GENERAL ANALYSIS OF MAXIMA/MINIMA IN CONSTRAINED
OPTIMIZATION PROBLEMS

1. STATEMENT OF THE PROBLEM
Consider the problem defined by
maximmize f(zx)
subject to g(x) =0

where ¢g(z) = 0 denotes an m x 1 vector of constraints, m < n. We can also write this as

max f($17$27"'7$n)
T1,T9,...Tn
subject to
g1(z1, x2, ..., xy) =0
92(1, 2y ..., Xy ) =0
1)
gm(T1, T2y, ) =0

The solution can be obtained using the Lagrangian function

L(x; ) = f(z) — Ng(z) where N = (A1, A2,..., A\m)
= fz1, @2, ..) = Ag1(@) — A2g2 (@) — - -+ = Amgm ()
Notice that the gradient of L will involve a set of derivatives, i.e.

VoL =V,.f(z)— <69> A

oz
where

dg1(x*)  Ogo(z*) Ogm (™)

6:::1 6:::1 o 6:::1
dg1(x*)  Ogo(z*) Ogm (™)

0g L Oxo Oxo o Oxo

() - ;

dg1(z*)  Oga(z*) Ogm (™)

oz, oz, o oz,
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There will be one equation for each x. There will also be equations involving the deriva-
tives of L with respect to each \.

2. NECESSARY CONDITIONS FOR AN EXTREME POINT

The necessary conditions for an extremum of f with the equality constraints g(z) = 0
are that

VL(z*, \*) =0 (4)

where it is implicit that the gradient in (3) is with respect to both z and .

3. SUFFICIENT CONDITIONS FOR AN EXTREME POINT

3.1. Statement of Conditions. Let f, g1, ..., g, be twice continuously differentiable real-
valued functions on R". If there exist vectors x* ¢ R", A* ¢ R™ such that

VL(z*, \*) =0 (5)

and for every non-zero vector z ¢ R" satisfying

2'Vgi(x*) =0, i=1,...,m (6)

it follows that
Z'V2L(x*, \*)z > 0, (7)
then f has a strict local minimum at z*, subject to g;(z) = 0,7 =1, ..., m. If the inequal-

ity in (7) is reversed, then f has strict local maximum at 2*. The idea is that if equation 5
holds, then if equation 7 holds for all vectors satisfying equation 6, f will have a strict local
minimum at z*.

3.2. Checking the Sufficient Conditions. These conditions for a maximum or minimum
can be stated in terms of the Hessian of the Lagrangian function (or bordered Hessian).
Let f, g1, ..., 9m be twice continuously differentiable real valued functions. If there exist
vectors x* ¢ R™, A* ¢ R™, such that

VL(z*, \*)=0 (8)
and if
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[O?L(z*, \¥) O?L(z*, \*)  Og1(x*) OGm (x*)
0x1071 0x10xy 0x1 0x1
O?L(z*, \¥) O?L(z*, \*)  Og1(x*) d@gm(:n*)
0x,0xy 0x,0xy Oy, Oy
(—1)™det
dg1(z") dg1(z") 0 0
O0xq Oy,
Ogm(x*) Ogm (™) 0 0
0y Oy,
forp=m+1,..., n, then f has a strict local minimum at z*, such that
gi(z*)=0, i=1,...,m.

>0

(10)

We check the determinants in (9) starting with the one that has m + 1 elements in each
row and column of the Hessian and m+1 elements in each row or column of the derivative
of a given constraint with respect to x. Note that m does not change as we check the various

determinants so that they will all be of the same sign for a given m.

If there exist vectors x* ¢ R™, A* ¢ R™, such that

and if

(—1) det

[O2L (2%, A¥)

6:1:16:1:1

O*L(z*, \¥)
O0x,01

0g1(z™)
6:::1

Ogm(x*)
6:::1

VL(z* \*)=0
O?L(z*, \*)  Ogi(z*)
0x10xy 0x1

O?L(z*, \*)  Ogi(z*)

0x,0xy Oy,
0g1(z™)

Oy, 0
Ogm(x*)

Oy,

OGm (™)
6:::1

Ogm (™)
Oy,

>0

(11)

(12)
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forp=m+1,..., nthen f has a strict local maximum at z*, such that

gi(z*)=0, i=1,...,m. (13)

We check the determinants in (12) starting with the one that has m + 1 elements in
each row and column of the Hessian and m + 1 elements in each row or column of the
derivative of a given constraint with respect to x. Note that p changes as we check the
various determinants so that they will alternate in sign for a given m.

Consider the case where n = 2 and m = 1. Note that the first matrix we check has
p =m + 1 = 2. Then the condition for a minimum is

FO2L(x*, \*)  O?L(z*, \*) 0g(x*)

6:1:16:1:1 6:1:16:1:2 alL’l
2 * * 2 * * *
(1) det O°L(z*, \*) 0°L(z*, \*) 09g(x¥) >0 (14)
6:1:26:1:1 6:1:26:1:2 6132
o9) gl
L 6:::1 6:1:2
This, of course, implies
FO2L(z*, \*)  0%L(x*, \*)  0Og(z*)]
6:1:16:1:1 6:1:16:1:2 alL’l
det O?L(z*, \*)  9°L(x*, \*)  09g(z*) <0 (15)
6:1:26:1:1 6:1:26:1:2 6132
o9 )
L 6:::1 6:1:2 .
The condition for a maximum is
FO2L(z*, \*)  9%L(x*, \*)  09g(z*)
6:1:16:1:1 6:1:16:1:2 alL’l
2 * * 2 * * *
(—1)2 det O°L(z*, \*) 0°L(z*, \*) 0Jg(x¥) >0 (16)
6:1:26:1:1 6:1:26:1:2 6132
) de)
L 6:::1 6:1:2

This, of course, implies
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>0 (17)

FO2L(z*, \*)  02L(z*, \*)  0Og(z*)]
6:1:16:1:1 6:1:16:1:2 al’l
det O?L(x*, X*)  O?L(z*, \*) 0Og(x*)
6:1:26:1:1 6:1:26:1:2 al’2
o9() gl
L 6:::1 6:1:2 p

Also consider the case where n = 3 and m = 1. We start withp = m + 1 = 2 and
continue until p = n. Then the condition for a minimum is

FO2L(z*, A\*)  O?L(z*, A\x) 0Og(x*)]
6:1:16:1:1 6:1:16:1:2 al’l
(1) det O?L(x*, \*)  O?L(z*, \*)  9dg(z*)
6:1:26:1:1 6:1:26:1:2 al’2
o9(x)  dg)
L 6:::1 6:1:2 p
FO?L(x*, \*)  O2L(x*, \*)  0%*L(z*, \*) 0g(x*)]
6:1:16:1:1 6:1:16:1:2 6:1:16:1:3 6:::1
O?L(x*, \*)  O?L(z*, \*) 0%L(z*, \*) 9dg(z*)
6:1:26:1:1 6:1:26:1:2 6:1:26:1:3 6:1:2
(—1) det
O?L(z*, \*)  O2L(x*, \*)  9%*L(z*, \*) dg(x*)
6:1:36:1:1 6:1:36:1:2 6:1:36:1:3 6:1:3
o9l Bglx)  dgle)
L 6:::1 6:1:2 6:1:3 n

The condition for a maximum is

>0

>0
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FO2L(z*, \*)  O?L(x*, \*) 0Og(z*)
6:1:16:1:1 6:1:16:1:2 alL’l
(—1)2 det O?L(z*, \*)  O?L(z*, \*) 0Og(z*) >0
6:1:26:1:1 6:1:26:1:2 6132
o9(x)  dgle)
L 6:::1 6:1:2
FO?L(x*, \*)  O2L(x*, \*)  9%*L(z*, \*) Og(x*) (19)
6:1:16:1:1 6:1:16:1:2 6:1:16:1:3 6:::1
O?L(z*, \*)  O2L(x*, \*)  9%*L(z*, \*) dg(x*)
3 6:1:26:1:1 6:1:26:1:2 6:1:26:1:3 6:1:2
(—=1)° det >0
O?L(x*, \*)  O0?L(z*, \*) 0%L(z*, \*) 9dg(z*)
6:1:16:1:1 6:1:16:1:2 6:1:16:1:3 6:1:3
o9l By dgla)
L 6:::1 6:1:2 6:1:3

3.3. Sufficient Condition for a Maximum and Minimum and Positive and Negative Def-
inite Quadratic Forms. Note that at the optimum, equation 6 is just linear in the sense that

the derivatives

Jgi(x™*)
alL'j
are fixed numbers at the point 2* and we can write equation 6 as
ZJ;=0
dg1(z*)  0ga(z¥) Ogm(z*)
0x1 0x1 0y
* * * 0
dg1(z*) 0ga(z¥) Ogm(z*) 0
(z122...2n) 0z 0z 0z =1 . (20)
: 0
0g1(z*) 0ga(z¥) Ogm(z*)
Oxy, oz, Oxy,
9gi(z*)

where J, is the matrix { D,

} and where there is a column of the J, for each constraint

and a row for each x variable we are considering. This then implies that the sufficient con-
dition for a strict local maximum of the function f is that |Hp| has the same sign as (—1)?,
that is the last n — m leading principal minors of Hp alternate in sign on the constraint set
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denoted by equation 6. This is the same as the condition that the quadratic form 2’ Hpz be
negative definite on the constraint set

ZVgi(x*) =0, i=1,...,m (21)
If |Hp| and these last n — m leading principal minors all have the same sign as (—1)",
then 2’ Hpz is positive definite on the constraint set z’Vg;(z*) =0, i=1,..., mand the

function has strict local minimum at the point z*.

If both of conditions are violated by non-zero leading principal minors, then 2’ Hpz
is indefinite on the constraint set and we cannot determine whether the function has a
maximum or a minimum.

3.4. Example 1: Minimizing Cost Subject to an Output Constraint. Consider a produc-
tion function given by

y = 20wy — 22 + 1529 — 3 (22)

Let the prices of z1 and z2 be 10 and 5 respectively with an output constraint of 55.

Then to minimize the cost of producing 55 units of output given this prices we set up the
following Lagrangian

L =10z + 525 — A(2021 — 27 + 1525 — 23 — 55)

OL
== =10 — A(20— 221) = 0
6:::1
(23)
L
6—25—/\(15—2332) )
6:1:2
OL
o = (12021 — x4+ 152 — 22 — 55) =0
If we take the ratio of the first two first order conditions we obtain
10_,_ 202z
5 7 15—2m
= 30 — 4zo = 20 — 221 (24)
= 10 — 4z9 = —21;
=11 =2x9—5
Now plug this into the negative of the last first order condition to obtain
20(2x3 — 5) — (229 — 5)2 + 1525 — 25 — 55 =0 (25)

Multiplying out and solving for z, will give
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4029 — 100 — (423 — 2029 + 25) + 1529 — 23 — 55 = 0

= 4029 — 100 — 423 + 2029 — 25+ 1525 — 23 — 55 =0
= —5z3 + 75xy — 180 =0 (26)

= 525 — THa9 + 180 =0

= 23— 1525+ 36 =0

Now solve this quadratic equation for x5 as follows

15 4 /225 — 4(36)
2

15+ /81 (27)
2

=12o0r3

Tro =

Therefore,

:L'1:2:L'2—5

=19o0r1 (28)

The Lagrangian multiplier A can be obtained by solving the first equation that was ob-
tained by differentiating L with respect to x;

10 — A(20 — (19)) =0
= A= —g
10— A(20—-2(1))=0

= A=

Q| Ut

To check for a maximum or minimum we set up the bordered Hessian as in
equations 14-17. The bordered Hessian in this case is

FO2L(x*, \*)  O?L(z*, \*)  Og(z*)]
6:1:16:1:1 6:1:16:1:2 alL’l
Hp = O?L(z*, \*)  9°L(x*, \*) 0dg(x*) (30)
6:1:26:1:1 6:1:26:1:2 6132
d9(")  dgl)
L 6:::1 6:1:2 p

We only need to compute one determinant. We compute the various elements of the

bordered Hessian as follows
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L = 10z + 525 — \(2021 — 27 + 1539 — 23 — 55)

oL
oL
d*L
=2
6:1:16:1:1 A
*L (31)
6:1:16:1:2 B
d*L
=2
6:1:26:1:2 A
dg
— =20-2
6:::1 o
dg
6—372 =15— 21’2

Consider first the point (19, 12,-5/9). The bordered Hessian is given by

2\ 0 20 — 2z
Hp = 0 2\ 15 — 229

\‘20 — 2:L'1 15— 2:L'2 0 J

5
Tl = 19, Ty = 12, A= —§

(32)
— 10 -
-— 0 -18
9

Hp = 10
0 —— -9

9
18 -9 0 |

The determinant of the bordered Hessian is
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o\ =9 -9 -8 -9 0 -3
ol = (-1 (-5 ) FEDPO) FEA )
9 0 9 0 18 -9

= (—%) (—81) 40 + (—18)(—20) (33)

=90 4 360 = 450

Here p = 2 so the condition for a maximum is that (—1)2|Hpg| > 0, so this point is a
relative maximum.

Now consider the other point, (1, 3,5/9). The bordered Hessian is given by
2\ 0 20 — 2z
Hp = 0 2\ 15 — 2x9

LQO — 2:L'1 15 — 2:L'2 0 J

9
—1, 23=3, A= 2
€1 ; €2 ) 9 (34)
_10 -
— 0 18
9
Hy = 10
0O — 9
9
18 9 0,

The determinant of the bordered Hessian is

0N |9 9 29 0 3
=0 ()| ol et

(35)
_ (19_()) (—81) + 0 + (18)(—20)

= —90 — 360 = —450

The condition for a minimum is that (—1)|Hg| > 0, so this point is a relative minimum.
The minimum cost is obtained by substituting into the cost expression to obtain

C=10(1)+5(3) =25 (36)
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3.5. Example 2: Maximizing Output Subject to a Cost Constraint. Consider a production
function given by

y = 30x1 4+ 1229 — :L'% + x1T9 — :L'% (37)

Let the prices of z1 and x5 be 10 and 4 respectively with an cost constraint of $260.
Then to maximize output with a cost of $260 given these prices we set up the following
Lagrangian

L =30z + 1229 — 22 + 2129 — 22 — M(1021 + 429 — 260
1 2

L
oL =30—2x1+22—10A=0
6:::1
oL (38)
— =1242;—229—4X =0
6:1:2
oL
ETe —10z; — 4z2 + 260 =0

If we take the ratio of the first two first order conditions we obtain

10_25_30—2:L'1—|—:L'2
4 7T 124 3 — 29

= 30+ 2.521 — bx9 = 30 — 221 + 22
= 4.5x1 = 619

=T = 1.331’2

Now plug this value for z; into the negative of the last first order condition to obtain

10z + 4z — 260 = 0
= (10)(1.33x2) + 4z — 260 = 0
= 13.33z5 + 425 = 260
= 17.332 = 260 (40)

= 19 =15

NS (%) (15) = 20

We can also find the maximum y by substituting in for z; and z».
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y = 30x1 + 1229 — :L'% + 119 — :L'%
= (30)(20) + (12)(15) — (20)2 —(20)(15) — (15)2
= 600 + 180 — 400 + 300 — 225
=455

(41)

The Lagrangian multiplier A can be obtained by solving the first equation that was ob-
tained by differentiating L with respect to x;

30 — 2z1 + 29 — 10A =0
= 30 — 2(20) + (15) — 10A =0
= 30—40+15—10A=0

(42)
= 5=10\
1

To check for a maximum or minimum we set up the bordered Hessian as in equa-
tions 14-17 where p = 2 and m = 1. The bordered Hessian in this case is

FO?L(x*, \*)  O%L(x*, \*)  0Og(x*)]
6:1:16:1:1 6:1:16:1:2 al’l
Hp = O?L(x*, \*)  O?L(z*, \*) 0Og(z*) 43)
6:1:26:1:1 6:1:26:1:2 al’2
o9(*)  Bgl)
L 6:::1 6:1:2 p

We compute the various elements of the bordered Hessian as follows
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L =30z + 1225 — 23 + 120 — 25 — MN(1021 + 4z5 — 260)
oL
6:::1
oL
6:1:2

9’L
6:1:16:1:1
9’L
6:1:16:1:2
9’L
6:1:26:1:2

99
6:::1

dg
Fr

The derivatives are all constants. The bordered Hessian is given by

=30 — 221 + 22 — 10X

=12+ 21 — 229 — 4

=2

-2 1 10
Hg=|1 -2 4
10 4 0
The determinant of the bordered Hessian is

|HB|=(—1)2(—2)‘:12 3‘+(—1)3(1)‘110 3‘+(—1)4(10)|‘110 _42‘

= (=2)(=16) — (—40) + (10)(24)

= 32440+ 240 = 312

13

(44)

(46)

The condition for a maximum is that (—1)?|Hg| > 0, so this point is a relative maximum.

3.6. Example 3: Maximizing Utility Subject to an Income Constraint. Consider a utility

function given by
u=a'zy?
Now maximize this function subject to the constraint that

wW1T1 + Wk = Cgy
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Set up the Lagrangian problem:

L = z{'25? — MNwizy + wazy — ¢

The first order conditions are

OL 1

a—‘rl:alw?l 5?2 —Aw; =0
OL 1

P ax{tzy?T — dwe =0
OL

=—w1T1 —wo2To+co=0

X
Taking the ratio of the 1% and 2"¢ equations we obtain

w1 122

wo 2T

We can now solve the equation for the 2°¢ quantity as a function of the 1°* input quantity
and the prices. Doing so we obtain

QaT1W1
ro = ———
Qa1W2

Now substituting in the income equation we obtain

W11 + Wako = Cgy

QoT1W1
= WiT1 +Wo | —— | = ¢
a1W2
QW1 W2
= wir1+ |——|T1 = c¢o
1wz

W1
= w11 + T1 = Cp
a1

QW1
= Cq

=T [wl +
aq
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= T1W1 [1 + %:| Co

aq

011-1-012] .

= T1W1
aq

€0 aq
=a=—|—
w1 | a1 + a9

We can now get x5 by substitution

Q2W7
1wz

€0 a1 Q2w
w1 |1 + a2 Q1w

Co (6]
wo | a1 + a2

We can find the value of the optimal u by substitution

$2:$1[

— 01 .02
u=x]"'T,

(5] a2
U B o | 22
B <w1 [041+042]> (wz [041+042]>

_ oq+toaz, —o1, —0o o Qg —01—o
=y Pwy M wy et 0y (o + ag)

This can also be written
u =z xH?
w1 \ a1 + as wo \ 1 + Qo
() Gr) G ()
N a1+ asg a1 + g w1 w2

For future reference note that the derivative of the optimal u with respect to ¢y is given

by
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U = 6841+a2w1—a1w2—a2a?1a§2 (042 + az)—al—ag
ou
a1tas—1 —« - _a @ —a—
—— = (o + a2)cy' T T w] Twy ot ol (g 4+ ap) T TR
aCQ
-1 — — —oy—
:Cgél—i-az w; a1w2 aQa?la?Q(ag—l—ag)l a1—ag

We obtain A by substituting in either the first or second equation as follows

P 1as? — hwy =0

a1—1_ao
o z
= A=—L1 "2
w1
a2$?1$§2—1 —Adwy =0
a1 _az—1
oozt
=) \= 172
w2

If we now substitute for 1 and z2, we obtain
c [ oy ]
rH=—|—
wy | a1+ ag

a;—1 (o)
Co oq Co a2
ar [ = | —— L et
! <w1 [al —I—a2]> (wg [al —I—a2]>

w1

a1—1 s
alt T ag? (g 4 ag

w1

aitao—1  1—a1,, —a2

l—a1—as
16y wy Wy )

_ oaitas—1. —ay,, —ao Q1 Q9 l—a;—a2
= G wy Mwy aitah? (on + ag)

Thus X is equal to the derivative of the optimal u with respect to c.

To check for a maximum or minimum we set up the bordered Hessian as in equa-
tions 14-17 where p = 2 and m = 1. The bordered Hessian in this case is
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17

FO2L(x*, \*)  0°L(x*, \*)  0Og(z*)]
6:1:16:1:1 6:1:16:1:2 al’l
Hp = O*L(z*, \*)  9%L(z*, \*)  Og(a*) 47)
6:1:26:1:1 6:1:26:1:2 6:1:2
o9y dgl)
L 6:::1 6:1:2 p
We need compute the various elements of the bordered Hessian as follows
P
L = z{'25? — MNwizy + wazg — ¢
OL
pr = alw?l_lw? —\un
OL
pr a2 — Awsy
%L _
0% = (on)(on — Daag?
1
azL o a;—1 _as—1
6:1:16:1:2 - i T2
9%L _
0% — (a)(on ~ Dafiag
2
dg
— =W
6:::1 !
ﬁ = w
6:1:2 -2
The derivatives of the constraints are constants. The bordered Hessian is given by
{(al)(al — 1):E?1_2:E§2 alagw?l_lwgrl wl}
Hp = alagw?l_lwgrl (o) (g — 1):L'?1:L'§2_2 Wo (48)
\‘ w1 w9 0 ‘

To find the determinant of the bordered Hessian, expand by the third row as follows
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“1_as—1 2
|Hp| = (—1)%w| caoari’ st U (21w (enen = V™ Ta® +0
(a2) (g — 1)ZE?1JE§2_2 Wo alozg:n?l_lzngz_l wWo
alozg:n?l_lzngz_l w1 (a1)(aq — 1):E?1_2:E§2 w1

= w1 a1 _oag—2 — W2 a;—1 _ as—1

(a2) (a2 — 1)x{ x5 wWo ajagx]!T Xy Wy
— a1—1, as—1 2 -1 a1 oap—2

wiwea px]t Ty wi(a2)(aq )zt
— w3 (o) (o — 1):E?1_2:E§2 + wlwgoqag:n?l_lzngz_l
= 2w1w2a1a2$?1_1$§2_1 — w? (o) (g — 1)ZE?1JE§2_2 — w3 (o) (o — 1):E?1_2:E§2
(49)

For a maximum we want this expression to be positive. Rewriting it we obtain

2w1w2a1a2$?1_1$§2_1 —w? (o) (ag — 1)ZE?1JE§2_2 — w3 (o) (o — 1):E?1_2:E§2 >0 (50)

We can also write it in the following convenient way

- -1
2wiwea izt 1:1332

2, a1, 00—2 2, 2 oy, 022
+apwiz]txy? " — aqwir] Ty’ (51)

-2 -2
+aywiz TP ry? — afwixt g% > 0

To eliminate the prices we can substitute from the first-order conditions.

ozlzn?l_lzngz
iET
-1
o]t ay?
e
This then gives
al—1 a2 a1 az—1
9 ai1ry Ty QaTy " Ty a1a2$a1—1$a2—1
A A 1 2
BT A R o2 ?
1 2 a1 a2—2 2 1 2 a1 a2—2
+ag — Ty Ty — g — T1 ' Ty (52)
2 2
a1 az—1 a1 az—1
Q2T " Ty a1—-2 .« 2 [ X2T1 Ty a1—2 o
+ay — R — 7 g >0
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Multiply both sides by A? and combine terms to obtain

3aq—2 3a2 2
2a1a2$1

_I_a%a ;U:%al 2 3a2 2 —0120411'?0[1 21,%042 2 (53)

2 2 2 2
+aq ozzzn‘z’al 30‘2 —aj ozzzn‘z’al 30‘2 >0

Now factor out 22 ~25%22 to obtain

Ba1-2 3022 (92092 1 o2 2 2 2
237225777 (20f02% + afas — a3ai + araj — afa3) >0

(54)
3a1-2; 3052

= T (ozlozg + oqozz) >0

With positive values for x; and z; the whole expression will be positive if the last term
in parentheses is positive. Then rewrite this expression as

(a%ag + a1a22) >0 (55)
Now divide both sides by a3a3 (which is positive) to obtain
1 1
(— + —> >0 (56)
a9 (05}

3.7. Some More Example Problems.
(i) opt [r1z2] .t
x1,T2
r1+x0=206
(il) opt [z129 +221] st
x1,T2
4x1 + 229 = 60
(iii) opt [z? +x3] s.t
x1,22
x1 + 229 = 20
(iv) opt [x1x2] s.t.
x1,22
¥4 4x3 =1
11
(v) opt[z{z3] st

T1,T2

2x1 + 8x9 = 60

4. THE IMPLICIT FUNCTION THEOREM

4.1. Statement of Theorem. We are often interested in solving implicit systems of equa-
tions for m variables, say X1, X2, . . ., X, in terms of m+p variables where there are a mini-
mum of m equations in the system. We typically label the variables X,,41, Xm+2, - - -, Xm+p,

Vi, V2, --., Yp- We are frequently interested in the derivatives gml where it is 1rnp11c1t that

all other x; and all y; are held constant. The conditions guaranteeing that we can solve for
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m of the variables in terms of p variables along with a formula for computing derivatives
is given by the implicit function theorem.

Theorem 1 (Implicit Function Theorem). Suppose that ¢; are real-valued functions defined on
a domain D and continuously differentiable on an open set D C D C R™*P, where p > 0 and

¢($?7 ;L'(2]7 ttt JI?)‘L? y?? yg? MR yg) = ¢Z($07 yo) = 07

57
i=1,2,...,m,and(z°, y°) € D'. 57)

Assume the Jacobian matrix [%jyo)] has rank m. Then there exists a neighborhood N(x°,
J

yo) C D!, an open set D*> C RP containing yo and real valued functions iy, k=1, 2, ..., m,
continuously differentiable on D?, such that the following conditions are satisfied:

:L'g = ¢k(y0)7 k= L,2,...,m (58)

For every y € D?, we have

i(v1(y)s V2(y)s -y YY) v, y2o - yp) =0, 1 =1,2,...,m.
or (59)
oi(W(y),y) =0, i=1,2,...,m.
We also have that for all (x,y) € Ns(x°, y°), the Jacobian matrix [%ﬁjy)] has rank m. Further-
more for y € D?, the partial derivatives of 1) (y) are the solutions of the set of linear equations

m i s 0 -0 P ) .
5 ¢ (gﬁ) v) 12:;@) _ —0¢ g’(y) Y12 . ..m (60)
k=1 J !

4.2. Example with one equation and three variables. Consider one implicit equation
with three variables.

¢(a, w3, 4°) = 0 (61)

The implicit function theorem says that we can solve equation 61 for x? as a function of
xJ and y?, i
5 y’, ie.,

2 = (a9, °) (62)
and that

¢(¢1($27 y)7 x2, y) =0 (63)
The theorem then says that
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a¢(¢1($27 y)7 €Z2, y) 6¢1 _ —8¢(¢1([L’2, y)7 €Z2, y)

81'1 61’2 81’2
N a¢(¢1($27 y)7 x2, y) 8$1($27 y) _ a¢(¢1($27 y)7 Z2, y)
0y 0o Oxo
o] T2,Y), T2,
Ox1(za,y)  — %ﬁl)?y)
Oxa N w
1

Consider the following example.
o, 25, 4°) = 0
yO - f('x(l]v LL’g) =0

The theorem says that we can solve the equation for x!.

w(l] = ¢1($(2]7 yO)

It is also true that
¢(¢1($27 y)7 x2, y)
y — f(1(z2, y), 72)

Now compute the relevant derivatives

a¢(¢1($27 y)7 Z2, y) _ af(¢1($27 y)7$2)

=0
=0

6:::1 6:::1
a¢(¢1($27 y)7 €I2, y) _ af(¢1($27 y)7$2)
6:1:2 N 6:1:2

The theorem then says that

M 8¢(¢1(I27y)7m27y) 7]
dmi(eny) [ 2o
6:172 8¢(¢1($27y)7r27y)

L 8m1 4

i _ af(wl(m%y)vm?) ]

Oxo

_ 3f(¢1(z27 y)7m2)

L 8m1 4

Oxo

3f(¢1(z27 y)7m2)
Bml

21

4.3. Example with two equations and three variables. Consider the following system of

equations
¢1(x1, 2, y) =3z1 + 222 + 4y = 0

G2 (21, x2, y) =41 + 22 + y =0

(70)
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The Jacobian is given by

Sh 3 2
ol -] 7
8m1 8352

We can solve system 70 for x; and xz as functions of y. Move y to the right hand side in
each equation.

3r1 + 229 = —4y (72a)
4x1 4+ 29 = —y (72b)

Now solve equation 72b for x,
Ty = —y —4x; (73)

Substitute the solution to equation 73 into equation 72a and simplify

3r1 + 2(—y —4dx) = —4dy
= 3r; — 2y — 8x1 = —4y

= —5r1] = —2y

= 11 = %y = Y1(y)

Substitute the solution to equation 74 into equation 73 and simplify

2
ry = —y —4 [gy]

) 8
Sm = -y oy (75)

= — 15—311 = Ya(y)

If we substitute these expressions for x; ad xs into equation 70 we obtain

2 13 2 13
Sy, - = =32 P [— 4
¢1<5y, 5y,y>) [51/] + [ 51/] + 4y

6 2 20
_6, _% .2 (76)
5 T YT Y

_20 20

and
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2 13 T2 13
¢2<5y,—3y,y>) = [51/] + [—gy] + y

8 13 5

= 31/ - gy + 31/
13 13
= — _ — g 0
577 57
Furthermore
Or) _ 2
oy 5
M) 13
oy 5

We can solve for these partial derivatives using equation 60 as follows

00, 00y D01 Dy _ 00
Oxr1 Oy Oxy Oy oy
00, 001 062 by _ ~00
Ox1 Oy Oxa Oy dy
Now substitute in the derivatives of ¢; and ¢ with respect to xi, X2, and y.

a¢1 6¢2

gyl 9v2 _
3 3y + 2 By

a¢1 6¢2

‘7l 9v2 _ 4
4 dy + 1 3

Solve equation 80b for %—’ﬁf

6¢2 6¢1
s — _ _ 4_
dy ! dy

Now substitute the answer from equation 81 into equation 80a
oYn oY
3 —— 21 -1 —-4——) =—-14
oy ( dy

oYn oYn
T 9 gy
= 3 " 8 "

= —5—1 = _2

If we substitute equation 82 into equation 81 we obtain

23

(77)

(79a)

(79b)

(80a)

(80b)
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Ve _ | O

dy dy

09 2

= — =—-1-4|= 83

dy ( 5 > (&)
=5 8 13
5 5 5

5. FORMAL ANALYSIS OF LAGRANGIAN MULTIPLIERS AND EQUALITY CONSTRAINED

PROBLEMS

5.1. Definition of the Lagrangian. Consider a function on n variables denoted
f(z) = f(x1, x2, ..., ). Suppose z* minimizes f(z) for all z € N5(z*) that satisfy

gi(x) =0 i1=1,....,m
Assume the Jacobian matrix (.J) of the constraint equations g;(z*) has rank m. Then:

V(@) =Y AiVgi(z") (84)
=1

In other words the gradient of f at 2* is a linear combination of the gradients of g; at z*
with weights \¥. For later reference note that the Jacobian can be written

9g1(z")  Oga(z”) Ogm(z”)
6:::1 6:::1 o 6:::1
9g1(z")  Oga(z”) 9gm (")
Jg . 6:1:2 6:1:2 6:1:2 (85)
9g1(z")  Oga(z”) Ogm(z”)
oz, oz, o oz,

Proof:

By suitable rearrangement of the rows we can always assume the m x m matrix formed
from the first m rows of the Jacobian (%ﬁ*)) is non-singular. Therefore the set of linear
equations:

Ogi(a*), _ Of(a)
= =1,... 86

i=1
will have a unique solution A*. In matrix notation we can write equation 86 as

JAN=VFf
If J is invertible, we can solve the system for A. Therefore (84) is true for the first m
elements of V f(z*).
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We must show (84) is also true for the last n—m elements. Let £ = (2,41, T2, ..., Tn).
Then by using the implicit function theorem we can solve for the first m xs in terms of the
remaining xs or 7 .

x; = h;(T7) ji=1,...,m (87)
We can define f(z*) as
f(@®) = f(h(T"), ha(T7) - i (T7), Ty - ) (88)
Since we are at a minimum, we know that the first partial derivatives of f with respect
to i1, Tmao, - - -, Ty must vanish at x*, i.e.
Of (x)

=0 = 1,...,
a% ]=m++ n

Totally differentiating (88) we obtain

z*) *) Ohg(2 ) af( )

j=m+1...,n

by the implicit function theorem. We can also use the implicit function theorem to find the
derivative of the ith constraint with respect to the jth variable where the jth variable goes
from m + 1 to n. Applying the theorem to

gi(z") = gi(h1(Z%), ha(Z*) .. A (Z), 2ppyq .. 2) =0

we obtain

Ui 0gi(x*) Ohg(z*)  —0g;(x™) .
Z Oz Ox; Ox; ! e M (%0)

k=1
Now multiply each side of (90) by A} and add them up.

ZZV 0gi(x*) Ohk(Z*) +/\’Fagi($ ) _0

e oz 1)
j=m+1...;n
Now subtract (91) from (89) to obtain:
- * agl * agl
> M Z A Z A =
k=1 (92)

j=m+1...,n
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The bracket term is zero from (86) so that

2:/\*89Z = j=m+1,...,n (93)
Ox;

O:EJ

=1
Since (86) implies this is true, for j = 1,..., m we know it is true for j = 1,2,..., nand
we are finished.
The ); are called Lagrange multipliers and the expression

(:L' /\ Z /\zgz (94)

is called the Lagrangian function.

5.2. Proof of Necessary Conditions. The necessary conditions for an extreme point are

VL(z*, \*) =V f(z") = Jg(z")A =0

95)
a% ZZ_:/\ —0 j=m+1,....n

This is obvious from (84) and (94).

5.3. Proof of Sufficient Conditions. The sufficient conditions are repeated here for con-
venience

Let f, g1,..., gm be twice continuously differentiable real-valued functions on R". If
there exist vectors z* ¢ R™, \* eR™ such that

VL(z*A) =0 (5)

and for every non-zero vector z € R" satisfying

ZVgi(z*)=0,...i=1,....,m (6)
it follows that
ZV2L(z*, A*)z >0 (7)
then f has a strict local minimum at z*, subject to g;(z) = 0,7 = 1,...,,m. If the
inequality in (7) is reversed , then f has strict local maximum at z*.
Proof:

Assume z* is not a strict local minimum. Then there exists a neighborhood Nj(z*) and
a sequence {z¥}, 2, € N5(z*), 2 # 2* converging to =* such that for every z* ¢ {z¥}.
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This simply says that since z* is not the minimum value subject to the constraints there
exists a sequence of values in the neighborhood of z* that satisfies the constraints and has
an objective function value less than or equal to f(*).

The proof will require the mean value theorem which is repeated here for completeness.

Mean Value Theorem

Theorem 2. Let f be defined on an open subset () of R"™ and have values in R. Suppose the set
€2 contains the points a,b and the line segment S joining them, and that f is differentiable at every
point of this segment. Then there exists a point c on S such that

fb) = fla) =V f(c)'(b—a)

_ /() of(¢) of(c) ©98)
= e (b1 —a1) + o (by —ag) +---+ o (by — an)

where b is the vector (by, b, ..., b") and a is the vector (a1, ag, ..., a™).

Now let 3* and z* be vectors in R" and let z* = z* 4 6*y* where #* > 0 and || ¥* ||= 1
so that 2* — xx = 0¥y*. The sequence {6*, y*} has a subsequence that converges to (0, %)
where || y ||= 1. Now if we use the mean value theorem we obtain for each k in this
subsequence

gi(2") = gi(a*) = 0"y Vgi(a* +4f0"y*) =0, i=1,...,m (99)

where yf is a number between 0 and 1 and g; is the ith constraint. The expression is
equal to zero because we assume that the constraint is satisfied at the optimal point and at
the point z* by equation 98.

Expression 99 follows from the mean value theorem because z* — 2* = ¢¥y* and with
v¥ between zero and one, 7¥0%y* is between z¥ = z* + 6% and z*

If we use the mean value theorem to evaluate f(z) we obtain

FE) = £@) = 0V "+ 0"yF) <0 (100)
where 0 < n; < 1. This is less than zero by our assumption in equation 97.
If we divide (99) and (100) by 6* and take the limit as k — oo we obtain

klim [yk/Vgi(:E* + nkﬁkyk)} =9y Vg(z*)=0 i=1,2,...,m (101)
lim [V f (" 4+ n"0y")| = gV i) <0 (102)

Now remember from Taylor’s theorem that we can write the Lagrangian in (95) as

L(2%, \*) = L(z*, \*) + (2% — 2%)'V,L(z*, )
1 * * * *
+ §9k2 (2% — 2*)'V2L(z* 4 BR0% %, ) (25 — ) (103)

1
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where 0 < g% < 1.
Now note that

L(F, ) = J(F) = 30 Xigi(2h)
=1

L(z*, ) = f(2") = > Aigila™)
i=1

and that at the optimum or at the assumed point 2*, g;(-) = 0.
Also VL(z*, \*) = 0 at the optimum so the second term on the right hand side of (103)
is zero. Move the first term to the left hand side to obtain

1
L(*, X%) = La, A) = S0y ViL(" + 510%y*, A7)y (104)
Because we assumed f(z*) > f (zk) in (97) and that g(-) is zero at either z* or 2k itis
clear that

L(zF, \*) — L(z*, \*) <0 (105)
Therefore,

1
§9k2yk’V§L(:ﬂ* + BEekyk Ak <0 (106)
Divide both sides by %HkQ to obtain
¥ VIL(* + BRORyF, Ak <0 (107)
Now take the limit as & — oo to obtain
JVaL(z*, Xy <0 (108)
We are finished since y # 0, and by equation 101,
¥Vgi(z*) =0, i=1,2,...,m
that is, if 2* is not a minimum then we have a non-zero vector y satisfying
yVgi(z*) =0, i=1,2,...,m (109)

where ¥’ V2L(z*, \*)y < 0. But if z* is a minimum then equation 6 rather than (108)
will hold.



