
Grand Central Dispatch
FreeBSD Devsummit

Robert Watson rwatson@FreeBSD.org
18-Sep-2009

mailto:rwatson@FreeBSD.org
mailto:rwatson@FreeBSD.org

libdispatch
·runtime library for Grand Central Dispatch

feature of Mac OS X version 10.6 Snow Leopard

·available as open source

·http://libdispatch.macosforge.org

·Apache License, Version 2.0

·also runs on FreeBSD 9-CURRENT

libdispatch
·used in combination with sibling technology

“blocks”

·closures for C

·not required for libdispatch but very useful

·compiler and runtime also available as open
source under BSD-style license

·http://clang.llvm.org

·http://compiler-rt.llvm.org

hello world

#include <dispatch/dispatch.h>
#include <stdio.h>

int main(int argc, char* argv[])
{
! dispatch_queue_t queue = dispatch_queue_get_main();

! dispatch_async(queue, ^{
! ! printf(“%s: Hello World\n”, argv[0]);
! });

! // begin main event loop
! dispatch_main();
}

topics
·goals

·data-types (objects, queues, event sources)

·examples

·conclusion

goals
·convenience

·efficiency

·task-level parallelism

·synchronization

·scaleability

convenience
·provide a callback-based event loop

·unify “event code” with “application code”

·historically, these were separate domains

·select, poll, kqueue, etc.

·sem_wait, pthread_cond_wait

·processes must bridge application events to an
OS primitive (e.g. pipe) to wake event loop

efficiency
·perform as much as possible in user space

·use of pipes in previous example requires
context switching to kernel space for send and
receive; consumes finite resource (fd table)

·libdispatch prefers to use a small number of
atomic operations for inter-thread
communication

task-level parallelism
·individual event loops expressed as queues

·multiple queues may be processed in parallel

·mapping logical subsystems onto separate queues
allows implicit task-level parallelism

synchronization
·queues execute events in FIFO order and wait

for completion

·can be used to protect access to shared
resources

“Islands of serialization in a sea of concurrency.”

scaleability
·peak performance under load

·“pump-priming” costs payed in transition from
idle to busy

·ex., thread creation is a side-effect of first
enqueue operation

·once busy, additional work can be taken on
efficiently

·ex., subsequent enqueue operations require
only a single atomic instruction

fast-path / slow-path
·the implementation is organized into fast-paths

and slow-paths

·slow-path represents the idle→busy transition

·allocations and kernel traps may be required

·fast-path represents the busy→busy transition

·implemented with the fewest atomic
operations possible

fast-path / slow-path

dispatch_semaphore_signal:
! lock incq 0x38(%rdi)
! jle _dispatch_semaphore_signal_slow
! xor %eax, %eax
! ret

libdispatch

Application

Kernel

fast-path / slow-path
·taking the fast-path assumes the object is already

enqueued for further processing

·taking the slow-path means a “wake up” must be
performed on the object to continue processing
(more on that later)

data types
·libdispatch data types are known as dispatch

objects

·reference counted memory management

·polymorphic (especially in internal usage)

queues
event sources
semaphores

blocks
etc.

dispatch objects
·each dispatch object is a reference-counted

linked-list element that may be enqueued

·includes queues of queues!

dispatch object
vtable

reference count
next pointer
target queue

…

dispatch queues
·dispatch queues are FIFO queues of dispatch

objects (including other dispatch queues) waiting
to be “invoked”

·queues may be processed on separate threads;
invoke elements in FIFO order

·wait-free atomic enqueue from any thread

dispatch queues

dispatch queue
vtable

reference count
next pointer
target queue

…
head pointer
tail pointer

dispatch_async
·dispatch_async is the workhorse of libdispatch

·schedule objects to be invoked

·wait-free atomic enqueue algorithm in
pseudocode:

prev = atomic_xchg(queue->tail, obj);
if (prev) {! ! ! // fast-path
! prev->next = obj;
} else {! ! ! ! // slow-path
! queue->head = obj;
! wakeup(queue);
}

wake up
·“wake up” function schedules an object for

further processing:

·typically enqueues the object on its target
queue

·alternatively performs an action specific to the
object type

invoke
·dispatch object vtable entry to process an object

queues recursively invoke
elements in FIFO
order

event sources invoke event handler;
register/unregister
with manager queue

blocks invoke the block

pthread_workqueue
·pthread_workqueue interfaces are an extension

to pthreads on Darwin

·libdispatch registers interest in additional threads
via pthread_workqueue_additem_np

·xnu creates threads based on feedback from
scheduler

·generally N threads for N available CPUs

·additional threads may be provided if existing
threads are blocked in I/O, on a mutex, etc.

pthread_workqueue
·threads created by xnu run a libdispatch-provided

function with a libdispatch provided context

·grabs temporary ownership of a global
concurrent queue, pops first element, and begins
recursive invocation

·FreeBSD note: not implemented

event sources
·user-defined event handler blocks submitted to a

target queue in response to system activity

·follows kqueue conceptual model of events

·register for specific event types

·events described by type and a word of data

·counter or bit-mask of flags

·data may be coalesced

event types
event type event data

fd state readable, writeable

vnode attributes rename, delete, etc.

process events fork, exec, exist, etx.

mach port readable, dead name, etc.

signal SIGHUP, etc.

timer 500ms, etc.

custom user-defined

event coalescing
event type coalescing interpretation

fd state XCHG bytes available

vnode attributes OR flags

process events OR flags

mach port OR flags

signal ADD count (# times)

timer ADD count (# times)

custom ADD / OR user-defined

event reflector
·event reflector thread (“dispatch manager

queue”) monitors a kqueue

·dequeues events in bulk

·atomically merges data into event source
object

·performs “wake up” on event source —
enqueues event source object on target queue
for invocation of event handler block

event reflector
·adding/removing event sources done by

enqueuing event source object to manager queue

·manager queue has custom wake up routine

·uses EVFILT_USER / NOTE_TRIGGER

event performance
·no allocations required after event source

creation

·event source object contains the queue linkage

·data is coalesced while event source object is
pending on a queue

examples
·Running a task in the background and returning

the result to the main event loop (main thread)

dispatch_async(my_queue, ^{
	 result = my_task(my_data);
	 free(my_data);
	 dispatch_async(dispatch_get_main_queue(), ^{
	 	 show_result(result);
	 	 free(result);
	 });
});

examples
·creating a file descriptor read source

FILE *file = fopen(“/usr/share/dict/words”, “r”);

source = dispatch_source_create(DISPATCH_SOURCE_TYPE_READ,
	 	 fileno(file), 0, my_queue);

dispatch_source_set_event_handler(source, ^{
	 	 my_read(file);
	 	 if (feof(file) || ferror(file)) {
	 	 	 dispatch_source_cancel(source);
	 	 }
});

dispatch_source_set_cancel_handler(source, ^{
	 	 fclose(file);
});

dispatch_resume(source);

the FreeBSD port
·port to FreeBSD relatively straight forward

·autoconf/automake/libtool (pain)

·ifdef Mach port event handling

·Mach semaphores ➙ POSIX semaphores

·Mach time ➙ POSIX time/timespec

·new kqueue features: EVFILT_USER,
EV_DISPATCH, EV_RECEIPT

·thread pool rather than pthread workqueues

FreeBSD questions
·we already support this technology out of the

box in 9.x, soon 7.x / 8.x

·do we want to implement
pthread_workqueues?

·should we explore OS-specific optimizations

·what is required to get C Blocks working --
libgcc, compiler-rt, etc

·should we consider adopting this technology
for our own OS components

conclusion
·libdispatch is a significant departure from

threaded programming model

·offers simplicity and convenience for
“multithreaded” event loops

·efficient and scaleable design

·available as open source under Apache 2.0 license
to encourage widespread adoption

