

Generalized Histogram
Algorithms for CUDA GPUs

Teemu Rantalaiho,
University of Helsinki, Department of Physics

Helsinki 11.6.2012

Agenda

 Introduction
 What are histograms?
 How do we define generalized histograms?

 Prior work and our implementation
 Small histograms - 1-320 bins (normal)
 Medium histograms – 320-2560 bins
 Large histograms (Tested up to 131 072 bins)

 Performance and results
 Conclusions, future, what could we improve

Histograms

 First normal histogram:
 List of frequencies of occurrence of some

sample in a set
 Pseudocode:
 For each (bin index i){ bin[i] = 0; }

 For each (input x)
 { bin[x] = bin[x] + 1; }

 Apples Oranges Pears Lemons
0

1

2

3

4

5

6

7

Simple example

Image Prosessing Example

Generalized Histograms

 Sum over input key-value pairs, but restrict sum to
equal keys

 ”Order independent Reduce-by-key”
 Obtainable from Thrust [http://thrust.github.com] for

CUDA with ”Sort-by-key” followed by ”Reduce-by-
key” (But performance is modest)

 User defines input-transform and sum-functors
 Pseudocode:

For each (bin index i) { bin[i] = 0 }

For each (input (k[j], x[j]))
 { bin[k[j]] = bin[k[j]] + x[j] }

 Serial implementation completely trivial

Applications

 Function evaluation
 Image processing (weighted histograms, semi-

transparent pixels, feature extraction...)
 Cosmology (angle correlations of galaxies,

CMB, …)
 Molecular dynamics (radial distribution

functions)
 Experimental particle physics
 Our use-case: correlation functions from lattice

data

Implementation on Parallel Architectures

Parallel Implementation – First idea

 Every thread builds its own histogram
 Easy, fast, accumulate results at the end
 Uses a lot of local resources (shared memory)
 ~64 bins of integers for Fermi-level CUDA

GPUs
 Extend to 256 bins using 8-bit bins (normal

histograms) – accumulation into local memory
 Prior implementations used 16-bit bins

[Nugteren, van den Braak, Corporaal, Mesman]

Medium sized Histograms

 Run out of shared memory - what can you do?
 Serialize access to shared resources
 Previous work [Podlozhnyuk - NVIDIA]:

 One binset (histogram) per Warp (32 threads)
 Intrawarp Collisions → Serialization
 Ok performance for spread out keys – bad when

degenerate

 We share one binset across all warps
 Degenerate key distributions open problem until

now ([Shams, Kennedy] also suffer)

Partial Fix for Key Degeneracy

 Watch input keys as they come in
 Once high amount of degeneracy found

(~16 degenerate keys between 32 threads)
 Do warp-local reduction of values in shared

memory
 One thread (per unique key) collects the sum
 Write result, free of collisions

 Expensive for well distributed keys → only
apply when high degeneracy detected

Warp Reduction

 Resolve all threads (in the same warp) that
have the same key

 Do a parallel reduction between those threads
 Run reductions of different keys in parallel
 Take advantage of warp-vote functions

 Finding group-masks is expensive
 Use ballot for every unique key and collect bitmask

 Normal histogram: Result is population count of
bitmask

Group-ID Example

Group-ID Example

Group-ID Example

Group-ID Example

Group-ID Example

Group-ID Example

Group-ID Example

Large Histograms

 At around 2500 bins we run low on shared
memory

 First solution: Multiple passes of the medium
histogram algorithm
 Improved occupancy and cache help

 With very large histograms (~100 000 bins) too
many passes
 Resort to global memory atomics
 For generalized histograms use a per-warp

hashtable in shared memory

 Adaptive warp-reduction for degenerate keys

Large Histograms

 Performance drops to about same level as
thrust at around 100 000 bins
 CPU should be ~2x faster here
 Even as is, could be useful to use GPU

 No data transfers across pci Express BUS
 Complex key-value resolving code can amortize

slow histogram code

 Global atomics will be faster in Kepler
 Coupled with warp-reduction, could be very

competitive

 Multiwarp hashtable-based algorithm TBD

Performance
With Tesla M2070 (ECC on)
(Except some references)

Image Histograms

 Comparisons against NVIDIA's NPP library
[http://developer.nvidia.com/npp]

 Our one channel (monochrome) 8-bit histogram
with 256 bins reaches 18GK/s, NPP gets 8GK/s
→ 125% improvement

 Our three-channel histogram with 256 bins per
channel reaches 12GK/s, NPP reaches 6GK/s
→ 2x improvement

Image sizes – 8bit one channel

Generalized histogram
performance

 Test-case: Sum over every row in a fp32 matrix
 Thrust: Reduce-by-key solution ~ 1.8 GK/s

 Thrust: Normal reduce ~ 20 GK/s (80 GB/s)
 Our algorithm 2-7x faster than

 ”thrust::reduce_by_key()” in this case

API Example

Features

 CudaStreams (Optional)
 Output to GPU or CPU memory
 Multiple keys / input
 Multidimensional input ranges
 Arbitrary transform / binary operators through

function objects
 Accumulates on top of previous result
 User-supplied temporary arrays (Optional)

Conclusions, future work,...

 Generalized histogram implementation for
CUDA GPUs
 Very generic
 Outperforms existing algorithms in all cases
 Available under Apache V.2 License

[https://github.com/trantalaiho/Cuda-Histogram]

 Optimize for Kepler (need HW first)
 Needs marketing
 Further testing, ”skip-key”-support,

 control over loop-unrolling...

https://github.com/trantalaiho/Cuda-Histogram

Thank you

 Ask me questions
 Right now
 From teemu.rantalaiho@helsinki.fi
 Grab me by the elbow later

mailto:teemu.rantalaiho@helsinki.fi

Extra slides – Warp Reduction details

Warp reduction by key

 Inputs for each thread:
 A key-value pair
 Bitmask which tells which threads belong to our

group

 Idea: As a normal parallel reduction
 Using bitmask, give each thread order ID in group
 Even threads within group sum values from odd
 Shrink group by dividing by two
 Odd threads write their value to shared memory
 Repeat until whole group consumed

Normal parallel reduce

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

Warp Key-Reduce Example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

