H20

the optimized HTTP server

DeNA Co., Ltd.
Kazuho Oku

1
CCCCC ight (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Who am I?

B long experience in network-related / high-
performance programming

B works in the field:
- Palmscape / Xiino

« world's first web browser for Palm OS, bundled by
Sony, IBM, NTT DoCoMo

- MySQL extensions: Q4M, mycached, -
» MySQL Conference Community Awards (as DeNA)

- JSX
 alt]JS with an optimizing compiler

H20 - the optimized HTTP server

DeNi]

Agenda

Introduction of H20

The motives behind

Writing a fast server
Writing H20 modules
Current status & the future
Questions regarding HTTP/2

H20 - the optimized HTTP server

DeNi]

Introducing H20

H20 - the optimized HTTP server 4

'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

H20 - the umbrella project

B h20 - the standalone HTTP server
- libh20 — can be used as a library as well
B picohttpparser — the HTTP/1 parser
B picotest — TAP-compatible testing library
B grintf — C preprocessor for optimizing s(n)printf
B yoml| - DOM-like wrapper for libyaml

github.com/h20

H20 - the optimized HTTP server

DeN]

h20

B the standalone HTTP server

m protocols:
- HTTP/1.x
- HTTP/2

via Upgrade, NPN, ALPN, direct
- WebSocket (uses wslay)
- with SSL support (uses OpenSSL)
B modules:
- file (static files), reverse-proxy, reproxy, deflate
B configuration using yam|

H20 - the optimized HTTP server

DeNk]

libh20

® h20 is also available as a library
B event loop can be selected
- libuv
- h20's embedded event loop
B configurable via API and/or yam|
- dependency to libyaml is optional

H20 - the optimized HTTP server

DeNk]

Modular design

® library layer:

- memory, string, socket, timeout, event-loop,
httplclient, ---

B protocol layer:

- http1, http2, websocket, loopback
B handlers:

- file, reverse-proxy
B output filters:

- chunked-encoder, deflate, reproxy
W |oggers:

- access-log

H20 - the optimized HTTP server

DeNi]

Testing

B two levels of testing for better quality

- essential for keeping the protocol
Implementations and module-level API apart

B unit-testing
- every module has (can have) it's own unit-test

- tests run using the loopback protocol handler

« module-level unit-tests do not depend on the
protocol

B end-to-end testing

- spawns the server and connect via network
- uses nghttp2

H20 - the optimized HTTP server

DeNi]

Internals

B uses h2o buf t (pair of [char*, size_t]) is used to
represent data

- common header names are interned into tokens
« those defined in HPACK static_table + a
B mostly zero-copy

B incoming data allocated using: malloc, realloc,
mmap

- requires 64-bit arch for heavy use
B uses writev for sending data

H20 - the optimized HTTP server 10

DeNi]

Fast

120,000

100,000

80,000

60,000

Requests / second.core

40,000

20,000 -

6 bytes | 1,024 bytes (10,240 bytes| 6 bytes | 1,024 bytes 10,240 bytes| 6 bytes | 1,024 bytes |10,240 bytes| 6 bytes | 1,024 bytes |10,240 bytes

HTTP/1 (local; osx) HTTP/1 (local; linux) HTTP/1 (remote; linux) HTTPS/1 (remote; linux)

Enginx-1.7.7 & h2o

Note: used MacBook Pro Early 2014 (Core i7@2.4GHz), Amazon EC2 cc2.8xlarge, no logging

H20 - the optimized HTTP server 11

DeNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Why is it fast?
Why should it be fast?

H20 - the optimized HTTP server 12
’DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

It all started with PSGI/Plack

m PSGI/Plack is the WSGI/Rack for Perl
® on Sep 7t 2010:
- first commit to github.com/plack/Plack

- I asked: why ever use FastCGI?

« at the time, HTTP was believed to be slow, and
FastCGI is necessary

- the other choice was to use Apache+mod_perl
- I proposed:
« write a fast HTTP parser in C, and use it from Perl

« get rid of specialized protocols / tightly-coupled
legacy servers

- for ease of dev., deploy., admin.

H20 - the optimized HTTP server

DeNi]

13

So I wrote HTTP::Parser:: XS and picohttpparser.

H20 - the optimized HTTP server 14
"DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

How fast is picohttpparser?

B 10x faster than http-parser according to 3p bench.
- github.com/fukamachi/fast-http

HTTP Parser Performance Comparison

3,500,000

3,162,745

3,000,000

2,500,000

2,000,000

1,500,000

requests / second

1,000,000

500,000 329,033

N

http-parser@5fd51fd picohttpparser@56975cd

H20 - the optimized HTTP server

15
PDeNA

Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

HTTP::Parser::XS

B the de-facto HTTP parser used by PSGI/Plack
- PSGI/Plack is the WSGI/Rack for Perl

B modern Perl-based services rarely use FastCGI or
mod__perl

B the application servers used (Starlet, Starman, etc.)
speak HTTP using HTTP::Parser::XS

- application servers can be and in fact are written
iIn Perl, since the slow part is handled by
HTTP::Parser:: XS

B picohttpparser is the C-based backend of

HTTP::Parser::XS

H20 - the optimized HTTP server 16

DeNi]

The lessons learned

B using one protocol (HTTP) everywhere reduces the
TCO

- easier to develop, debug, test, monitor,
administer

- popular protocols tend to be better designed &
iImplemented thanks to the competition

B similar transition happens everywhere
- WAP has been driven out by HTTP & HTML
- we rarely use FTP these days

H20 - the optimized HTTP server 17

DeNi]

but HTTP Is not yet used everywhere

B web browser
- HTTP/1 is used now, transiting to HTTP/2
B SOA / microservices

- HTTP/1 is used now

« harder to transit to HTTP/2 since many proglangs
use blocking I/0

- other protocols coexist: RDBMS, memcached, ---
« are they the next target of HTTP (like FastCGI?)

m JoT
« MQTT is emerging

H20 - the optimized HTTP server

DeNi]

So I decided to write H20

m inJuly 2014

m life of the developers becomes easier if all the
services use HTTP

B but for the purpose, it seems like we need to raise
the bar (of performance)

- or other protocols may emerge / continue to be
used

B now (at the time of transition to HTTP/2) might be a
good moment to start a performance race between
HTTP implementers

H20 - the optimized HTTP server 19

DeNi]

Writing a fast server

H20 - the optimized HTTP server 20

'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Two things to be aware of

B characteristics of a fast program

1. executes less instructions
« speed is a result of simplicity, not complexity

2. causes less pipeline hazards

« minimum number of conditional branches / indirect
calls

« use branch-predictor-friendly logic

- e.g. "conditional branch exists, but it is taken
95%"

H20 - the optimized HTTP server

DeNi]

21

H20 - design principles

B do it right

- local bottlenecks can be fixed afterwards

- large-scale design issues are hard to notice / fix
B do it simple

- as explained

- provide / use hooks only at high-level
« hooks exist for: protocol, generator, filter, logger

H20 - the optimized HTTP server 22

DeNA]

The performance pitfalls

B many server implementations spend CPU cycles in
the following areas:

- memory allocation

- parsing input

- stringifying output and logs
- timeout handling

H20 - the optimized HTTP server

DeNi]

23

Memory allocation

H20 - the optimized HTTP server 24

'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Memory allocation in H20

B uses region-based memory management
- "memory pool" of Apache
W strategy:
- memory block is assigned to the Request object
- small allocations returns portions of the block
- memory is never returned to the block

- The entire memory block gets freed when the
Request object is destroyed

H20 - the optimized HTTP server 25

DeNi]

Memory allocation in H20 (cont'd)

B malloc (of small chunks)

void *h2o0 mempool alloc(h2o mempool t *pool, size t sz)

{
(snip)
void *ret = pool->chunks->bytes + pool->chunks->offset;
pool->chunks->offset += sz;
return ret;
}
m free

- no code (as explained)

H20 - the optimized HTTP server

DeNk]

26

Parsing input

H20 - the optimized HTTP server 27

'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Parsing input

m HTTP/1 request parser may or may not be a
bottleneck, depending on its performance

- if the parser is capable of handling 1M reqgs/sec,
then it will spend 10% of time if the server

handles 100K regs/sec.

HTTP/1 Parser Performance Comparison

3,500,000
3,000,000

s 2,500,000
3
(8]
% 2,000,000

~
"

=
@ 1,500,000

equ

= 1,000,000
500,000

0

H20 - the optimized HTTP server

DeNi]

3,162,745

329,033

I
picohttpparser@56975cd

http-parser @5fd51fd

28

Parsing input (cont'd)

B it's good to know the logical upper-bound

- or we might try to optimize something that can
no more be faster

B Q. How fast could a text parser be?

H20 - the optimized HTTP server

DeNi]

29

Q. How fast could a text server be?

Answer: around 1GB/sec. is a good target

- since any parser needs to read every byte and
execute a conditional branch depending on the
value

e # of instructions: 1 load + 1inc+ 1test+ 1
conditional branch

« would likely take several CPU cycles (even if
superscalar)

« unless we use SIMD instructions

H20 - the optimized HTTP server

DeNi]

30

Parsing input

B What's wrong with this parser?

for (; s != end; ++s) {
int ch = *s;
switch (ctx.state) {
case AAA:
if (ch == "' ")
ctx.state = BBB;
break;

case BBB:

H20 - the optimized HTTP server
DeNA]

31

Parsing input (cont'd)

B never write a character-level state machine if
performance matters
for (; s != end; ++s) {
int ch = *s;
switch (ctx.state) { // & executed for every char
case AAA:
if (ch == "' ")
ctx.state = BBB;
break;

case BBB:

H20 - the optimized HTTP server

DeNi]

32

Parsing input fast

B each state should consume a sequence of bytes

while (s != end) {

switch (ctx.state) {

case AAA:
do {
if (*s++ == "' ") {
ctx.state = BBB;
break;
}

} while (s != end);
break;

case BBB:

H20 - the optimized HTTP server

DeNi]

33

Stateless parsing

B stateless in the sense that no state value exists

- stateless parsers are generally faster than
stateful parsers, since it does not have state - a
variable used for a conditional branch

m HTTP/1 parsing can be stateless since the request-
line and the headers arrive in a single packet (in
most cases)

- and even if they did not, it is easy to check if the
end-of-headers has arrived (by looking for CR-
LF-CR-LF) and then parse the input

« this countermeasure is essential to handle the
Slowloris attack

H20 - the optimized HTTP server 34

DeNi]

picohttpparser is stateless

B states are the execution contexts (instead of being a
variable)

const char* parse request(const char* buf, const char* buf end, ..)
{

/* parse request line */

ADVANCE TOKEN(*method, *method len);

++buf;

ADVANCE TOKEN(*path, *path len);

++buf;

if ((buf = parse http version(buf, buf end, minor version, ret)) == NULL)

return NULL;
EXPECT CHAR('\015');
EXPECT CHAR('\012');

return parse headers(buf, buf end, headers, num headers, max headers, ..);

H20 - the optimized HTTP server 35

DeNi]

loop exists within a function (=state)

B the code looks for the end of the header value

#define IS PRINTABLE(c) ((unsigned char)(c) - 040u < 0137u)

static const char* get token to eol(const char* buf, const char* buf end, ..
{
while (likely(buf end - buf >= 8)) {
#define DOIT() if (unlikely(! IS PRINTABLE(*buf))) goto NonPrintable; ++buf
DOIT(); DOIT(); DOIT(); DOIT();
DOIT(); DOIT(); DOIT(); DOIT();

#undef DOIT

continue;

NonPrintable:
if ((likely((uchar)*buf < '\040') && likely(*buf != '\011'))
| | unlikely(*buf == '\177'))

goto FOUND_ CTL;

}

H20 - the optimized HTTP server

DeNi]

36

The hottest loop of picohttpparser (cont'd)

B after compilation, uses 4 instructions per char

movzbl (%r9), %rlld
movl ¢rlld, %eax

addl $-32, %eax

cmpl $94, %eax

ja LBB5 5

movzbl 1(%r9), %rlld // load char

leal -32(%rll), %eax // subtract

cmpl $94, %eax // and check if is printable
ja LBB5 4 // if not, break

movzbl 2(%r9), %rlld // load next char

leal -32(%rll), %eax // subtract

cmpl $94, %eax // and check if is printable
ja LBB5 15 // if not, break

movzbl 3(%r9), %rlld // load next char

H20 - the optimized HTTP server

DeNi]

strien vs. picohttparser

B not as fast as strlen, but close

size t strlen(const char *s) ({ strlen vs. picohttpparser

const char *p = s;

for (; *p != '\0'; ++p)

return p - s; g 0.40

} 0.20

® not much room T T —
left for further
optimization (wo.
using SIMD
INsns.)

H20 - the optimized HTTP server

DeNk]

picohttpparser is small and simple

$ wc picohttpparser.?

376 1376 10900 picohttpparser.c
62 333 2225 picohttpparser.h
438 1709 13125 total

B good example of do-it-simple-for-speed approach

- H20 (incl. the HTTP/2 parser) is designed using
the approach

H20 - the optimized HTTP server

DeNi]

39

Stringification

H20 - the optimized HTTP server 40

'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Stringification

®m HTTP/1 responses are in strings
sprintf (buf, "HTTP/1.%d %d %s\r\n",

®m s(n)printf is known to be slow
- but the interface is great

- 1t's tiresome to write like:
p = strappend s(p, "HTTP/1.");

p = strappend n(p, minor version);

*p++ = ' '

P = strappend n(p, status);
*p++ = ' '

4

p = strappend s(p, reason);

p = strappend s(p, "\r\n");

H20 - the optimized HTTP server

DeNi]

)

41

Stringification (cont'd)

B stringification is important for HTTP/2 servers too

- many elements still need to be stringified
« headers (status, date, last-modified, etag, ---)
« access log (IP address, date, # of bytes, ---)

H20 - the optimized HTTP server

DeNi]

42

Why is s(n)printf slow?

B t's a state machine

- interprets the format string (e.g. "hello: %s") at
runtime

M it uses the locale

- not for all types of variables, but:-
M it uses varargs
m it's complicated

- sprintf may parse a number when used for
stringifying a number

sprintf(buf, "%11d", status)

H20 - the optimized HTTP server

DeNi]

43

How should we optimize s(n)printf?

B by compiling the format string at compile-time
- instead of interpreting it at runtime

- possible since the supplied format string is
almost always a string literal

B and that's grintf

H20 - the optimized HTTP server

DeNi]

44

qrintf

B grintf is a preprocessor that rewrites s(n)printf
invocations to set of functions calls specialized to
each format string

B grintf-gcc is a wrapper of GCC that
- first applies the GCC preprocessor
- then applies the grintf preprocessor
- then calls the GCC compiler
B similar wrapper could be implemented for Clang
- but it's a bit harder
- help wanted!

H20 - the optimized HTTP server

DeNi]

45

Example

// original code (248 nanoseconds)

u-,

oP

snprintf (buf, sizeof(buf), "%u.%u.%u.

(addr >> 24) & Oxff, (addr >> 16) & Oxff, (addr >> 8) & Oxff,

// after preprocessed by grintf (21.5 nanoseconds)
_grintf chk finalize(
~grintf chk u(_grintf chk c(
_grintf chk u(_grintf chk c(
_grintf chk u(grintf chk c(

_grintf chk u(

addr & Oxff);

_grintf chk init(buf, sizeof(buf)), (addr >> 24) & O0xff),

'."), (addr >> 16) & 0xff),
'."), (addr >> 8) & 0xff),
'.'"), addr & O0xff));

H20 - the optimized HTTP server

DeNi]

46

Performance impact on H20

B 20% performance gain
- gcc: 82,900 reqgs/sec
- grintf-gcc: 99,200 reqgs/sec.
B benchmark condition:
- 6-byte file GET over HTTP/1.1
- access logging to /dev/null

H20 - the optimized HTTP server

DeNi]

47

Timeout handling

H20 - the optimized HTTP server 48

'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Timeout handling by the event loops

B most event loops use balanced trees to handle

timeouts

- so that timeout events can be triggered fast

- cons.iIst

nat it takes time to set the timeouts

® in case of H
per request

P, timeout should be set at least once

- otherwise the server cannot close a stale
connection

H20 - the optimized HTTP server

49

DeNi]

Timeout requirements of a HTTP server

B much more set than triggered

- is set more than once per request

- most requests succeed before timeout
B the timeout values are uniform

- e.g. request timeout for every connection would
be the same (or i/o timeout or whatever)

B balanced-tree does not seem like a good approach
- any other choice?

H20 - the optimized HTTP server 50

DeNi]

Use pre-sorted link-list

® H20 maintains a linked-list for each timeout
configuration

- request timeout has its own linked-list, i/o
timeout has its own, ---

B how to set the timeout:

- timeout entry is inserted at the end of the linked-
list
« thus the list is naturally sorted
B how the timeouts get triggered:

- H20 iterates from the start of each linked-list,
and triggers those that have timed-out

H20 - the optimized HTTP server 51

DeNi]

Comparison Chart

set (high) O(log N) O(1)
clear (high) O(log N) O(1)
trigger (low) O(1) O(M)

note: N: number of timeout entries, M: number of timeout configurations, trigger performance of list of linked-list can
be reduced to O(1)

H20 - the optimized HTTP server

DeNi]

52

Miscellaneous

H20 - the optimized HTTP server 53

'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Miscellaneous

® the entire stack of H20 is carefully designed (for
simplicity and for performance)

- for example, the built-in event loop of H20
(which is the default for h20), is faster than libuv

Benchmark: libuv vs. internal

6 bytes
)
[
3
c
o
(5]
o
o
[J]
N
(7]

4,096 bytes

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000
requests / sec.core
& libuv-network-and-file@7876f53 & libuv-network-only@da85742 internal (master@a5d1105)

H20 - the optimized HTTP server

DeNi]

54

Writing H20 modules

H20 - the optimized HTTP server 55

'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Module types of H20

® handler

- generates the contents
« e.g. file handler, proxy handler

m filter

- modifies the content
« e.g. chunked encoder, deflate

- can be chained
B logger

H20 - the optimized HTTP server

DeNi]

56

Writing a "hello world" handler

static int on req(h2o handler t *self, h2o req t *req) {

static h2o generator t generator = {};

static h2o buf t body = H20 STRLIT("hello world\n");

if (! h2o memis(reg->method.base, reg->method.len, H20 STRLIT("GET")))
return -1;

reg->res.status = 200;

reqg->res.reason = "OK";

h2o0 add header(&req->pool, ®->res.headers, H20 TOKEN CONTENT TYPE,
H20 STRLIT("text/plain"));

h2o0 start response(req, &generator);

h2o send(req, &body, 1, 1);

return 0;

h2o _handler t *handler = h2o create handler(host config, sizeof(*handler));

handler->on req = on_req;

H20 - the optimized HTTP server

“DeNA

57

The handler API

/[**

* called by handlers to set the generator

* @param req the request

* @param generator the generator

*/
void h2o start response(h2o req t *req, h2o generator t *generator);
/**

* called by the generators to send output

* note: generator should close the resources opened by itself after sending the
final chunk (i.e. calling the function with is final set to true)

* @param req the request

* @param bufs an array of buffers

* @param bufcnt length of the buffers array
* @param is final if the output is final

*/

void h2o send(h2o req t *req, h2o buf t *bufs, size t bufcnt, int is final);

H20 - the optimized HTTP server 58

DeNi]

The handler API (cont'd)

/[**

* an object that generates a response.

* The object is typically constructed by handlers that call h2o start response.
*/

typedef struct st h2o generator t {

/[**
* called by the core to request new data to be pushed via h2o send
*/
void (*proceed) (struct st h2o generator t *self, h2o req t *req);
/**

* called by the core when there is a need to terminate the response
*/
void (*stop)(struct st h2o generator t *self, h2o req t *req);

} h2o generator t;

H20 - the optimized HTTP server

DeNi]

59

Module examples

B Simple examples exist in the examples/ dir
B lib/chunked.c is a good example of the filter API

H20 - the optimized HTTP server

DeNi]

60

Current Status & the Future

H20 - the optimized HTTP server 61
'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Development Status

M core
- mostly feature complete
m protocol
- http/1 - mostly feature complete
- http/2 - interoperable
B modules
- file = complete
- proxy - interoperable
« name resolution is blocking

« does not support keep-alive

H20 - the optimized HTTP server

DeN]

62

HTTP/2 status of H20

B interoperable, but some parts are missing

- HPACK resize

- priority handling
B priority handling is essential for HTTP/2

- without, HTTP/2 is slower than HTTP/1 ®
B need to tweak performance

- SSL-related code is not yet optimized
first benchmark was taken last Saturday ©

H20 - the optimized HTTP server 63

DeNi]

HTTP/2 over TLS benchmark

B need to fix the dropdown, likely caused by:

- H20 uses writev to gather data into a single
socket op., but OpenSSL does not provide
scatter-gather I/O

- In H20, every file
handler has its own »*
buffer and pushes “*1
content to the
protocol layer HHBE

° n g httpd p u | |S HTTPS/2 (remote; linux)

= - - nghttpd & h2o
instead, which is

H20 - the optimized HTTP server

DA MANAFra Marmne /-

40,000 '

20,000

64

Goal of the project

B to become the best HTTP/2 server

- with excellent performance in serving static
files / as a reverse proxy

« note: picohttpserver and other libraries are also used
in the reverse proxy implementation

B to become the favored HTTP server library
- esp. for server products

- to widen the acceptance of HTTP protocol even
more

H20 - the optimized HTTP server 65

DeNi]

Help wanted

B |ooking for contributors in all areas

- addition of modules might be the easiest, since it
would not interfere with the development of the
core / protocol layer

- examples, docs, tests are also welcome
M it's easy to start
- since the code-base is young and simple

Core 2,334
Library 1,856
Socket & event loop 1,771
HTTP/1 (incl. picohttpparser) 886
HTTP/2 2,507
Modules 1,906

Server 573

H20 - the optimized HTTP server 66

DeNi]

Questions regarding HTTP/2

H20 - the optimized HTTP server 67
'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Sorry, I do not have much to talk

B since it is a well-designed protocol

B and in terms of performance, apparently binary
protocols are easier to implement than a text
protocol ©

- there's a efficient algorithm for the static
Huffman decoder

« @tatsuhiro-t implemented it, I copied
B OTOH I have some questions re HTTP/2

H20 - the optimized HTTP server

DeNi]

68

Q. would there be a max-open-files issue?

B according to the draft, recommended value of
MAX_CONCURRENT_STREAMS is >= 100

B if max-connections is 1024, it would mean that the
max fd would be above 10k

- on linux, the default (NR_OPEN) is 1,048,576
and is adjustable

- but on other OS?

B H20 by default limits the number of in-flight
requests internally to 16

- the value is configurable

H20 - the optimized HTTP server 69

DeNi]

Q. good way to determine the window size?

m initial window size (64k) might be too small to
saturate the avaiable bandwidth depending on the
latency

- but for responsiveness we would not want the
value to be too high

- is there any recommendation on how we should
tune the variable?

H20 - the optimized HTTP server 70

DeNi]

Q. should we continue to use CDN?

m HTTP/2 has priority control

- CDN and primary website would use different
TCP connection

 means that priority control would not work bet. CDN
and the primary website

B should we better serve all the asset files from the
primary website?

H20 - the optimized HTTP server

DeNi]

71

Never hide the Server header

B name and version info. is essential for interoperability

- many (if not all) webapps use the User-Agent value to
evade bugs

- used to be same at the HTTP/1 layer in the early days
m there will be interoperability problems bet. HTTP/2 impls.

- the Server header is essential for implementing
workarounds

B some believe that hiding the header improves security

- we should speak that they are wrong; that security-by-
obscurity does not work on the Net, and hiding the
value harms interoperability and the adoption of HTTP/
2

H20 - the optimized HTTP server

DeNi]

Summary

H20 - the optimized HTTP server 73

'DQNA Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.

Summary

B H20 is an optimized HTTP server implementation

- with neat design to support both HTTP/1 and
HTTP/2

- 1s still very young
lots of areas to work on!
iIncl. improving the HTTP/2 support

B help wanted! Let's write the HTTPD of the future!

H20 - the optimized HTTP server

DeNi]

74

