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Agenda

 Introduction
 What are histograms?
 How do we define generalized histograms?

 Prior work and our implementation
 Small histograms  - 1-320 bins (normal)
 Medium histograms – 320-2560 bins 
 Large histograms (Tested up to 131 072 bins)

 Performance and results
 Conclusions, future, what could we improve



  

Histograms

 First normal histogram:
 List of frequencies of occurrence of some 

sample in a set
 Pseudocode:
  For each (bin index i){ bin[i] = 0; }

  For each (input x)                     
    { bin[x] = bin[x] + 1; }
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Simple example



  

Image Prosessing Example



  

Generalized Histograms

 Sum over input key-value pairs, but restrict sum to 
equal keys

 ”Order independent Reduce-by-key”
 Obtainable from Thrust [http://thrust.github.com] for 

CUDA with ”Sort-by-key” followed by ”Reduce-by-
key” (But performance is modest)

 User defines input-transform and sum-functors
 Pseudocode:

For each (bin index i) { bin[i] = 0 }

For each (input (k[j], x[j]))          
  { bin[k[j]] = bin[k[j]] + x[j] }

 Serial implementation completely trivial



  

Applications

 Function evaluation
 Image processing (weighted histograms, semi-

transparent pixels, feature extraction...)
 Cosmology (angle correlations of galaxies, 

CMB, …)
 Molecular dynamics (radial distribution 

functions)
 Experimental particle physics
 Our use-case: correlation functions from lattice 

data



  

Implementation on Parallel Architectures



  

Parallel Implementation – First idea

 Every thread builds its own histogram
 Easy, fast, accumulate results at the end
 Uses a lot of local resources (shared memory)
 ~64 bins of integers for Fermi-level CUDA 

GPUs
 Extend to 256 bins using 8-bit bins (normal 

histograms) – accumulation into local memory
 Prior implementations used 16-bit bins 

[Nugteren, van den Braak, Corporaal, Mesman]



  



  



  



  



  



  



  



  



  

Medium sized Histograms

 Run out of shared memory - what can you do?
 Serialize access to shared resources
 Previous work [Podlozhnyuk - NVIDIA]:

 One binset (histogram) per Warp (32 threads)
 Intrawarp Collisions → Serialization
 Ok performance for spread out keys – bad when 

degenerate

 We share one binset across all warps
 Degenerate key distributions open problem until 

now ([Shams, Kennedy] also suffer)



  

Partial Fix for Key Degeneracy

 Watch input keys as they come in
 Once high amount of degeneracy found        

(~16 degenerate keys between 32 threads) 
 Do warp-local reduction of values in shared 

memory
 One thread (per unique key) collects the sum
 Write result, free of collisions

 Expensive for well distributed keys → only 
apply when high degeneracy detected



  

Warp Reduction

 Resolve all threads (in the same warp) that 
have the same key

 Do a parallel reduction between those threads
 Run reductions of different keys in parallel
 Take advantage of warp-vote functions

 Finding group-masks is expensive
 Use ballot for every unique key and collect bitmask

 Normal histogram: Result is population count of 
bitmask



  

Group-ID Example



  

Group-ID Example



  

Group-ID Example



  

Group-ID Example



  

Group-ID Example



  

Group-ID Example



  

Group-ID Example



  

Large Histograms

 At around 2500 bins we run low on shared 
memory

 First solution: Multiple passes of the medium 
histogram algorithm
 Improved occupancy and cache help

 With very large histograms (~100 000 bins) too 
many passes
 Resort to global memory atomics
 For generalized histograms use a per-warp 

hashtable in shared memory

 Adaptive warp-reduction for degenerate keys



  

Large Histograms

 Performance drops to about same level as 
thrust at around 100 000 bins
 CPU should be ~2x faster here
 Even as is, could be useful to use GPU

 No data transfers across pci Express BUS
 Complex key-value resolving code can amortize 

slow histogram code

 Global atomics will be faster in Kepler
 Coupled with warp-reduction, could be very 

competitive

 Multiwarp hashtable-based algorithm TBD



  

Performance
With Tesla M2070 (ECC on)
(Except some references)



  



  



  



  

Image Histograms

 Comparisons against NVIDIA's NPP library 
[http://developer.nvidia.com/npp]

 Our one channel (monochrome) 8-bit histogram 
with 256 bins reaches 18GK/s, NPP gets 8GK/s 
→ 125% improvement

 Our three-channel histogram with 256 bins per 
channel reaches 12GK/s, NPP reaches 6GK/s 
→ 2x improvement



  

Image sizes – 8bit one channel



  

Generalized histogram 
performance

 Test-case: Sum over every row in a fp32 matrix
 Thrust: Reduce-by-key solution ~ 1.8 GK/s

 Thrust: Normal reduce ~ 20 GK/s (80 GB/s)
 Our algorithm 2-7x faster than                                    

   ”thrust::reduce_by_key()” in this case



  

API Example



  

Features

 CudaStreams (Optional)
 Output to GPU or CPU memory
 Multiple keys / input
 Multidimensional input ranges
 Arbitrary transform / binary operators through 

function objects
 Accumulates on top of previous result
 User-supplied temporary arrays (Optional)



  

Conclusions, future work,...

 Generalized histogram implementation for 
CUDA GPUs 
 Very generic
 Outperforms existing algorithms in all cases
 Available under Apache V.2 License                         

[https://github.com/trantalaiho/Cuda-Histogram]

 Optimize for Kepler (need HW first)
 Needs marketing
 Further testing, ”skip-key”-support,                      

  control over loop-unrolling...

https://github.com/trantalaiho/Cuda-Histogram


  

Thank you

 Ask me questions
 Right now
 From teemu.rantalaiho@helsinki.fi
 Grab me by the elbow later

mailto:teemu.rantalaiho@helsinki.fi


  

Extra slides – Warp Reduction details



  

Warp reduction by key

 Inputs for each thread:
 A key-value pair
 Bitmask which tells which threads belong to our 

group

 Idea: As a normal parallel reduction
 Using bitmask, give each thread order ID in group
 Even threads within group sum values from odd
 Shrink group by dividing by two
 Odd threads write their value to shared memory
 Repeat until whole group consumed



  

Normal parallel reduce



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example
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