M. Naumov, A.




Introduction
Directed Trees
Directed Acyclic Graphs (DAGs)
v' Path- and SSSP-based variants

AGENDA

v Optimizations

Performance Experiments




What is DFS?

¢ o a Eé?lfieen:t:
Discovery:

@ Finish:

a,b,c,d,e,f,g,i,]



What is DFS?

Node: a,b,c,d,e,f,g,i,]
E @ Parent: /,a
E Discovery: a,b

0 Finish:



What is DFS?

Node: a,b,c,d,e,f,g,i,]
E ° a Parent: /,a, b,
Discovery: a,b,e

0 Finish: e



What is DFS?

Node: a,b,c,d,e,f,g,i,j
Parent: /,a, b,b

Discovery: a,b,e,f

Finish: e




What is DFS?

Node: a,b,c,d,e,f,g,i,j
Parent: /,a, b,b, ,f

Discovery: a,b,e,f,i

Finish: e,i




What is DFS?

Discovery: a,b,e,f,i,j

Finish: e,i,]j

Node: a,b,c,d,e,f, ).)
Parent: /,a, b,b, ,



What is DFS?

Node: a,b,c,d,e,f,g,i,j
Parent: /,a,a,a,b,b,d,f,f

Discovery: a,b,e,f,i,j,c,d,g

Finish: e,i,j,f,b,c,g,d,a




Previous Work on DFS

Lexicographic DFS

Time O(log?n) Time O(log2n) Time O(y/n log'"'n)
Processors O(n) Processors O(n®/log n) Processors O(n3)

where w < 2.373 is the matrix multiplication exponent
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Previous Work on DFS

Lexicographic DFS
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Time O(log?n) Time O(log2n) Time O(y/n log''n)
Processors O(n) Processors O(n®/log n) Processors O(n3)

topological sort, bi-connectivity and planarity testing

where w < 2.373 is the matrix multiplication exponent
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DIRECTED TREES
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Directed Tree
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This phase is done, next phase is about to start ...

20 <4 NVIDIA.



Directed Tree
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Directed Tree
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discovery = offset + depth

Phase 3: Top-down Traversal
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Directed Tree
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finish = offset + sub-tree size

Phase 3: Top-down Traversal
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DIRECTED ACYCLIC GRAPHS

PATH-BASED VARIANT
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Path-Based (for DAGS)
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« wait until all paths to a node are traversed
« align path sequences
left [a,b,f]
right [a,d,f]
« compare left-to-right and choose smallest

[a,b,1] [a,d,f]

(lexicographically smallest) ' < resolution

Phase 1
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Path-Based (for DAGS)

This phase is done



OPTIMIZATIONS



Path Pruning




Path Pruning

o When two paths reach the same node
v' There exists a parent “a” where

the path split [a,b,...] and [a,c,...]

[a,c,d,f] f [a,b,e,f]
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[a,c,d,f]

f

[a,b,e,f]

Path Pruning

When two paths reach the same node
v' There exists a parent “a” where
the path split [a,b,...] and [a,c,...]

v It is the comparison between “b” and “c”
that allows us to distinguish between paths
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a When two paths reach the same node
v' There exists a parent “a” where
the path split [a,b,...] and [a,c,...]

b ¢ v It is the comparison between “b” and “c”
that allows us to distinguish between paths
q o v Parent node with a single edge

will never be a decision point

[a,c g f [a.b €]
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[a,cC,f]

f

When two paths reach the same node
v' There exists a parent “a” where
the path split [a,b,...] and [a,c,...]

¢ v' It is the comparison between “b” and “c”
that allows us to distinguish between paths
o v Parent node with a single edge
will never be a decision point
fa,b.fl v" No need to store nodes with such parents
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Path Pruning
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Phase Composition
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SSSP-BASED VARIANT



SSSP-based (for DAGS)

Run the algorithm for Directed Trees, but

v Propagate # of nodes to all the parents
v’ Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal
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SSSP-based (for DAGS)
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Run the algorithm for Directed Trees, but

v Propagate # of nodes to all the parents
v’ Start prefix sum with 1 (instead of 0)
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SSSP-based (for DAGS)
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SSSP-based (for DAGS)
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SSSP-based (for DAGS)

[1,6,7,9,10]

La)-
(0D oy G0 DR

[1]

[1,2,3] 0
[1
(i i

[1] [1]

Run the algorithm for Directed Trees, but

v Propagate # of nodes to all the parents
v' Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

45 <4 NVIDIA.



SSSP-based (for DAGS)

Assign # of nodes

as the edge weight

This phase is done, next phase is about to start ...
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SSSP-based (for DAGS)

Shortest Path is the DFS path

Phase 2: Top-down traversal



SSSP-based (for DAGS)

Phase 2: This phase is done
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Discovery time

v The
defines an ordering of nodes

v" We can them to obtain
discovery time

Phase 3a: Sorting
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Discovery time

v The
defines an ordering of nodes

v" We can them to obtain
discovery time

Discovery: a,b,e,f,i,j,c,d,g

Phase 3a: This phase is done
(Phase 3b will find the finish time) 53 <InVIDIA



Phase composition
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EXPERIMENTS



Data

1 coPapersDBLP 540487 15251812 Citations

2 auto 448696 3350678 Numeric Sim.
3 hugebubbles-000... 18318144 30144175 Numeric Sim.
4 delaunay_n24 16777217 52556391 Random Tri.

5 il2010 451555 1166978 Census Data
6 f12010 484482 1270757 Census Data
7 ca2010 710146 1880571 Census Data

8 tx2010 914232 2403504 Census Data

9 great-britain_osm 7733823 8523976 Road Network
10 germanu_osm 11548846 12793527 Road Network
11 road_central 14081817 21414269 Road Network
12 road_usa 23947348 35246600 Road Network

When necessary DAGs are created from general graphs by dropping back edges
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Performance
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Results obtained with Nvidia Pascal TitanX GPU, Intel Core i7-3930K @3.2GHz CPU, Ubuntu 14.04 LTS OS, CUDA Toolkit 8.0 57 Snvibia.



CONCLUSIONS



v' Work-efficient O(m+n)
v" The algorithm takes O(z log n) steps,
where z is the maximum depth of a node

v' Depends highly on the connectivity/sparsity pattern
v Can achieve up to 6x speedup (but slowdown possible)

v" M. Naumov, A. Vrielink and M. Garland, “Parallel Depth-First Search
for Directed Acyclic Graphs”, Technical Report, NVR-2017-001, 2017

https://research.nvidia.com/publication/parallel-depth-first-search-directed-acyclic-graphs
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Thank you

https://research.nvidia.com/publication/parallel-depth-first-search-directed-acyclic-graphs
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