-
based kernel integrity monitors are out of scope. For example, there are CPU-
controlled address translation methods that can be used to mount address space
relocation attacks, by changing the page directory pointer of the kernel con-
text [12]. So far, there is an arms race between building techniques that allow a
rootkit to evade detection and bypass a KIM, and building detection methods
that are able to capture these highly sophisticated attacks. To this aspect we
contribute a new architectural paradigm for building fast snapshot-based KIMs
that can potentially integrate the state-of-the-art detection algorithms.

3 Design

In this section we describe the design of GRIM at the hardware and software
level, and we show how we can leverage modern GPUs as a monitoring mecha-
nism that meets the requirements described in section 2.3.

GRIM is an external, snapshot-based, integrity monitor, that can also pro-
vide programmability and easy deployment. The overall architecture is shown in
Figure 1. Essentially, the GPU reads the specified kernel memory regions over
the PCI Express bus, via DMA. Each region is investigated in terms of integrity,
and any abnormal or suspicious status is reported to an external admin station
that is connected on the local network.

Host

— >
- Local network Mie

TKeep-aIive CPU cores

Read

Host memory

1

PCle MC

IDMA

GPU

| 0x1a52db0

Fig. 1: Hardware/software architecture highlighting the monitor access path. The GPU
is configured to periodically check a list of host memory regions against known check-
sums by reading the corresponding device virtual addresses (left). The user program
periodically sends an encrypted sequence number together with a status code to a sep-
arate admin station. This mechanism defends against man-in-the-middle and replay
attacks on the reporting channel.

From a software perspective, GRIM has two counterparts that run concur-
rently: the device program (GPU code) and the host program (user process).
The device program is responsible for checking the integrity of a requested list
of memory regions, and raise any alerts. The host program periodically reads
the status area and forwards it to the admin station in the form of a keep-alive
message. The only trusted component is hosted on the GPU; the user process
cannot be trusted, so there is an end-to-end encryption scheme between the GPU
and the admin station to protect against attacks, as we explain in §3.

Autonomous GPU execution. GRIM is designed to monitor the operating
system’s integrity isolated from the host, which may be vulnerable and could
be compromised. For that reason, code and data used by GRIM must not be
tampered with by an adversary. Modern GPU chips follow a cooperatively sched-
uled, non-preemptive execution style. That means that only a single kernel can
run on the device at any single point in time. As we describe later on in §4.1
and also illustrated by previous work [26], we employ a bootstrapping method
that forbids any external interaction with GRIM. Any attempt to kill, pause,
or suspend the GPU component of GRIM results in system shutdown (as we
will describe in §3), and the system can only resume its operation by repeating
the bootstrap process. Some NVIDIA models conditionally support concurrent
kernel execution, but those conditions can be configured. Therefore, even when
running on those models, GRIM’s kernel occupies all resources and no other,
possibly malicious, code can run concurrently with it.

While these procedures ensure that GRIM can run safely once it has been
initialized, current GPU programming frameworks such as CUDA and OpenCL
have not been designed with isolation and independence in mind. Some drivers
would even kill a context by default if its program appears to be unrespon-

sive [2]. We configure the device to ignore these type of checks. Also, by default,
only one queue, or stream in CUDA terminology, is active and the host cannot
issue any data transfers before the previous kernel execution is finished. This
can be addressed by creating a second stream dedicated to the GPU kernel of
GRIM. Therefore, all data communication with the host and the admin station
is performed using a separate stream.

Host memory access. An important requirement for morphing the GPU into a
kernel integrity monitor is to establish a mechanism to reference the correspond-
ing memory pages that need to be monitored. Unfortunately, current GPGPU
frameworks, such as CUDA and OpenCL, use a virtual address layer that is
unified with the virtual memory of the host process that utilizes the GPU each
time. Since GRIM must access the kernel’s memory (and not userspace), the
memory regions of the kernel that are monitored should be mapped to the user
process.

Typically, modern OSes, including Linux and Windows, prohibit users to
access memory regions that have not been assigned to them. An access to a page
that is not mapped to a process’ virtual address space is typically considered
illegal, resulting in a segmentation violation. To access the memory regions where
the OS kernel and data structures reside, the particular pages must be located
and mapped to GRIM user-space (i.e., the host counterpart that runs on the
CPU). This is needed as an intermediate step for finally mapping these regions
to the GPU address space.

To overcome the protection added by the OS, we use a separate loadable
kernel module that is able to selectively map memory regions to user-space.
Then, we are able to register these memory regions to the device address space,
through the CUDA programming API. Due to the fact that the GPU is a pe-
ripheral PCle device, it only uses physical addressing to access the host memory.
Hence, after the requested memory registration, the GPU is able to access the
requested kernel memory regions directly, through the physical address space.
This feature allows us to un-map the user-space mappings of the kernel mem-
ory regions during the bootstrap phase, that would otherwise pose significant
security risks.

Integrity monitoring. The memory regions to be monitored are specified by
the user, and can include pages that contain kernel or LKM text, as well as arrays
that contain kernel function pointers (i.e., jump tables). Hashing the static text
parts of the kernel or the already loaded LKMs is straightforward. However, the
OS kernel is fairly dynamic. Besides the static parts, there are additional parts
that change frequently; for example, the VFS layer’s data structures change
every time new filesystems are mounted or removed. Also, every loaded kernel
module can add function pointers.

Given the general-purpose programmability of modern GPUs, it is possible
to implement checks that would detect malicious events, by performing several,
multi-step, checks on different memory regions. These multi-step checks can

become complex in cases where several memory pointers need to be dereferenced
in order to acquire the proper kernel memory address. To support this kind of
checks we need to walk the kernel page table and resolve the pointer’s virtual
address dynamically from the GPU. Assuming that we can already access the
parts of the page table needed to follow a specific virtual address down to a leaf
page table entry (PTE), we end up with a physical page number.

Accessing any physical page is not an inherent limitation of a peripheral PCle
device, such as the GPU. Ideally, the GPU can perform host page table walks,
by reading the corresponding physical pages, and dereferencing any virtual page
directly. However, the closed-source nature of the CUDA runtime and driver, on
which we have based our current design, restrict us from accessing the requested
physical page, if the latter has not been registered at the bootstrap phase, via
the specialized API function call. For the time being, we do not support dynamic
page table resolutions, instead we provide a static list of kernel memory regions,
resolve their mappings, and create GPU-side mappings before entering the moni-
tor phase, as we explain in §4.1. We note, however, that this is not a limitation of
our proposed architecture, as the development of open-source frameworks (e.g.
Gdev [5]) and drivers (e.g. Nouveau [1], PSCNV [4], etc.) would make a one-to-
one mapping of all physical pages in the GPU address space practical. Exploring
mapping of additional physical pages in the GPU’s address space at run-time is
part of our future work.

Sufficient resources. Modern GPUs are equipped with ample memory (up to
12 GB) and hundreds (or even thousands) of cores. Having such a wide mem-
ory space, gives us the ability to store plenty of kernel-image snapshots and
enough state for detecting complicated, multi-step, types of attacks. Obviously,
these kind of checks can become quite complicated, mainly due to the lack of a
generic language that will allow the modelling of such scenarios on top of our
architecture. Even though we do not allow such sophisticated memory checks at
the moment, the process of aggressively reading and hashing memory has been
tested, and, as we show in §5, the GPU prevails the resources to support this.
Implementing sophisticated attacks against GRIM and evaluating the system’s
effectiveness against them is part of our future work.

Out-of-band execution. In the context of GRIM, the GPU acts as a copro-
cessor with limited defenses against itself. For example, an adversary that has
compromised the host system could easily disable or reset the GPU device, and
block any potential defensive actions. To overcome this we deploy a completely
separate admin station that is responsible for keeping track of the host’s proper
state.

In particular, the user program that is associated with the GPU context,
periodically sends keep-alive messages to the admin station through a private
connection. Obviously, simply sending a message to raise an alert can be unsafe,
because it is hard for the admin station to distinguish normal operation from
a network partition or other failure. Therefore, we use keep-alive messages that

encapsulate a GPU-generated status. These messages are encrypted together
with a sequence number, to prevent an attacker from imitating GRIM and send
spoofed keep-alive messages or replay older ones. Subsequently, the admin sta-
tion is involved in the bootstrapping process because the secure communication
channel with the host is established at that point. The exact communication
protocol is described in §4.

On the admin station, a program logs the reports and makes sure that the
monitor is always responsive. The admin station is responsible to take any spec-
ified action, every time a message that contains an alert is received or in error
cases. An error case can be an invalid message or a missed packet (initiated by
a time-out).

4 Implementation

In this section we provide implementation details and discuss technical issues we
encountered in the development of GRIM. The current prototype is built on the
NVIDIA CUDA architecture, and is portable across all CUDA-enabled NVIDIA
models.

4.1 Mapping kernel memory to GPU

During bootstrapping, GRIM needs to acquire the kernel memory regions that
need to be monitored. These regions are located in the kernel virtual address
space. Therefore, the first step is to map them to the address space the GPU
driver requires them to live, which is the virtual address space of the user process
that issues the execution of the kernel integrity monitoring GPU program.
Typically, a peripheral device bypasses virtual memory and accesses the sys-
tem memory directly via physical addressing. To do so, the driver has to create
a device-specific mapping of the device’s address space that points to the corre-
sponding host’s physical pages. In order to create the corresponding OS kernel
physical memory mappings to the GPU, a separate loadable kernel module is
deployed which is responsible for providing the required page table mapping
functionality. As shown in Figure 2, given a kernel virtual address, the loadable
kernel module resolves the physical mapping for this address in step 1. In step 2,
the kernel module (i) allocates one page in the user context and saves its physical
mapping, and (ii) makes the allocated page point to the same page as the kernel
virtual address by duplicating the PTE in the user-page table. Then, in step 3,
the kernel module maps this user page to the GPU and gets a device pointer?.
Finally, in step 4 the kernel module restores the original physical mapping of the
allocation and frees it$. By doing so, we are able to effectively map any OS kernel
memory page to the GPU address space. Furthermore, the user-allocated page

! cudaHostRegister () with the cudaHostRegisterMapped flag followed by a call to
cudaHostGetDevicePointer().

§ For memory regions that span multiple pages we need to allocate enough pages and
point to them in a sequence, before registering the host-device mapping.

10

Unmap page

[
Map page o

User Kernel User Kernel S User Kernel User Kernel
()

Device Physical Device Physical o Device Physical Device Physical
£

0x01a52db0 0x01a52db0o 0x01a52db0o 0x01a52db0
@ @ ©) @

Fig.2: Mapping OS kernel memory to the GPU. There are several address spaces
involved in the operation of GRIM. Initially in step 1 we have a kernel virtual address
pointing to a physical address. In step 2 we duplicate this mapping to user space using
a kernel module that manipulates page tables. In step 3 we pass the user virtual address
to a CUDA API call that pins the page into memory and creates the GPU-side page
table entries. In step 4 we destroy the intermediate user space mapping, while the GPU
continues to access the physical page.

is unmapped right after the successful execution of the bootstrapping process,
in order to destroy all intermediate mappings. We do the same for all kernel
virtual memory ranges that we want to monitor with GRIM. The GPU driver
populates a device-resident page table for the device to be able to resolve its
virtual addresses and perform DMAs.

Modern processor and chipset designs support IOMMUSs between peripheral
devices and the main memory. Similarly to normal memory management units
they translate 1/O accesses and provide an extra virtualization layer. Typical
uses include contiguous virtual address spaces, extended addressing beyond an
I/0 device’s physical limit, pass-through to virtual machine guests, and memory
protection. In GRIM we don’t support IOMMUs that perform anything different
than 1:1 address re-mapping, at least for the memory address ranges we are
interested in, because we don’t want our DMA reads from the GPU to CPU-
DRAM to go through an IOMMU and get diverted. Furthermore, the IOMMU
mappings can be configured by the operating system. For these reasons, we run
GRIM with generic CPU-side IOMMUs disabled and all our results are under
this assumption.

In order to have unrestricted access to the /proc/kallsyms interface, we
build Linux with the CONFIG_KALLSYMS=y and CONFIG_KALLSYMS_ALL=y flags.
We note that this is not a requirement of our design, still it helps development
and debugging considerably for two reasons: (i) it allows us to easily locate
the address of the kernel page table instead of explicitly exporting the init_mm
structure for use by loadable modules, and (ii) it saves us the coding of cus-
tom memory scanners for all the other data structures we need to locate for
monitoring purposes. Obviously, the access to the kernel symbol lookup table
might not be acceptable in certain environments. For these cases, we would lo-
cate our memory regions using an external symbol table or through memory
pattern scanners for dynamic loadable parts, which is certainly feasible.

11

4.2 Kernel integrity monitoring on the GPU

After the successfully mapping of each requested memory region to the GPU,
a daemon GPU program is started. The GPU program hashes all monitored
regions and compares the checksums to find changes, in an infinite loop. Due to
the non-preemptive execution of the GPU, no other program can execute as long
as our endless GPU program is running. As such, it is not feasible to tamper
with the GPU on-chip state, such as the provided memory region addresses, the
known checksums, and the checksumming code.

The checksumming algorithm can be one of the CRC-32, MD5, or SHA256
(see §5.5 for a comparative evaluation). By default we use the CRC-32 as defined
by ISO 3309, due to its simplicity, speed, and its wide adoption. Even though
all these algorithms work on byte blocks in an incremental update loop, we
have optimized to fetch 16-byte blocks from memory, by using uint4 typed
reads (the widest native data type available). We have also tried to use wider
user-defined structs, however it did not improve read performance, because the
compiler deconstructs it to operations on the struct’s members. To the best of
our knowledge, there is no method of issuing larger DM As from GPU code, using
the cudaHostRegisterMapped technique.

Instead of maintaining a separate checksum for each memory region, we only
keep a single master checksum for all individual checksums. The motivation be-
hind this is to allow the checksum to be stored in registers and remain completely
hidden from the host. Even if an attacker is able to stop the execution of the
GPU program, the master checksum could not be extracted, due to the fact
the GPU registers are automatically reset to zero every time a new program is
loaded to the GPU for execution, as has been previously shown [26]. Similarly,
the code for CRC32 is small enough to fit in the instruction cache of the GPU,
hence an attacker cannot tamper with it [26].

4.3 Real-time notification

Even though the GPU kernel is scheduled to run forever, an adversary that has
fully compromised the host, can force the GPU to stop its execution. In order
to detect such incidents, we need an external offline host, the admin station,
connected directly on the local network via a separate Ethernet port. The admin
station monitors the rest of GRIM and is able to power off the host.

The two parties (i.e. the host and the admin station) run a simple protocol
based on keep-alive messages. The controlling user process reads a predefined
memory area from the GPU, sends the data to the admin station through an
established connection, and sets a flag (for the GPU to see) to indicate that the
data was sent. The data is a counter together with an alert flag encrypted with a
symmetric key. The key is installed to both the GPU and the admin station, at
bootstrap, before GRIM starts monitoring the host system. The monitored host
has no knowledge of the key and in order to prevent from being leaked, it can
be stored either in the GPU registers, which automatically reset to zero every
time a new GPU program is loaded [26], or as opcodes in the GPU program’s

12

text, which also cannot be retrieved or tampered, as it is completely erased from
global memory after bootup and resides only in the non-addressable instruction
cache of the GPU. For convenience, we chose to use the former option in our
current implementation.

The admin station, assumes that the machine is compromised if a message is
missed or if it does not receive a valid message in twice the update period (i.e.
200 milliseconds). Of course a valid message containing an alert also means that
the host is compromised. The communication structure that is used between the
GPU and the admin station is very simple, as shown in Figure 3. The first two
members are sent to the admin station (data[2]) and the third (sent) is used
for communication between the GPU and its controlling program. When the
master GPU thread sees that the sent flag is set it increments the counter and
encrypts the message data with the key. In case the GPU discovers an illegal
checksum, it sets the alert flag and re-encrypts the message. All messages are
encrypted using the Extended Tiny Encryption Algorithm (XTEA).

The controlling user process, at the host side, is responsible to read the
encrypted message of the integrity monitor and send it to the admin station.
This process occurs periodically, every 100 milliseconds, resulting to minimal
CPU utilization (lower than 0.1%). If a GPU thread discovers a corrupted region,
it indicates it in this message for the admin station to be notified in the next
iteration.

struct message {
union {
int datal[2]; /* encrypted data */
struct {
int seq;
int alert;
3
};
int sent; /* plain sent flag */
};

Fig. 3: The message format used for synchronization between the GPU, host, and the
admin station. When a GPU thread finds a corrupted memory region it sets the alert
flag and encrypts it together with the sequence number. A master GPU thread is
responsible for incrementing the sequence number when the sent flag is set. The host
will send this message to the admin station in the next synchronization point and the
alert will be handled there. The host sets the sent flag while the GPU unsets it.

4.4 Data-parallel execution

There are some implementation choices regarding the actual code execution on
the GPU. For instance, the partitioning of checksumming work among GPU
threads, how synchronization with the host is done, how to do the memory reads.

13

We chose to have a master thread that, apart from being a normal worker, checks
whether the host has sent the packet to the admin station and composes a new
message with the incremented sequence number. Furthermore, memory regions
are evenly distributed to all threads. During bootstrapping, GRIM finds the
greatest common divisor among all region lengths and split larger regions to that
size, ending up with equal sized regions. Because of the nature of the problem
(checksum computation), we can divide and conquer as we wish. We configure
the execution in blocks of 512 concurrent threads, which is the preferred block
size. About the memory access pattern, we don’t really have room to optimize
much because all reads on monitored regions are serviced by the GPU’s DMA
copy engine(s) and are not local.

5 Evaluation

In this section we evaluate the performance and accuracy of GRIM. We measure
the rate for detecting a self-hiding loadable kernel module, as well as the impact
that GRIM has on the memory bandwidth of the base system. Furthermore, we
show the memory coverage that GRIM can afford, without sacrificing accuracy.

Our experimental platform is based on an Intel Core i7-3770 CPU clocked at
3.4 GHz equipped with 8 GiB of DDR3 DRAM at 1333MHz in a dual-channel
configuration. The motherboard is the MSI Z77A-G45. The GPU we use for
executing GRIM is an NVIDIA GeForce GTX 770 PCle 3.0 card with 4 GiB
of GDDR5 DRAM. We use a Linux 3.14.23 based system with NVIDIA driver
version 343.22 and CUDA 6.5 for the GPU code.

5.1 Self-hiding LKM

Our basic test and case study for determining the accuracy of GRIM is the
detection rate of a self-hiding loadable kernel module (LKM). Notice, that this
case study is in-line with the evaluation methodology carried out in the state-
of-the-art of similar works [18]. Also, the synthetic evaluation we present in this
section can stress GRIM significantly more than an actual rootkit. The artificial
LKM module, which resembles the operation of a rootkit, performs zero malicious
operations; it only loads and unloads itself. On the other hand, an actual rootkit,
once loaded, needs to perform malicious actions, and therefore it is exposed to
the monitor for a longer time period.

Typically, a module is handled by a system utility which is responsible for
loading it into memory and invoking a system call to initialize it. Specifically
in Linux, the insmod(8) and friend tools open the kernel module object file
and use the finit_module(2) system call with its file descriptor. The system
relocates symbols, initializes any provided parameters, adds a handle to data
structures (a modules list), and calls the module’s init () function. A rootkit,
implemented as a kernel module, is able to remove itself from that list — in
order to increase its stealthiness — and this is typically performed in its init ()
function. Still, this transient change can be detected by carefully monitoring the

14

Detection rate (percent)

0 i i i i i i i
10 15 20 25 30 35 40

Snapshot frequency (KHz)

Fig. 4: Self-hiding LKM loading detection
with different snapshot frequencies. For
each configuration, we loaded a module
that deletes itself from the kernel modules
list 100 times, while monitoring the head
of the list. We achieve 100% detection rate
with a snapshot frequency of 9 KHz or
more.

40
35 =
30 =
25 =
20 =
15 =

10 - I
¥
©

Number of monitored elements

Snapshot frequency (KHz)

o wn
T
4K ——o

¥
o~

8K ——o
9K |=—o
12K —»

1 1

10K t—e

t
¥
o
o~

14K =
16K —e
18K e

Fig.5: Maximum achieved frequency de-
pending on the number of pointers being
monitored. Increasing the number of (8-
byte) memory regions we monitor, low-
ers the snapshot frequency. Staying above
9 KHz so that we can accurately detect a
self-hiding LKM loading lets us monitor
another 8K pointers.

head of the modules list with a large enough snapshot frequency. In the following
experiment, we show the minimal snapshot frequency that is required to perceive
such module list changes and thus achieve successful detection.

In order to measure the detection rate, a self-hiding kernel module is loaded,
repeatedly, 100 times, using a different snapshot frequency. Figure 4 shows the
detection rate achieved by GRIM under each configuration. We can see that
GRIM can reliably detect that a new kernel module has been loaded before hiding
itself with a snapshot frequency of 9 KHz or more, achieving 100% detection rate.
That means that GRIM detected all module insertions and generated exactly 100
alerts. Note that according to the state-of-the-art, a snapshot-based approach
can deliver a 70% detection rate at best [18].

The experiment we carry out in this paper for demonstrating the high levels
of detection rate that can be achieved using GRIM is designed in analogy with
the one presented in the evaluation of KI-Mon [18]. We have just omitted the
verification part of the observed change. KI-Mon, once a change is detected,
further verifies semantically if the change is meant to be malicious or not. This
verification procedure happens using snapshots and in parallel with the detection
algorithm, which is based on snooping. We argue that detection and verification
are orthogonal. GRIM is fully programmable and can be easily extended with
rich functionality for applying in-parallel semantic verification algorithms once
a change is detected without decreasing its detection rate.

5.2 Address space coverage

Next we study the implications of requiring a snapshot frequency of at least
9 KHz for accurate detection, with respect to the amount of memory we can

15

cover. The snapshot frequency is a function of the number and size of the mon-
itored memory regions. Also, alignment plays a role in the read performance of
the GPU, 16-byte aligned reads being the fastest. We don’t, however, control the
placement of the kernel data structures, and thus we assume that some of our
monitored regions need one or two extra fetches. Given our specific implementa-
tion, the most efficient read width is 16 bytes (or one uint4 in CUDA’s device
native data types). In the following experiment we focus on monitoring pointer
values (8-byte regions). The results are shown in Figure 5. Given our detection
rate results, we see that we can monitor at most 8K pointers simultaneously
without sacrificing accuracy, because we need to stay above the 9 KHz snapshot
frequency. This limits the address space we can monitor using GRIM if we want
to achieve 100% detection rate, albeit 8K addresses spread out in memory could
potentially safeguard many important kernel data structures. Moreover, this is
not an inherent limitation that only GRIM suffers from. All hardware-based
integrity monitors [13,18,22] can observe only a limited fraction of the host’s
memory. Even snoop-based systems need to filter out most of the memory traffic
which targets memory that is not a potential target for a rootkit.

5.3 Impact on memory bandwidth

In this section we measure the overhead that GRIM adds to the memory subsys-
tem. To do so, we ran the STREAM benchmark [20] while the system is under
monitoring by GRIM and when the system is idle. We use all 8 CPU threads
for the benchmark and we run our GPU snapshot loop with different throttling
factors to obtain various frequency values. We count the total number of memory
references by multiplying with the obtained snapshot frequency. We show the
results in Figure 6. At most 17% of the available memory bandwidth is utilized
by the GPU when GRIM is in place. Note, that the system consumes 17% of the
available memory bandwidth in the worst-case, in which GRIM is monitoring 8K
of 8-byte memory elements. As we show in Figure 7, monitoring of 512 8-byte
memory elements (enough for safeguarding the system-call table) consume only
1% of the memory bandwidth. For this particular experiment we throttled our
snapshot loop to approximately get to the desired snapshot frequency of 9 KHz
for different number of monitored regions (again of 8 bytes in size). We note that
we can always limit the host memory bandwidth degradation by monitoring less
pointers. Therefore, we stress that (i) our system is flexible and can adapt its
configuration for consuming less memory bandwidth and safeguarding less mem-
ory if this is desirable, and (ii) even in the worst case, when GRIM is monitoring
8K 8-byte elements, it consumes 17% of memory which is comparable with the
memory consumption reported by similar systems [13].

5.4 Using a low-end GPU

Given that the snapshot process is I/O bound on the DMA path, we also explore
the behaviour of GRIM on low-end GPUs. To do so, we use a NVIDIA GT 630
PCle 2.0 and measure the memory coverage that can afford while maintaining a

16

e 1 11 T 1
By P B
10

Memory bandwidth (GB/s)

o N b O
T
I

1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
Million memory references per second

Fig.6: Impact on memory bandwidth
while the system is under monitoring.
The GPU issues DMAs which contend
with the CPU cores on the memory con-
troller and/or the DRAM itself, limiting
the memory bandwidth normally avail-
able to host. GRIM degrades STREAM
performance by 17% in the worst case.

w14
=
o 12 - —
£ 10 4
i
s 8f .
kel
£ 6]
Qo
> Ar .
E 2 1
[
= 0
o~ ¥ ¥ ¥ ¥ ¥ ¥
u'_‘ﬁ — o~ < n o [oe]

Number of monitored elements

Fig. 7: Available memory bandwidth with
respect to memory coverage. Snapshot-
ting is throttled to approximately achieve
the required snapshot frequency of 9 KHz.
We see that monitoring 512 8-byte ele-
ments only consumes 1% of the memory
bandwidth whereas with 8K we reach the
17% worst case.

detection rate of 100%. The GT 630 is able to reliably monitor at most 2K 8-byte
elements (without sacrificing detection accuracy). Even though this is 4 times
lower than the detection rate sustained by the GTX 770, it comes with great
benefits in terms of energy efficiency. Figure 8 shows the power consumption of
each device while being idle and the active power consumption while executing
the GPU component of GRIM. The low-end GPU draws almost 6 times less
power both when running our code and in total when taking into account the
idle power consumption. That creates an interesting trade-off and makes the
low-end choice attractive for setups with low power budgets. Finally, the GT
630 can only affect STREAM performance by 6% in the worst case due to its
host connectivity limitations.

l ‘ idle‘ active‘
GTX 770(67.84(148.87
GT 630 |11.85| 25.70

Fig. 8: Power consumption of each device in Watts while being idle, as well as including
the additional power the device draws while GRIM is running (“active” column). We
observe that the low-end GPU consumes almost 6 times less power both when idle and
active.

5.5 Checksums and message digests

In the results we showed so far we have been using CRC32 to detect memory
modifications. CRC32 has low complexity in terms of computation, while it is

17

2 100} CRC32 m -
o MD5

g sof SHA256 ©
2 60 [|
©

5 4o0r 1
k]

@ 20 -1
2

[

e 0

p4 hv4 p4 pv4 ¥ p4
— o~ < © ©o o
— o~

Number of monitored elements

Fig.9: Comparison of the LKM-hiding detection rate of the CRC32 checksum and
the MD5/SHA256 digests for different number of monitored 8-byte elements. The
CRC32 is faster and can cover a larger amount of memory without sacrificing accuracy.
MD5/SHA256 on the other hand provide higher security.

not considered cryptographically secure. Here we show the overheads involved
in using MD5 or SHA256, and the impact it has to detection rate. We monitor
different counts of 8-byte elements and show how accurately we can detect the
LKM-hiding attack when one of the elements is the head pointer of the modules
list. Figure 9 shows that MD5 performs a little worse than CRC32 sustaining
4K elements but losing accuracy at 8K elements. The same is true for SHA256.
We expect MD5 to be faster than SHA256 but here we test with relatively small
data blocks so read performance is more critical than actual computation. Both
implementations of MD5 and SHA256 cannot detect the LKM memory-write
when the monitor inspects 20K elements. This is a trade-off between memory
coverage and collision resistance, which can be configured. Notice that for GRIM
even a simple algorithm, like CRC32, can be quite effective in detecting kernel
rootkits, unless the malicious code can perform operations on memory by pre-
serving the CRC32 checksum of the particular modified memory page, which is
not trivial.

6 Related work

Integrity monitors have formed an attractive technology for protecting software
against exploitation. Based on monitoring, they can infer about an attack and
not defend against the attack. As an alternative method of protection, integrity
monitors are considered promising, especially when even advanced defenses, such
as preventing code-reuse in the operating system [19] can be bypassed by ad-
vanced attacks [15,16], and when it has been demonstrated that core protection
principles, like Control-Flow Integrity (CFI) applied at the kernel [8], offer lim-
ited security [9].

Integrity monitors can be implemented in both software and hardware. Soft-
ware integrity monitors [6,10,25,29] are based on hypervisors. The operating

18

system runs as a guest and is occasionally checked by the hypervisor for pos-
sible (malicious) modifications. Although these monitors dramatically limit the
code base that should be trusted and bug-free, there is always the possibility for
the hypervisor to be exploited. The hypervisor and the operating system are not
completely isolated and they are both written in untrusted languages. Of course,
all these solutions are towards the right direction, and it is obviously easier to
perform a security analysis in a significant smaller program (the monitor) com-
pared to protecting the complete operating system. However, the community has
been in parallel seeking for more solid monitors, which will be physically isolated
from the rest of the system, they will be implemented using custom hardware,
and won’t run in the same code base with the kernel they protect.

As we have stressed throughout the paper, we offer an integrity monitor based
on GPUs, which closely matches the work demonstrated by hardware monitors
such as Copilot [13], Vigilare [22], and KI-Mon [18]. Copilot [13] is a snapshot-
based monitor implemented on a custom FPGA. Essentially, GRIM offers all of
the Copilot’s functionality, in addition to better performance and extensibility,
since GRIM is fully programmable. Vigilare [22], on the other hand, argues that
it is hard to achieve good detection rates using snapshot-based monitors and thus
it introduces snooping, i.e., monitoring the bus for particular memory operations
that can affect the kernel structure. We believe that snooping is important, and
certainly a lightweight check compared to the snapshot-based approach, however,
in this paper, we argue that snapshot-based monitors can do significantly better.
With GRIM we are able to achieve 100% detection rate. Finally, KI-Mon [1§]
extends Vigilare by offering protection for mutable objects. In GRIM we can
protect against mutable objects, however we have not implemented the semantic
verification check for validating if a change of a mutable object in the kernel is
the result of a legitimate operation or not. We omitted implementing this in
GRIM, because the available API for programming the GPU is proprietary and
limited. Nevertheless, as we have in detail discussed, our architecture can support
this operation.

7 Conclusion

In this paper we revisited snapshot-based Kernel Integrity Monitors (KIMs)
and we demonstrated that a novel GPU-based architecture can do substantially
better than it has so far been reported in the state-of-the-art. GRIM builds on
commodity GPUs and offers a fully extensible and programmable architecture
for implementing complex KIMs. Our thorough evaluation of GRIM suggests
that we can achieve 100% detection rate of evolved rootkits that try to evade
snapshot-based monitors. This detection rate outperforms the currently reported
rate (70%) of the state-of-the-art of hardware-based monitors.

GRIM offers an attractive option for instantly deploying a hardware-based
KIM. It needs no modifications to the host it protects, no kernel recompilation
or installation of custom hardware. This is particular important, because all so
far proposed hardware monitors that base their operation on snooping require

19

changes at the microprocessor level. In our case, GRIM acts as a secure co-
processor that protects a vulnerable host from malicious rootkits. We believe
our proposal will further promote research in the field of advanced KIMs that
are snapshot-based, since there is clearly enough space for optimizations and
many benefits to be considered when it comes to deployment.

8 Acknowledgements

We thank our shepherd Zhigiang Lin and the anonymous reviewers for their in-
valuable feedback. This work was supported by European Commission through
the H2020 ICT-32-2014 project SHARCS under Grant Agreement number 644571.

References

1. Nouveau driver for nVidia cards. http://nouveau.freedesktop.org/.

2. NVIDIA Developer Forums - CUDA kernel timeout. https://devtalk.nvidia.

com/default/topic/417276/cuda-kernel-timeout/.

OpenCL. http://www.khronos.org/opencl/.

PathScale NVIDIA graphics driver. https://github.com/pathscale/pscnv.

shinpei0208 / gdev. https://github.com/shinpei0208/gdev.

A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and

W. Shen. Hypervision Across Worlds: Real-time Kernel Protection from the ARM

TrustZone Secure World. In CCS, 2014.

7. S. Chen, J. Xu, and E. C. Sezer. Non-Control-Data Attacks Are Realistic Threats.
In USENIX Security, 2005.

8. J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete Control-Flow Integrity
for Commodity Operating System Kernels. In Security and Privacy, 2014.

9. E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of Control: Over-
coming Control-Flow Integrity. Security and Privacy, 2014.

10. O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel. Ensuring operating
system kernel integrity with OSck. In ASPLOS, 2011.

11. R. Hund, T. Holz, and F. C. Freiling. Return-Oriented Rootkits: Bypassing Kernel
Code Integrity Protection Mechanisms. In USENIX Security, 2009.

12. D. Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. B. Kang. ATRA: Address
Translation Redirection Attack against Hardware-based External Monitors. In
CCs, 2014.

13. N. L. P. Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - a Coprocessor-
based Kernel Runtime Integrity Monitor. In USENIX Security, 2004.

14. S. Kato. Implementing Open-Source CUDA Runtime. 2013.

15. V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis. Ret2Dir: Rethinking
Kernel Isolation. In USENIX Security, 2014.

16. V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kGuard: Lightweight Kernel
Protection Against Return-to-user Attacks. In USENIX Security, 2012.

17. G. Klein, P. Derrin, and K. Elphinstone. Experience report: sel4: formally verifying
a high-performance microkernel. In ACM Sigplan Notices, volume 44, pages 91-96.
ACM, 2009.

A

20

http://nouveau.freedesktop.org/
https://devtalk.nvidia.com/default/topic/417276/cuda-kernel-timeout/
https://devtalk.nvidia.com/default/topic/417276/cuda-kernel-timeout/
http://www.khronos.org/opencl/
https://github.com/pathscale/pscnv
https://github.com/shinpei0208/gdev

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek, and B. B. Kang. KI-Mon: A
Hardware-assisted Event-triggered Monitoring Platform for Mutable Kernel Ob-
ject. In USENIX Security, 2013.

J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented
rootkits with "return-less" kernels. In FuroSys, 2010.

McCalpin, John. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. https://www.cs.virginia.edu/stream/.

K. Menychtas, K. Shen, and M. L. Scott. Enabling OS Research by Inferring
Interactions in the Black-box GPU Stack. In USENIX ATC, 2013.

H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang. Vigilare: Toward
Snoop-based Kernel Integrity Monitor. In CCS, 2012.

NVIDIA. CUDA Programming Guide, version 4.0. http://developer.download.
nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf.
J. Rutkowska and A. Tereshkin. Bluepilling the xen hypervisor. Black Hat USA,
2008.

A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In SOSP, 2007.

G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis. PixelVault:
Using GPUs for Securing Cryptographic Operations. In CCS, 2014.

G. Vasiliadis, M. Polychronakis, and S. Ioannidis. MIDeA: A Multi-Parallel Intru-
sion Detection Architecture. In CCS, 2011.

S. Vogl, R. Gawlik, B. Garmany, T. Kittel, J. Pfoh, C. Eckert, and T. Holz. Dy-
namic Hooks: Hiding Control Flow Changes within Non-Control Data. In USENIX
Security, 2014.

J. Wang, A. Stavrou, and A. K. Ghosh. HyperCheck: A Hardware-Assisted In-
tegrity Monitor. In RAID, 2010.

21

https://www.cs.virginia.edu/stream/
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf

	GRIM: Leveraging GPUs for Kernel Integrity Monitoring
	Lazaros Koromilas1em Giorgos Vasiliadis Elias Athanasopoulos1em Sotiris Ioannidis

