Grand Central Dispatch
FreeBSD Devsummit

Robert Watson rwatson@FreeBSD.org
|8-Sep-2009


mailto:rwatson@FreeBSD.org
mailto:rwatson@FreeBSD.org

libdispatch

- runtime library for Grand Central Dispatch
feature of Mac OS X version 10.6 Snow Leopard

- available as open source
- http://libdispatch.macosforge.org

- Apache License,Version 2.0

- also runs on FreeBSD 9-CURRENT



libdispatch

- used in combination with sibling technology
“blocks”

- closures for C
- not required for libdispatch but very useful

- compiler and runtime also available as open
source under BSD-style license

- http://clang.llvm.org

- http://compiler-rt.llvm.org



hello world

#include <dispatch/dispatch.h>
#include <stdio.h>

int main(int argc, charx argv[])
{

dispatch_queue_t queue = dispatch_queue_get _main();

dispatch_async(queue, ~{
printf(“ss: Hello World\n”, argv[0]);
F);

// begin main event loop
dispatch_main();



topics
- goals

- data-types (objects, queues, event sources)

- examples

. conclusion



goals

- convenience
- efficiency

- task-level parallelism
- synchronization

- scaleability



convenience

- provide a callback-based event loop
- unify “event code” with “application code”
- historically, these were separate domains
- select, poll, kqueue, etc.
-sem_ wait, pthread cond_wait

- processes must bridge application events to an
OS primitive (e.g. pipe) to wake event loop



efficiency

- perform as much as possible in user space

- use of pipes in previous example requires
context switching to kernel space for send and
receive; consumes finite resource (fd table)

- libdispatch prefers to use a small number of
atomic operations for inter-thread
communication



task-level parallelism

-individual event loops expressed as queues
- multiple queues may be processed in parallel

- mapping logical subsystems onto separate queues
allows implicit task-level parallelism



synchronization

- queues execute events in FIFO order and wait
for completion

- can be used to protect access to shared
resources

“Islands of serialization in a sea of concurrency.”



scaleability

- peak performance under load

- “pump-priming”’ costs payed in transition from
idle to busy

. eX., thread creation is a side-effect of first
enqueue operation

- once busy, additional work can be taken on
efficiently

- eX., subsequent enqueue operations require
only a single atomic instruction



fast-path / slow-path

- the implementation is organized into fast-paths
and slow-paths

- slow-path represents the idle—=busy transition
- allocations and kernel traps may be required
- fast-path represents the busy—busy transition

-implemented with the fewest atomic
operations possible



fast-path / slow-path




fast-path / slow-path

- taking the fast-path assumes the object is already
enqueued for further processing

- taking the slow-path means a “‘wake up” must be

performed on the object to continue processing
(more on that later)



data types

- libdispatch data types are known as dispatch
objects

- reference counted memory management

- polymorphic (especially in internal usage)

queues

event sources

semaphores
blocks
etc.




dispatch objects

- each dispatch object is a reference-counted
linked-list element that may be enqueued

-includes queues of queues!

dispatch object

vtable

reference count

next pointer

target queue




dispatch queues

- dispatch queues are FIFO queues of dispatch
objects (including other dispatch queues) waiting
to be “invoked”

- queues may be processed on separate threads;
invoke elements in FIFO order

- wait-free atomic enqueue from any thread



dispatch queues

dispatch queue

vtable

reference count

next pointer

target queue

head pointer

tail pointer




dispatch_async
- dispatch_async is the workhorse of libdispatch

- schedule objects to be invoked

- wait-free atomic enqueue algorithm in
pseudocode:

prev = atomic_xchg(queue->tail, obj);

if (prev) { // fast-path
prev—>next = obj;
} else { // slow-path

gueue—>head = obj;
wakeup (queue);

}



wake up

- “wake up” function schedules an object for
further processing:

- typically enqueues the object on its target
queue

- alternatively performs an action specific to the
object type



invoke

- dispatch object vtable entry to process an object

queues recursively invoke
elements in FIFO
order

event sources invoke event handler;

register/unregister
with manager queue

blocks invoke the block




pthread workqueue

- pthread_workqueue interfaces are an extension
to pthreads on Darwin

- libdispatch registers interest in additional threads
via pthread workqueue additem_ np

. XNU creates threads based on feedback from
scheduler

- generally N threads for N available CPUs

- additional threads may be provided if existing
threads are blocked in I/O, on a mutex, etc.



pthread workqueue

- threads created by xnu run a libdispatch-provided
function with a libdispatch provided context

- grabs temporary ownership of a global

concurrent queue, pops first element, and begins
recursive invocation

- FreeBSD note: not implemented



event sources

- user-defined event handler blocks submitted to a
target queue in response to system activity

- follows kqueue conceptual model of events
- register for specific event types
- events described by type and a word of data
- counter or bit-mask of flags

- data may be coalesced



event types

event type

event data

fd state

readable, writeable

vhode attributes

rename, delete, etc.

process events

fork, exec, exist, etx.

mach-port readable, dead name;etc.
signal SIGHUP, etc.
timer 500ms, etc.

custom

user-defined




event coalescing

event type coalescing Interpretation
fd state XCHG bytes available
vnode attributes |[OR flags
process events |OR flags
mach port OR flags
signal ADD count (# times)
timer ADD count (# times)
custom ADD / OR user-defined




event reflector

- event reflector thread (“dispatch manager
queue’”) monitors a kqueue

- dequeues events in bulk

-atomically merges data into event source
object

- performs “wake up” on event source —
enqueues event source object on target queue
for invocation of event handler block



event reflector

-adding/removing event sources done by
enqueuing event source object to manager queue

- manager queue has custom wake up routine

-uses EVFILT _USER / NOTE_TRIGGER



event performance

- no allocations required after event source
creation

- event source object contains the queue linkage

- data is coalesced while event source object is
pending on a queue



examples

- Running a task in the background and returning
the result to the main event loop (main thread)

dispatch_async(my_queue, A{
result = my_task(my_data);
free(my_data);
dispatch_async(dispatch_get_main_queue(), ~{
show_result(result);
free(result);

IDF
1)



examples

- creating a file descriptor read source

FILE *file = fopen(*/usr/share/dict/words”, “r”);

source = dispatch_source_create(DISPATCH_SOURCE_TYPE_READ,
fileno(file), @, my_queue);

dispatch_source_set_event_handler(source, A{
my_read(file);
1f (feof(file) Il ferror(file)) {
dispatch_source_cancel(source);

}
1)

dispatch_source_set_cancel_handler(source, A{
fclose(file);

1)

dispatch_resume(source);



the FreeBSD port

- port to FreeBSD relatively straight forward
- autoconf/automake/libtool (pain)
- ifdef Mach port event handling
- Mach semaphores = POSIX semaphores
- Mach time => POSIX time/timespec

- new kqueue features: EVFILT _USER,
EV_DISPATCH, EV_RECEIPT

- thread pool rather than pthread workqueues



FreeBSD questions

- we already support this technology out of the
box in 9.x,soon 7.x / 8.x

- do we want to implement
pthread workqueues!

- should we explore OS-specific optimizations

- what is required to get C Blocks working --
libgcc, compiler-rt, etc

- should we consider adopting this technology
for our own OS components



conclusion

- libdispatch is a significant departure from
threaded programming model

- offers simplicity and convenience for
“multithreaded” event loops

- efficient and scaleable design

-available as open source under Apache 2.0 license
to encourage widespread adoption



