
IPN Progress Report 42-154 August 15, 2003

Generalized Golomb Codes and Adaptive Coding
of Wavelet-Transformed Image Subbands

A. Kiely1 and M. Klimesh1

We describe a class of prefix-free codes for the nonnegative integers. We apply
a family of codes in this class to the problem of runlength coding, specifically
as part of an adaptive algorithm for compressing quantized subbands of wavelet-
transformed images. On test images, our adaptive coding algorithm is shown to
give compression effectiveness comparable to the best performance achievable by
an alternate algorithm that has been previously implemented.

I. Generalized Golomb Codes

A. Introduction

Suppose we wish to use a variable-length binary code to encode integers that can take on any non-
negative value. This problem arises, for example, in runlength coding—encoding the lengths of runs of a
dominant output symbol from a discrete source. Encoding cannot be accomplished by simply looking up
codewords from a table because the table would be infinite, and Huffman’s algorithm could not be used
to construct the code anyway. Thus, one would like to use a simply described code that can be easily
encoded and decoded. Although in practice there is generally a limit to the size of the integers that need
to be encoded, a simple code for the nonnegative integers is often still the best choice. We now describe
a class of variable-length binary codes for the nonnegative integers that contains several useful families
of codes.

Each code in this class is completely specified by an index function f from the nonnegative integers
onto the nonnegative integers. The index function f partitions the nonnegative integers into indexed sets
S0, S1, · · ·, where Si denotes the set of integers that map to index i:

Si = {z : f(z) = i}

We require each set Si to be finite.

The codeword for an integer z consists of two parts. The first part is the unary codeword for the index
i = f(z), i.e., i ones followed by a zero. The second part specifies the rank of z among the members of
Si. The rank r, given by

1 Communications Systems and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

1

r = |{j : j ∈ Si, j < z}|

takes on the values 0, 1, · · · , |Si| − 1. Let b
�= �log2 |Si|�. If r < 2b+1 − |Si|, the rank is simply encoded

as the b-bit binary representation of r. Otherwise the (b + 1)-bit binary representation of r + 2b+1 − |Si|
is used. Note that if |Si| is a power of two, the second part is particularly simple: it is always the b-bit
representation of r. If |Si| = 1, the second part is empty.

The most well-known examples of codes of this form are the Golomb codes [1], which correspond to
the case where the index function is f(z) = �z/g� for some positive integer g so that each Si consists
of g members. The resulting code family is a set of optimal codes for geometric distributions [2]. We
refer to the more general class of codes as generalized Golomb codes. Howard [3] generalizes this further
in defining “unary prefix/suffix” (UP/S) codes, which allow any prefix-free code to be used to identify
members of each Si. Howard tabulates several codes for nonnegative integers, formulated as UP/S codes.2

The condition that the index function f is onto implies that no set Si is empty and ensures that the
resulting code is efficient at least in the sense of satisfying the Kraft inequality with equality. Thus, the
code is prefix-free, and no codeword can be added without violating the prefix-free condition. One would
expect the index functions of useful generalized Golomb codes to be nondecreasing, so that each set Si

consists of consecutive integers. This is a reasonable requirement if the probability distribution on the
source integers z is nonincreasing. By using an index function f that increases slower than linearly, we
hope to more effectively encode source distributions that decay more slowly than a geometric distribution.

In the remainder of this article, we’ll give two examples of generalized Golomb code families and
illustrate their application to runlength coding, especially in the context of encoding quantized subbands
of wavelet-transformed images.

B. Two Simple Families of Generalized Golomb Codes

1. A Generalization of Exponential-Golomb Codes. Our first new family of codes, which we call
generalized exponential-Golomb codes, has a single integer parameter m > 0. The code with parameter m
is defined by the index function

fm(z) =
⌊
log2

(
1 +

z

m

)⌋

For this code, the first set S0 has m elements, and each subsequent set has twice as many elements as
the preceding one, so |Si| = m2i.

We’re most interested in the case where m = 2s for some nonnegative integer s, so that the size of
each Si is a power of two. This simplifies encoding and decoding because all elements of Si have codewords
with the same length. The resulting set of codes are Teuhola’s exponential-Golomb codes [4], which are
equivalent to the Fiala–Greene “start-step-stop” codes [5], with the parameters (start, step, stop) equal
to (s, 1,∞).

To encode z in this case, we can compute w = 1 + �z/2s� so that the index f2s(z) equals the number
of bits following the leading ‘1’ bit in the binary representation of w. The codeword for z consists of the
unary encoding of f2s(z), followed by the f2s(z) least-significant bits of the binary representation of w,
and then the s least-significant bits of the binary representation of z. Thus, the codeword length is

2 Howard’s generalization is rather broad, as he points out that any prefix-free code can be formulated as a UP/S code.
Note that in the example codes of [3, Table 2] only the Golomb code even makes use of sets Si with sizes that aren’t
powers of two.

2

�s(z) = 1 + 2f2s(z) + s = 1 + s + 2
⌊
log2(1 + z2−s)

⌋
(1)

If we reverse the order of the last i + s bits (it’s easy for the decoder to accommodate this), then
encoding of z can be accomplished using the following C code:

w = ww = 1 + (z>>s);
while (w > 1) {

output bit(1);
w >>= 1;

}
output bit(0);
while(s > 0) {

output bit(z & 1);
z >>= 1;
s--;

}
while(ww > 1) {

output bit(ww & 1);
ww >>= 1;

}

Fiala and Greene [5] also give pseudocode for encoding.

2. Another Generalized Golomb Code Family. As a second example of a family of generalized
Golomb codes, we form a fairly trivial extension of the s = 0 exponential-Golomb code described above.
Each code in the family is identified by a single integer parameter t ≥ 0 and is defined by the index
function

ht(z) =
{

z, if z ≤ t
t + �log2(1 + z − t)� , otherwise

The first t+1 sets S0, S1, · · · , St each have a single element, and subsequent sets each have twice as many
elements as the preceding one. The codeword for integer z has length

� =
{

1 + z, if z ≤ t
1 + t + 2 �log2(1 + z − t)� , otherwise

Compared to the codes of Section I.B.1, these codes should be more appropriate for probability distribu-
tions with more mass concentrated near the origin.

C. A Matching Probability Distribution Model

Given a discrete random source with probability distribution {pj}, ideally we’d like to devote
log2(1/pj) bits to encoding the jth element of the distribution. Put another way, we would expect
an effective binary code for the probability distribution {pj} to have codeword lengths {�j} satisfying
pj ≈ 2−�j .

We follow this line of reasoning to determine a probability distribution that is well matched to the
generalized exponential-Golomb codes of Section I.B.1. To encode integer z, we unary encode the value
of the index fm(z), which requires 1 + fm(z) bits, followed by about log2 |Sfm(z)| additional bits. Thus,
the length of the codeword for z is approximately

3

� ≈ 1 + fm(z) + log2 |Sfm(z)|

and since |Sfm(z)| = m2fm(z), this is approximately

� ≈ 1 + log2 m + 2fm(z)

≈ 1 + log2 m + 2
[
log2

(
1 +

z

m

)
− 1

2

]

= − log2 m + 2 log2(m + z)

and we have

2−� ≈ m(m + z)−2

Because of the approximations used, the leading factor of m isn’t the right normalization for a probability
distribution. The properly normalized probability distribution function of this form is

pα(z) =
1

Ψ′(α)
(α + z)−2, z = 0, 1, 2, · · · , (2)

where α > 0, Ψ′ is the first derivative of the digamma function Ψ(y) = Γ′(y)/Γ(y), and Γ is the Euler
gamma function. When α = 1, this gives a zeta distribution on z + 1.

A random variable with probability distribution {pα(z)} has infinite mean and entropy

Hα = log2 Ψ′(α) − 2
Ψ′(α) ln 2

ζ(1,0)(2, α) (bits)

where ζ is the generalized Riemann zeta function ζ(y, a) =
∑∞

j=0(j + a)−y and ζ(1,0)(y, a) denotes
(∂/∂y)ζ(y, a).

In the next section, we’ll see an application where this probability model provides a good fit to
empirically observed data sets and exponential-Golomb codes are rather effective. We remark, however,
that no exponential-Golomb code can be an optimum code for a probability distribution of the form of
Eq. (2). This can be established by observing that the codewords for the members of Si all have the same
length, but for sufficiently large i the expected codeword length can be reduced by using a one-bit shorter
codeword for the most-probable symbol in Si and one-bit longer codewords for the two least-probable
symbols in Si.3

3 This analysis suggests that the generalized exponential-Golomb codes resulting from using values of m roughly halfway
between powers of two may achieve lower redundancy for this probability distribution than the exponential-Golomb codes.
We leave this as a possible topic for future research.

4

II. Application of Exponential-Golomb Codes to Coding Runlengths in
Wavelet-Transformed Image Data

Runlength coding is a common application for variable-length codes defined on the nonnegative inte-
gers. For a discrete source with a dominant output symbol that occurs with sufficiently high probability, it
is more effective to encode the lengths of runs of this most-probable symbol separately from the remaining
symbols than to apply a single Huffman code to the source [6].

As a specific instance of runlength coding, we examine the application of exponential-Golomb codes
to coding the lengths of runs of zeros in quantized subbands of wavelet-transformed images.

A. Probability Model and Coding Effectiveness

We wish to encode the length of each run of zeros in a uniformly quantized subband of a wavelet-
transformed image. A separate code would be used for the nonzero quantized samples, but for now we
consider only the runlength coding problem.

If the quantized subband data samples were independent and identically distributed (IID), then run-
lengths would be geometrically distributed. But, as we’ll see below, the geometric model is empirically
not a good fit to the distribution of runlengths. This is perhaps not surprising, as subband data samples
are clearly not IID—in fact, many good wavelet-based image compression algorithms obtain their good
performance in part by exploiting dependencies between nearby samples in the subbands [7–9].

For a given data set, let qj denote the observed frequency of the jth symbol. The zeroth-order empirical
entropy of the data set is

−
∑

j

qj log2 qj (bits)

This gives an estimate of the rate at which one could encode the source that produced the data set, because
an ideal entropy coder for an IID source whose actual probability distribution is {qj} would produce this
number of bits per source sample on average. This is usually not the entropy of the source that produced
the data, because the empirical observations of the symbol frequencies usually do not exactly equal the
underlying probability distribution, and because this calculation ignores any dependencies that might be
present in the source samples.

Given an empirical probability distribution and one or more parameterized probability distribution
models, we’d like to select parameters for the models that give the best fit to the empirical distribution,
and we’d like to measure how well each model fits the observed distribution. If we use an ideal entropy
coder matched to a probability distribution {p̂j} to encode a source whose actual probability distribution
is {pj}, then the rate obtained is

−
∑

j

pj log2 p̂j (bits/symbol)

Thus, in a data compression application, if we’re using a parameterized distribution {p̂j} to model an
empirical distribution {pj}, then we should select our model parameters to minimize the above quantity.
This is equivalent to minimizing the quantity

−
∑

j

pj log2 p̂j − H({pj}) =
∑

j

pj log2

(
pj

p̂j

)
(bits)

5

which is the Kullback–Leibler (K-L) distance of {p̂j} from {pj}. Here H({pj}) is the entropy of the
dis-tribution {pj}. The K-L distance gives a measure of how well a distribution model fits an empirical
distribution.

As a test case, we use the “forest 2kb4” image from a set of test images used in the development of
the emerging Consultative Committee for Space Data Systems (CCSDS) image compression standard
[10]. This image contains 2048 × 2048 pixels, at a bit depth of 10 bits/pixel, taken from a single band
of Advanced Very High Resolution Radiometer (AVHRR) instrument data. We apply a single two-
dimensional decomposition of the image using the (5,3) integer discrete wavelet transform using the
implementation described in [11]. In the examples below, we use the horizontally high-pass, vertically
low-pass subband data, arranged in raster-scan order. The data samples are quantized with a uniform
quantizer before encoding.

Example 1. Quantizing the subband with a stepsize of 12 results in 83 percent of the subband samples
being quantized to zero, giving about 180,000 runlengths to encode. The distribution of runlengths has
zeroth-order empirical entropy of 2.69 bits per runlength. If we model the runlengths using a geometric
distribution Prob[runlength = z] = (1 − q)qz, we find a minimum K-L distance of 1.20 bits at q = 0.83.
The probability distribution of Eq. (2) gives a much better fit, obtaining minimum K-L distance of
0.01 bits at α = 1.159. Figure 1(a) shows the empirical distribution and the two probability models. The
best Golomb code for the empirical distribution has parameter g = 6 and gives average codeword length
of 3.90 bits per runlength. The exponential-Golomb code with parameter s = 0 does better, giving an
average cost of 2.75 bits per runlength.

Example 2. Using a quantizer stepsize of 4 for this subband results in 59.5 percent of the quantized
samples being zero, or about 425,000 runlengths to encode. Here the zeroth-order empirical entropy of
the runlength distribution is 2.05 bits per runlength. The K-L distance for the geometric distribution is
minimized at q = 0.60, giving a value of 0.36 bits. By contrast, the probability distribution of Eq. (2) gives
minimum K-L distance of 0.01 bits at α = 0.899. Figure 1(b) compares the empirical distribution with
the two models. Picking the optimum parameter for the Golomb code (g = 1) results in unary encoding of
runlengths, giving an average codeword length of 2.47 bits per run. By contrast, the exponential-Golomb
code with parameter s = 0 gives 2.18 bits per runlength, and the code of Section I.B.2 with t = 1 does
slightly better, with an average rate of 2.14 bits per runlength.

B. Parameter Selection in Adaptive Coding of Subband Data

We’ve seen that the probability distribution of Eq. (2) is a good model for the distribution of runlengths
in a quantized subband of a wavelet-transformed test image, and we’ve seen that the generalized Golomb
codes can provide effective coding of these runlengths when the code parameter s is well chosen. In
this section, we show how to determine the value of the parameter s to use when applying exponential-
Golomb codes to encode a source having the probability distribution of Eq. (2) with a known value of
the parameter α. We apply this result to the problem of adaptively determining the code parameter s
on-the-fly.

Using an exponential-Golomb code with parameter s to encode an IID source having the probability
distribution function given in Eq. (2) gives, after some simplification, expected codeword length

Ls(α) �= E
[
�s(z)

]
=

∞∑
z=0

pα(z)�s(z) = 1 + s +
2

Ψ′(α)

∞∑
j=1

Ψ′(2s(2j − 1) + α
)

6

RUNLENGTH

(b)

(a)

P
R

O
B

A
B

IL
IT

Y

10–3

10–2

10–1

1

0 10 20 30 40 50

RUNLENGTH

P
R

O
B

A
B

IL
IT

Y

10–4

10–3

10–2

10–1

1

0 10 20 30 40 50

EMPIRICAL DISTRIBUTION

BEST-MATCH GEOMETRIC
DISTRIBUTION

BEST-MATCH DISTRIBUTION
OF EQ. (2)

EMPIRICAL DISTRIBUTION

BEST-MATCH GEOMETRIC
DISTRIBUTION

BEST-MATCH DISTRIBUTION
OF EQ. (2)

Fig. 1. Empirical distribution of lengths of runs of zeros for an
image subband quantized using a uniform scalar quantizer, and
probability distribution models with parameters selected to
minimize K-L distance of the model from the empirical
distribution, when (a) the quantizer stepsize is 12 and (b) the
quantizer stepsize is 4.

[refer to Eq. (1) for the codeword length �s(z)]. We’d like to pick the value of the parameter s that
minimizes the expected codeword length. This is equivalent to minimizing the redundancy Ls(α) −Hα,
shown in Fig. 2 for several values of s.

The optimum value of the parameter s for a given α can be determined from a table of the values of α
where we switch from one value of s to the next. Toward this end, we have numerically determined the
first several values of α∗

s , where α∗
s is defined to be the value that gives Ls(α∗

s) = Ls+1(α∗
s). The results

are in Table 1.

7

0.1

1

10

101
a

a

*0 a*1 a*2 a*3 a*4

R
E

D
U

N
D

A
N

C
Y,

 b
its

/s
am

pl
e

s = 0 s = 1 s = 2 s = 3 s = 4 s = 5

Fig. 2. Redundancy of exponential Golomb codes
applied to an IID source with probability distribution
given by Eq. (2), shown for different values of code
parameter s.

Table 1. Values of the parameter in the distribution of
Eq. (2) where the optimum exponential Golomb code
parameter changes from s to s + 1, and associated
average codeword lengths.

s α∗
s Ls(α∗

s), bits

0 2.15 3.796

1 3.90 4.802

2 7.36 5.804

3 14.24 6.805

4 28.00 7.805

5 55.51 8.805

6 110.53 9.805

7 220.56 10.805

8 440.62 11.805

9 880.75 12.805

10 1761.00 13.805

11 3521.49 14.805

To make practical use of the results in Table 1 in an adaptive coding situation, we would like to relate
these transitions between different values of s to corresponding values of some quantity that we can easily
estimate on-the-fly. We observe in Table 1 that, for each s,

Ls(α∗
s) ≈ s + 3.8

and thus when s is optimally chosen, the average codeword length is (approximately) in the range
[s + 2.8, s + 3.8]. This suggests a simple adaptive strategy for choosing our code parameter s. We
maintain an estimate L̂ of the average codeword length and compute the difference d̂

�= L̂ − s. When

8

d̂ < 2.8, we decrease s by 1 (and so effectively increase d̂ by 1), and when d̂ > 3.8, we increase s by 1
(and so effectively decrease d̂ by 1). We apply this strategy as part of a subband coding algorithm in
Section III.A.

For sufficiently small values of α, it can be shown that the codes of Section I.B.2 with parameter t = 1
or t = 2 can give a marginal improvement over the optimum exponential-Golomb code. The improvement
is small enough that we do not attempt to incorporate these codes as part of an adaptive coding strategy.

III. Subband Coding Algorithms

We now describe three different options for coding quantized subband data. In Section IV, we compare
the performances of these algorithms on three sample images. We assume that the quantizer stepsize is
fixed before coding begins, and we do not address the issue of selecting this stepsize. References [12,13]
present a solution to the problem of selecting quantizer stepsize to meet a target bit rate.

In each coding algorithm, the quantized subband samples are taken in raster-scan order; thus, the input
data stream is effectively one-dimensional. The coding techniques described here have low complexity
and do not rely on two-dimensional context models such as the one used in JPEG2000 [7]; consequently,
the algorithms should not be expected to offer competitive performance.

A. Separate Encoding of Runlengths and Nonzero Samples Using Generalized Golomb Codes

The first algorithm encodes the quantized subband samples using two separate codes, alternating
between an exponential-Golomb code to encode the length of each run of zeros and a Golomb code to
encode the nonzero samples. For each code, a simple adaptive parameter estimation technique is used.

The exponential-Golomb code used to encode the lengths of runs of zeros has parameter s selected
adaptively based on statistics from previously encoded runs. We maintain a nominal running count of
the number of bits used to encode runlengths, B, and a count of the nominal number of runlengths
encoded, R. We estimate the average codeword length as B/R and use this estimate to determine the
parameter s of the exponential-Golomb code using the adaptive parameter selection method described in
Section II.B.4

Following the encoding of a runlength, we increment R by 1 and increment B by the number of bits in
the codeword just encoded. When R reaches some maximum value R0, we rescale by setting R = �R/2�
and B = �B/2�. Adjusting the value of the rescaling interval R0 changes the degree to which coding
adapts to local statistics.

To encode the nonzero samples in the quantized subband, we use a simple adaptive technique based
on Golomb codes that is nearly identical to the method used for the coding of prediction residuals in
lossless image compression in [14, Section 2.3], but modified to account for the fact that the sample being
encoded is nonzero. For a nonzero quantized subband sample x, we first compute

M(x) =
{

2|x| − 1, if x < 0
2|x| − 2, otherwise

Note that M is an invertible function that maps the nonzero integers onto the nonnegative integers,
interleaving the positive and negative values of x. Empirically it is observed that M(x) approximately
follows a geometric distribution. Thus, we encode x by applying a Golomb code to M(x), selecting the
code parameter based on an estimate of the expected value of

4 In practice, one would implement this parameter selection technique without using a division operation.

9

⌊
M(x) + 1

2

⌋
=

{
|x|, if x < 0
|x| − 1, otherwise ≈ |x| − 1

2
(3)

The approximation follows under the assumption that the distribution on x is symmetric. We maintain
a nominal running count of the number of nonzero samples encoded, N , and a nominal sum, A, of the
quantity in the right-hand side of Eq. (3). The Golomb code parameter used to encode M(x) is g = 2k,
where k is computed as [14]

k = min{j : 2jN > A}

After encoding a sample x, N is incremented by one and A is incremented by |x| − 1/2. (Alternatively,
one could track twice this value so that only integer arithmetic is needed.) Whenever N reaches some
maximum value N0, we rescale by setting N = �N/2� and A = �A/2�.

B. Joint Encoding of Runlengths and Magnitudes

An algorithm recently proposed for the emerging CCSDS image compression standard encodes quan-
tized subband data by applying variable-length binary codes to jointly encode the length of a run of con-
secutive zeros along with information about the magnitude of the sample that follows the run [10,12,13].
The codeword is followed by refinement bits that pinpoint the exact value of the nonzero sample. The
variable-length codes used could be derived via Huffman’s algorithm applied to suitable test data sets.
In a space-based application, a library of suitable codes to accommodate the bit rates and data sets of
interest for different subbands would be stored onboard [12,13].

To limit the number of codewords in the variable-length code, runlengths that are jointly encoded with
magnitude information must be shorter than some maximum length Rmax. A codeword representing a
run of Rmax zeros is included in the code to handle longer runs. For each nonzero sample x, one computes
a “category,” denoted Cat(x), according to

Cat(x) = 1 + �log2 |x|�

Thus, Cat(x) is equal to the number of bits in the binary representation of |x|. The variable-length code
is defined on the symbol alphabet consisting of all possible (runlength,Cat(x)) pairs plus the symbol
representing a maximum-length run. A codeword for a (runlength,Cat(x)) pair is followed by Cat(x)
additional bits that specify the value of x within its category.

The performance of this algorithm depends on the particular variable-length codes used. To bound
the best performance achievable by this technique, we can calculate the rate achieved by the optimum
variable-length code for the symbols to be encoded in a given quantized subband. We do this in Section IV,
determining the optimum variable-length codes by applying Huffman’s algorithm directly to the empirical
symbol distributions.

C. Direct Coding of Samples

The runlength-based coding techniques of Sections III.A and III.B are not well suited to data in which
runs of zeros are short and infrequent. Thus, we have also measured the performance of applying a
variable-length code directly to the quantized subband samples, i.e., without any runlength coding. This
is done using Golomb codes with the adaptive parameter estimation technique used for the coding of
prediction residuals in lossless image compression in [14, Section 2.3].

It was shown in [6] that for an IID source, when a zero occurs with probability less than 2/5, runlength
coding of zeros is less effective than simply Huffman coding the source directly. Although we’ve argued

10

in Section II.A that quantized subband data are not IID, nevertheless runlength coding becomes less
effective than the direct coding approach when the probability that a sample is zero becomes small.

IV. Results

We now give some results comparing the performance of the three coding techniques described in
Section III. For test images, we use the “forest 2kb4” and “ice 2kb1” AVHRR images used in the CCSDS
image compression standard development. Each of these images is 2048 × 2048 pixels with a bit depth
of 10 bits/pixel, taken from a single band from the AVHRR instrument. As a third image we use a
1024 × 1024 pixel image of the surface of Mars, at a bit depth of 12 bits/pixel. The image is a mosaic of
several smaller images from the Mars Pathfinder mission.

We apply a single-stage two-dimensional subband decomposition to the image using the (5,3) integer
discrete wavelet filter as implemented in [11]. As input data for each coding algorithm, we use the
horizontally high-pass, vertically low-pass subband data, quantized and arranged in raster-scan order.
For the AVHRR images, this gives 220 data samples, and for the Mars image this gives 218 samples.

Figures 3 through 5 show rate-distortion performance on the test data. The graphs show only the
contribution to mean square error (MSE) and rate from the subband coded. Consequently, the results
in the figures are not directly comparable to rate-distortion results from a complete image compression
algorithm. Such an algorithm would also have to select appropriate quantizer stepsizes for the subbands
of the transformed image.

The curves plotted show the performance of our adaptive coding technique (described in Section III.A),
the bound on performance achievable by the technique that jointly encodes runlengths and magnitude
information (Section III.B), the performance achieved by the direct adaptive Golomb coding technique
(Section III.C), and the zeroth-order empirical entropy (Section II.A). The shaded region of each graph
shows where the frequency zeros are roughly 2/5 or less, and thus one might expect runlength coding to
be less effective.

For our adaptive coding algorithm of Section III.A, we initialize B = 10, R = 2, N = 2, and A = 12,
and use a rescaling interval of R0 = 12 for runlengths and N0 = 16 for nonzero samples. For the method
of Section III.B, we use the suggested maximum runlength of Rmax = 64 here. For the direct coding
approach of Section III.C, we use a rescaling interval of 32 samples.

We observe in Figs. 3 through 5 that our adaptive coding technique achieves performance that is
comparable to the bound on the best performance that could be achieved using the technique of Sec-
tion III.B. At some quantizer stepsizes, our adaptive coding technique gives a bit rate that is lower than
the zeroth-order empirical entropy. This is possible because by encoding runlengths we’re exploiting
some dependencies in the data and also because the code parameter estimation techniques adapt to local
statistics. The coder of Section III.B exploits dependencies in a slightly different way, by jointly coding
runlengths and sample magnitudes.

The figures show that, at sufficiently high bit rates (i.e., sufficiently small quantizer stepsizes), direct
adaptive Golomb coding of subband samples outperforms our adaptive runlength coding technique. In
practice, it would be straightforward to adaptively switch between the two techniques based on the
frequency of zeros in the data.

Our adaptive coding technique was motivated by a desire for a simple encoder that eliminated the need
for the multiple code tables required by the encoder of Section III.B. We conclude with a few remarks on
comparisons between the two techniques.

11

0.1

1

10

0 1 2 3 4

M
E

A
N

 S
Q

U
A

R
E

 E
R

R
O

R

RATE, bits/sample

SECTION III.A METHOD

ZEROTH-ORDER EMPIRICAL ENTROPY

BOUND ON SECTION III.B METHOD

SECTION III.C METHOD

Fig. 3. Rate-distortion performance for coding a subband of the "forest_2kb4"
CCSDS test image. The shaded region shows the range of MSE values where the
fraction of zeros is roughly 2/5 or less, and thus one would expect runlength coding
to be outperformed by direct coding.

0.1

1

10

100

0 1 2 3 54

M
E

A
N

 S
Q

U
A

R
E

 E
R

R
O

R

RATE, bits/sample

Fig. 4. Rate-distortion performance for coding a subband of the "ice_2kb1" CCSDS
test image. The shaded region shows the range of MSE values where the fraction of
zeros is roughly 2/5 or less, and thus one would expect runlength coding to be
outperformed by direct coding.

SECTION III.A METHOD

ZEROTH-ORDER EMPIRICAL ENTROPY

BOUND ON SECTION III.B METHOD

SECTION III.C METHOD

12

0 1 2 3

M
E

A
N

 S
Q

U
A

R
E

 E
R

R
O

R

RATE, bits/sample

1000

10,000

Fig. 5. Rate-distortion performance for coding a subband of the Mars surface image.
The shaded region shows the range of MSE values where the fraction of zeros is
roughly 2/5 or less, and thus one would expect runlength coding to be outperformed
by direct coding.

SECTION III.A METHOD

ZEROTH-ORDER EMPIRICAL ENTROPY

BOUND ON SECTION III.B METHOD

SECTION III.C METHOD

Coding runlengths and sample values via codes defined on the nonnegative integers allows arbitrarily
large input values. Accommodating a change in image size or the bit depth of the image pixels thus
doesn’t require any change in the coding technique.

In a space-based application, protection from data loss can be provided by partitioning a data set into
separate segments that can be decoded independently. In this scenario, the state of our encoder can be
specified in the appropriate packet headers by encoding the four quantities A, N , B, and R, used to select
the parameters of the two codes. Thus, adaptivity in our algorithm does not need to come at the price
of reduced error containment.

Finally, we note that simple modifications to the technique have the potential to offer improved
performance. These includes refinements in the methods of selecting the two code parameters, either by
incorporating context modeling or by exploiting dependencies between the runlengths and the nonzero
samples.

References

[1] S. W. Golomb, “Run-Length Encodings,” IEEE Transactions on Information
Theory, vol. IT-12, no. 3, pp. 399–401, July 1966.

[2] R. G. Gallager and D. C. Van Voorhis, “Optimal Source Codes for Geo-
metrically Distributed Integer Alphabets,” IEEE Transactions on Information
Theory, vol. IT-21, no. 2, pp. 228–230, March 1975.

13

[3] P. G. Howard, “Interleaving Entropy Codes,” Proc. Compression and Complexity
of Sequences 1997, Salerno, Italy, pp. 45–55, 1998.

[4] J. Teuhola, “A Compression Method for Clustered Bit-Vectors,” Information
Processing Letters, vol. 7, pp. 308–311, October 1978.

[5] E. R. Fiala and D. H. Greene, “Data Compression with Finite Windows,” Com-
munications of the ACM, vol. 32, pp. 490–505, April 1989.

[6] K.-M. Cheung and A. Kiely, “An Efficient Variable Length Coding Scheme for an
IID Source,” Proc. 1995 IEEE Data Compression Conference, Snowbird, Utah,
pp. 182–191, March 28–30, 1995.

[7] M. D. Adams, The JPEG-2000 Still Image Compression Standard, ISO/IEC JTC
1/SC 29/WG 1 N 2412, September 2001.

[8] D. Taubman, “High Performance Scalable Image Compression with EBCOT,”
IEEE Transactions on Image Processing, vol. 9, no. 7, pp. 1158–1170, July 2000.

[9] E. S. Hong, R. E. Ladner, and E. A. Risken, “Group Testing for Wavelet Packet
Image Compression,” Proceedings of the IEEE Data Compression Conference,
Snowbird, Utah, pp. 73–82, March 2001.

[10] P. S. Yeh, G. A. Moury, and P. Armbruster, “CCSDS Data Compression Rec-
ommendation: Development and Status,” Proc. SPIE, vol. 4790, Seattle, Wash-
ington, July 7–12, 2002.

[11] M. D. Adams and F. Kossentini, “Reversible Integer-to-Integer Wavelet Trans-
forms for Image Compression: Performance Evaluation and Analysis,” IEEE
Transactions on Image Processing, vol. 9, no. 7, pp. 1010–1024, June 2000.

[12] C. Parisot, M. Antonini, M. Barlaud, C. Lambert-Nebout, C. Latry, and
G. Moury, “On-Board Strip-Based Wavelet Image Coding for Future Space Re-
mote Sensing Missions,” Proc. 2000 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS 2000), vol. 6, Honolulu, Hawaii, pp. 2651–2653,
July 24–28, 2000.

[13] C. Parisot, M. Antonini, and M. Barlaud, “EBWIC: A Low Complexity and
Efficient Rate Constrained Wavelet Image Coder,” Proc. 2000 International Con-
ference on Image Processing (ICIP2000), vol. 1, Vancouver, British Columbia,
Canada, pp. 653–656, September 10–13, 2000.

[14] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A Low Complexity,
Context-Based, Lossless Image Compression Algorithm,” Proc. 1996 IEEE Data
Compression Conference, Snowbird, Utah, pp. 140–149, March 31–April 3, 1996.

14

