M. Naumov, A.

Introduction
Directed Trees
Directed Acyclic Graphs (DAGs)
v' Path- and SSSP-based variants

AGENDA

v Optimizations

Performance Experiments

What is DFS?

¢ o a Eé?lfieen:t:
Discovery:

@ Finish:

a,b,c,d,e,f,g,i,]

What is DFS?

Node: a,b,c,d,e,f,g,i,]
E @ Parent: /,a
E Discovery: a,b

0 Finish:

What is DFS?

Node: a,b,c,d,e,f,g,i,]
E ° a Parent: /,a, b,
Discovery: a,b,e

0 Finish: e

What is DFS?

Node: a,b,c,d,e,f,g,i,j
Parent: /,a, b,b

Discovery: a,b,e,f

Finish: e

What is DFS?

Node: a,b,c,d,e,f,g,i,j
Parent: /,a, b,b, ,f

Discovery: a,b,e,f,i

Finish: e,i

What is DFS?

Discovery: a,b,e,f,i,j

Finish: e,i,]j

Node: a,b,c,d,e,f,).)
Parent: /,a, b,b, ,

What is DFS?

Node: a,b,c,d,e,f,g,i,j
Parent: /,a,a,a,b,b,d,f,f

Discovery: a,b,e,f,i,j,c,d,g

Finish: e,i,j,f,b,c,g,d,a

Previous Work on DFS

Lexicographic DFS

Time O(log?n) Time O(log2n) Time O(y/n log'"'n)
Processors O(n) Processors O(n®/log n) Processors O(n3)

where w < 2.373 is the matrix multiplication exponent

10 <ANVIDIA.

Previous Work on DFS

Lexicographic DFS

— | T

Time O(log?n) Time O(log2n) Time O(y/n log''n)
Processors O(n) Processors O(n®/log n) Processors O(n3)

topological sort, bi-connectivity and planarity testing

where w < 2.373 is the matrix multiplication exponent

11 <4 NVIDIA.

DIRECTED TREES

Directed Tree

[0] [0]

Phase 2: Bottom-Up Traversal

Directed Tree

[0] [0]

Phase 2: Bottom-Up Traversal

Directed Tree

[0] [0]

Phase 2: Bottom-Up Traversal

Directed Tree

[0] [0]

Phase 2: Bottom-Up Traversal

Directed Tree

[0] [0]

Phase 2: Bottom-Up Traversal

Directed Tree

[015’1 ’2]

[0] [0]

Phase 2: Bottom-Up Traversal

Directed Tree

[0] [0]

Phase 2: Bottom-Up Traversal

Directed Tree

[01516,8]

[0] [0]

This phase is done, next phase is about to start ...

20 <4 NVIDIA.

Directed Tree

offset

[0] [0]

Phase 3: Top-down Traversal

offset

Directed Tree

[0,51618]

Ca
(o) (e D
e

[0]

ST D

[[0]

offset 1 [0] [0]

Phase 3: Top-down Traversal

Directed Tree

[O 5,6,8]
O \
] [0 'l offset 6
. [0,1,2]
offset [0] [0]

offset 1 [0] [0]

Phase 3: Top-down Traversal

23 <4 NVIDIA.

Directed Tree

[0568]

5, S \

discovery 6+1
(e SPNPENCD

discovery 0+ [0] [0]

discovery 1+3 [0] [0]

discovery = offset + depth

Phase 3: Top-down Traversal

24 <4 NVIDIA.

Directed Tree

[O 5,6,8]
o 0,1,4] a \[01]
finish 6+1
(> (g (a0
finish 0+0 [0] [0]

finish 1+0 [0] [0]

finish = offset + sub-tree size

Phase 3: Top-down Traversal

25 <4 NVIDIA.

DIRECTED ACYCLIC GRAPHS

PATH-BASED VARIANT

Path-Based (for DAGS)

Phase 1

Path-Based (for DAGS)

O (o>
O ENED G
@ ED collision

eft

« wait until all paths to a node are traversed
« align path sequences
left [a,b,f]
right [a,d,f]
« compare left-to-right and choose smallest

[a,b,1] [a,d,f]

(lexicographically smallest) ' < resolution

Phase 1

28 <A NVIDIA.

Path-Based (for DAGS)

This phase is done

OPTIMIZATIONS

Path Pruning

Path Pruning

o When two paths reach the same node
v' There exists a parent “a” where

the path split [a,b,...] and [a,c,...]

[a,c,d,f] f [a,b,e,f]

32 <ANVIDIA.

[a,c,d,f]

f

[a,b,e,f]

Path Pruning

When two paths reach the same node
v' There exists a parent “a” where
the path split [a,b,...] and [a,c,...]

v It is the comparison between “b” and “c”
that allows us to distinguish between paths

33 <NVIDIA.

a When two paths reach the same node
v' There exists a parent “a” where
the path split [a,b,...] and [a,c,...]

b ¢ v It is the comparison between “b” and “c”
that allows us to distinguish between paths
q o v Parent node with a single edge

will never be a decision point

[a,c g f [a.b €]

34 NVIDIA.

[a,cC,f]

f

When two paths reach the same node
v' There exists a parent “a” where
the path split [a,b,...] and [a,c,...]

¢ v' It is the comparison between “b” and “c”
that allows us to distinguish between paths
o v Parent node with a single edge
will never be a decision point
fa,b.fl v" No need to store nodes with such parents

35 NVIDIA.

Path Pruning

i
5, 68% %
— 25.00% B
)
—
— 20.00%
et
1Y
O 15.00%
=
C 10.00%
2
!
[5.00%
-
= I I I |
o 0.00%
Graphfwlatrlx

36 <4 NVIDIA.

Phase Composition

:

Profiling
:

)

SR,
SR

o

&
e

 3rd Phase
= 2nd Phase

IIIII " 1st Phase
TO0% -

i 2 3 4 5 6 7 8 9 10 11 12

Graph/Matrix

37 <ANVIDIA.

SSSP-BASED VARIANT

SSSP-based (for DAGS)

Run the algorithm for Directed Trees, but

v Propagate # of nodes to all the parents
v’ Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

39 <ANVIDIA.

SSSP-based (for DAGS)

[1] [1,1]

(b
[1,1,1] 0
[1
(i i

[1] [1]

Run the algorithm for Directed Trees, but

v Propagate # of nodes to all the parents
v’ Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

40 <4 NVIDIA.

SSSP-based (for DAGS)

[1] [1.7]

(b
oy (e
[1
(i i

[1] [1] prefix sum

Run the algorithm for Directed Trees, but

v Propagate # of nodes to all the parents
v’ Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

41 <4 NVIDIA.

SSSP-based (for DAGS)

La)-
6Dy G0 DR

[1]

[1,2,3] 0
[1
(i i

[1] [1]

Run the algorithm for Directed Trees, but

v Propagate # of nodes to all the parents
v' Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

42 <A NVIDIA.

SSSP-based (for DAGS)

La)-
oDy, G DR

[1]

) Chay (o

[1] preficsum [1

[1] [1]

Run the algorithm for Directed Trees, but

v Propagate # of nodes to all the parents
v’ Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

43 <4 NVIDIA.

SSSP-based (for DAGS)

[1,5,1,2,1]

La)-
(0D oy G0 DR

[1]

[1,2,3] 0
[1
(i i

[1] [1]

Run the algorithm for Directed Trees, but

v Propagate # of nodes to all the parents
v' Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

44 < NVIDIA.

SSSP-based (for DAGS)

[1,6,7,9,10]

La)-
(0D oy G0 DR

[1]

[1,2,3] 0
[1
(i i

[1] [1]

Run the algorithm for Directed Trees, but

v Propagate # of nodes to all the parents
v' Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

45 <4 NVIDIA.

SSSP-based (for DAGS)

Assign # of nodes

as the edge weight

This phase is done, next phase is about to start ...

SSSP-based (for DAGS)

Phase 2: Top-down traversal

SSSP-based (for DAGS)

Shortest Path is the DFS path

Phase 2: Top-down traversal

SSSP-based (for DAGS)

Phase 2: This phase is done

OPTIMIZATIONS

Discovery time

v’ The
defines an ordering of nodes

Phase 3a: Sorting

Discovery time

v The
defines an ordering of nodes

v" We can them to obtain
discovery time

Phase 3a: Sorting

52 <ANVIDIA.

Discovery time

v The
defines an ordering of nodes

v" We can them to obtain
discovery time

Discovery: a,b,e,f,i,j,c,d,g

Phase 3a: This phase is done
(Phase 3b will find the finish time) 53 <InVIDIA

Phase composition

;
|

Profiling
1REIXER
o ——— 5

|
|

(T

—|||| TS

" Phase 3b
% Phase 3a
= Phase 2
" Phase 1

—mum s

%

Grapthatrlx

—||||||||| MRS -

[
]

T
m|||||||| I

54 <ANVIDIA.

EXPERIMENTS

Data

1 coPapersDBLP 540487 15251812 Citations

2 auto 448696 3350678 Numeric Sim.
3 hugebubbles-000... 18318144 30144175 Numeric Sim.
4 delaunay_n24 16777217 52556391 Random Tri.

5 il2010 451555 1166978 Census Data
6 f12010 484482 1270757 Census Data
7 ca2010 710146 1880571 Census Data

8 tx2010 914232 2403504 Census Data

9 great-britain_osm 7733823 8523976 Road Network
10 germanu_osm 11548846 12793527 Road Network
11 road_central 14081817 21414269 Road Network
12 road_usa 23947348 35246600 Road Network

When necessary DAGs are created from general graphs by dropping back edges

56 <ANVIDIA.

Performance

6)_(5_x_

Path-based
SSSP-based
“ 3 BFS

Speedup (Parallel vs. Seq. DFS)

\
SO N é"b‘ P P S OGR4
IR K A U N N D O 9
o O > < Q A ¢ 2

R QOQ’ ,b\)(\ 0’5&/ ((\’b s O

FS NN § & ©

Results obtained with Nvidia Pascal TitanX GPU, Intel Core i7-3930K @3.2GHz CPU, Ubuntu 14.04 LTS OS, CUDA Toolkit 8.0 57 Snvibia.

CONCLUSIONS

v' Work-efficient O(m+n)
v" The algorithm takes O(z log n) steps,
where z is the maximum depth of a node

v' Depends highly on the connectivity/sparsity pattern
v Can achieve up to 6x speedup (but slowdown possible)

v" M. Naumov, A. Vrielink and M. Garland, “Parallel Depth-First Search
for Directed Acyclic Graphs”, Technical Report, NVR-2017-001, 2017

https://research.nvidia.com/publication/parallel-depth-first-search-directed-acyclic-graphs

59

NVIDIA.

Thank you

https://research.nvidia.com/publication/parallel-depth-first-search-directed-acyclic-graphs

60 <ANVIDIA.

