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ABSTRACT

Hashing is one of the most relevant operations within query
processing. Almost all core database operators like group-
by, selections, or different join implementations rely on
highly efficient hash implementations. In this paper, we
present a way to significantly improve performance and en-
ergy efficiency of hash operations using specialized instruc-
tion set extensions for the Tensilica Xtensa LX5 core. To
show the applicability of instruction set extensions, we im-
plemented a bit extraction hashing scheme for 32-bit integer
keys as well as the CityHash function for string values. We
identify the individual parts of the algorithms required to
be optimized, we describe our hashing-specific instruction
set, and finally give a comprehensive experimental evalua-
tion. We observed that the hash implementation using the
hashing-specific instruction set (1) is up to two orders of
magnitudes faster than the basic core without extensions,
(2) exhibits always better performance compared to hand-
tuned code running on modern high-end general purpose
CPUs, and (3) has a significantly better footprint with re-
spect to energy consumption as well as chip area. Especially
the third observation has the potential for a higher packing
density and therefore a significantly better overall system
performance.

1. INTRODUCTION

Database systems can be optimized in many different di-
rections, while the overall challenges are often optimiza-
tions of algorithms or adapting the software to given hard-
ware features like multiple cores, SIMD, and memory hier-
archies. Algorithms deployed in database systems are there-
fore highly tuned and very often either reach the processor’s
peak performance or they are limited by some system char-
acteristics like memory bandwidth or latency, the number
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of available cores, or down-scaled core frequencies due to
power and heat dissipation limitations.

Therefore, a high performance database system design
also depends on hardware specializations to achieve even
better performance. Unfortunately, general purpose pro-
cessors are reaching their limits since single-threaded per-
formance has almost stopped to increase, because the maxi-
mum core frequency is limited by physical constraints. Even
the current solution, to put more and more homogeneous
cores onto a single socket, will also reach physical limita-
tions soon. As the feature size in which processors are man-
ufactured will shrink, the growing number of transistors will
increase the occurrence of dark silicon [4, 6]. Dark silicon is
caused by thermal problems, since supplying all transistors
with energy at the same time would overheat the processor.
Having an energy-efficient processor design and introducing
specialized instruction sets that are usable on-demand, mit-
igates the impact of dark silicon. Especially the latter idea
can be implemented on a fraction of the chip space, where
the instruction set extensions can be power-gated whenever
needed without compromising the overall general purpose
characteristics of the chip itself.

To follow the idea of specialized instruction sets and to
push the envelope in database performance, we strive to
widen the view towards adjusting processors for today’s and
future query processing needs. Processors themselves can
be extended to allow for a higher query throughput and
lower latency by adding specialized instruction sets, opti-
mized for supporting query processing primitives. Special
purpose hardware extensions for database operations can
improve the performance of the supported algorithms sig-
nificantly while — at the same time — saving energy in the
processor, mitigating the impact of dark silicon and there-
fore allowing a much higher packing density of individual
cores due to good electrical and thermal properties.

In previous work, we proposed an instruction set exten-
sion to accelerate set-oriented database primitives [2]. In
this paper, we want to go further with this novel way of
optimization by providing a specialized instruction set ex-
tension for database hashing primitives in combination with
a low-energy processor design. Hashing is widely used in
modern databases for join implementations, aggregation op-
erators, as well as indexing. To support all these operators
with instruction set extensions, we investigate hashing prim-
itives like integer and string hashing, as well as insert and
lookup operations. For all these operations, we use well-



known and established hashing algorithms and implement
them in an instruction set extension. Furthermore, for inte-
ger hashing, we decided for an adaptive hashing algorithm
where the hash mask can be adjusted to support arbitrary
data sets, efficiently decreasing collisions when using hash
tables. To further support this adjustment we also investi-
gated a sampling approach, where a subset of the data set
is scanned to calculate the mentioned hash mask.
Our key contributions can be summarized as follows:

(1) We introduce the idea to extend customizable processors
with specialized instruction set extensions for hashing
primitives in database systems.

(2) We discuss a novel instruction set extension to speed up
hashing primitives. The instructions can be used, for
example, for efficient join or aggregation algorithms as
well as indexing. We discuss each instruction in detail
with their implementation in hardware.

(3) We provide a broad evaluation of the instruction set ex-
tension. Besides a performance comparison, we evaluate
the required chip area of the instructions, their impact
on the processor’s core frequency, and the processor’s
power consumption. Moreover, we compare the perfor-
mance of hash algorithms running on our processor with
existing, highly-optimized algorithms running on mod-
ern x86 processors.

Please note that a system-level evaluation of our instruc-
tion set extension is not part of this paper. At this point,
we focus on the selection and implementation of low-level
hashing algorithms and their performance. This is the first
step towards accelerating more complex database operators
that rely on efficient hashing operations.

The paper is structured as follows: In Section 2 we give the
required background knowledge for our hash algorithms and
introduce the model of our customizable processor. After-
wards, we present our hashing specific instruction set exten-
sion (Section 3) in detail. In Section 4 finally, we evaluate
our instruction set extension with respect to throughput,
chip area size, and power consumption. We also compare
our results to modern x86 processors. Section 5 states re-
lated works and Section 6 summarizes and concludes the

paper.

2. BACKGROUND

Before diving into detail, we sketch the necessary back-
ground information of our hash algorithms as well as the
customizable processor model used for the instruction set
extension.

2.1 Hash Algorithms

Many hash functions have been proposed for many differ-
ent application scenarios respectively key distributions. To
cover the most important data types of a DBMS, we decided
to pick a configurable hash function for integers as well as
the popular CityHash function for string keys. In addition
to investigating the hardware optimization potential of both
hash functions, we also discuss the optimization potential for
general insert and lookup operations.

Integer Hash Function and Sampling

The integer hash function we selected is based on bit ex-
traction. The hash function considers only specific bits in

the key to calculate the smaller hash key. For example, the
input integer key is 32 bit wide and we extract the bits at
position 2, 4, 8, and 10 to a four-bit hash key, thus being
able to address 16 buckets in a hash table. To implement
this hash function, the specific bits need to be extracted
from the integer key and are required to be condensed into
the smaller hash key. This can be seen in the related C code
of Figure 1. key points to the memory location of the 32-bit
keys. The resulting hash values are written to the mem-
ory pointed by hashValue. We assume that the hash mask
(hashFunc) contains at most 16 set bits distributed over all
32 bits. Hence, the size of the hash values do not exceed
16 bits. As depicted in the C code, the bit extraction is
implemented by a series of bit wise shifts and logical opera-
tions, which consumes a fairly large number of CPU cycles
on general purpose processors. Thus, the overall goal of our
approach is to implement a specialized instruction that ex-
ecutes this specific operation within a single CPU cycle to
speed up hash number computations considerably.

void int_hash(
unsigned int* key, //input keys
unsigned short* hashValue, //output hash values
int keySize, //number of keys
unsigned int hashFunc //hash mask

)
int i, j;
unsigned int hash;
unsigned int mask = OxFFFFFFFF, shVal, shVal_neg;
for(i=0; i<keySize; i++){
//bit selection
hash = key[i] & hashFunc;
//extract bits
for(j=30; j>=0; j--){
if (! (hashFunc & (0x1<<j))){
//partial shift right
shVal = hash & (mask<<j);
shVal_neg = hash & ~(mask<<j);
hash = (shVal>>1) | shVal_neg;
}
}
hashValue[i] = hash;
}
}

Figure 1: Algorithm of Integer Hash Function

In addition to performing this hash function efficiently,
we also strive to accelerate the sampling step. A sampling
step is required to decide upon the significant bits (described
within a corresponding hash mask) to be extracted and used
to build the hash key. The quality of the final hash function
heavily depends on the proper selection of the hash mask.
Thus, a careful choice of a hash mask determines the effi-
ciency of the execution of the hash operations at runtime
by minimizing collisions while mapping the input keys to
uniformly distributed hash keys. If a set of keys is already
given, sampling can be used to investigate a subset of the
given input data to estimate the characteristics of the com-
plete data set. Based on this output, the hash function can
be configured with the computed hash mask.

Our sampling algorithm therefore determines the distri-
bution of all 32 bits of the sampled data set to determine
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Figure 2: Sampling of 32-bit input keys using a his-
togram representation

the bits with the highest entropy for the hash function. This
is done by counting the number of set bits of the sampled
input data set. The result is stored in a histogram as shown
in Figure 2. In particular, the chosen hash mask should in-
clude the bits, which are set in roughly 50% of the input
keys.

String Hash Function

As an example for string hashing we decided to choose the
CityHash [5] function. Although, the algorithm is quite
complex, the provided implementation on general purpose
CPUs is highly optimized especially through SSE support.
Figure 3 depicts the CityHash32 function. In general, the
function takes the pointer to the string and the string length
as input.

unsigned CityHash32(char *s, int len){
int hash = comp_1(s+len-20);
int i = (len-1)/20;

do {
hash = comp_2(s, hash);
s += 20;

} while(--i != 0);

return comp_3(hash);

Figure 3: Algorithm of CityHash32 Hashing

In our example, we assume that the length n is greater
than 24. Otherwise, the algorithm is calculating the hash
value slightly differently. For readability, we denote with
comp_X computations consisting of additions, multiplica-
tions with constants, bitwise rotations, and bitwise XOR.
After a first calculation (comp-1) of the last 20 ASCII char-
acters, the CityHash32 function sequentially loads 20 char-
acters starting from the beginning of the string within a
loop. As can be seen in Figure 3, the output of comp_2
is reused in conjunction with 20 new characters within the
next calculation. Finally, a last computation (comp_3) re-
turns the final hash value. In Section 3 we describe how to
implement specialized instructions to speed up the compu-
tations of the algorithm.

Insert and Lookup

To achieve high performance for hash-based database opera-
tors, fast insert, and lookup operations are essential. With-
in our setup, we assume a hash table with 128-bit buckets,

i.e., one bucket has four dedicated 32-bit positions. After
applying the integer hash function as described before, a
32-bit key is written to the next free position of the bucket.
Since the payload is optional (e.g., for simple hash probes)
or maybe of a variable size, it is stored separately to pre-
serve the generality of the instruction. As already stated,
bucket overflow handling and extensions for wider keys and
payloads are preserved for future work.

To lookup a given key in the hash table, the key is — in
a first step — hashed by the integer hash function. In a sec-
ond step, the bucket is searched for the targeted key. If the
key is found, the related bucket and the position of the key
within the bucket is returned by the function. To acceler-
ate both operations, we aim to add a specialized insert and
lookup instruction, which is combined with the integer hash
function into a single instruction.

2.2 Processor Model

Within our work, we use a Tensilica Xtensa LX5 customiz-
able processor as a basis for the instruction development.
In Figure 4, the main components (white) and possible ex-
tensions (colored) are depicted. The LX5 supports a basic
RISC instruction set and contains several registers for tem-
porary data storage. These two components are extensible
by hash-specific versions. Therefore, the approach and the
tool flow presented in [2] are employed. Additionally, hash-
specific states are used. In contrast to registers, states are
not managed by the compiler but by the newly introduced
instructions itself. For instance, data pointers are explicitly
incremented by the corresponding instructions.

The processor solely operates on local memories and is
consequently facing no cache misses. The processor has one
32 KByte instruction memory and two 32 KByte data mem-
ories integrated. Data bus width is 64 and 2x128 bit for
the instruction and data memories, respectively. Each data
memory bank uses a dedicated load-store unit. Memory ac-
cess latency is one cycle for all memories. An integrated
prefetcher triggers data transfers over the interconnection
network to the local memory before it is actually needed
using burst mode for fast data transfer; processor and data
prefetcher operate simultaneously.
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Figure 4: Hash-specific Processor Model

The extended hash-specific instructions are developed us-
ing the Tensilica Instruction Exztension (TIE), a specialized
Hardware Description Language (HDL). Using this language



and the development environment allows us to easily employ
optimization techniques such as SIMD and Very Large In-
struction Words (VLIW). This VLIW instruction format is
called Flexible Length Instruction Xtension (FLIX).

3. INSTRUCTION SET EXTENSIONS

In this section, we present our newly developed hashing-
specific instruction set. We implemented the previously out-
lined hash functions, i.e., the bit extraction and the corre-
sponding sampling, CityHash32, as well as the insert and
lookup operations.

3.1 Integer Hash Function and Sampling

As already outlined, the integer hash function performs
bit extractions out of a 32-bit key. We choose this bit size,
since it is a very conventional format in many programming
languages. Theoretical, we have the potential to develop
instructions for every arbitrary fixed-width data type.

Figure 5 depicts the processing steps of this integer hash
function, starting with the selection of n bits. They are
determined by a bit mask, which is derived from the actual
hash mask. Up to 16 bits can be selected. In the next step all
selected bits are shuffled. Both steps are fully configurable
at runtime. The entire hashing operation is executed within
a single clock cycle.
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Figure 5: Processing steps of the integer hash oper-
ation

To push the performance even more, we extend the in-
struction to simultaneously execute eight hashing operations
(8-fold SIMD). For that purpose additional load instructions
are necessary to load data from the local data memory into
the internal processor states Key_0 to Key_7. Their interac-
tion is depicted in Figure 6. There is one load operation for
each load-store unit (LSU). LD_O loads up to 128 bits from
local memory 0 with LSUO and LD_1 loads up to 128 bits from
local memory 1 with LSU1. The hash operation (HOP) per-
forms the actual hashing on the loaded keys. All results are
stored in eight 16 bit states, called Result_0 to Result_7.
In the next step, the results are stored to the local memory
(ST).

In contrast to the pure C code implementation in Figure 1
of section 2.1, all computations are merged into the HOP in-
struction. The now resulting C code is depicted in Figure 7.
The input parameters are assigned to internal states of the
processor by the instruction init_states. This enables a
fast access to the memory addresses and the hash mask in
one clock cycle. Now, in every loop iteration 16 keys are
processed. Hence, the number of iterations of the loop is
reduced to a sixteenth. Instructions residing on the same
code line are executed simultaneously.
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Figure 6: 8-fold SIMD Hash Key Computation

void int_hash(
unsigned int* key, //input keys
unsigned short* hashValue, //output hash values
int keySize, //number of keys
unsigned int hashFunc //hash mask

)
int i;
init_states(key, hashValue, hashFunc);
LD_0(0); LD_1Q0);
for(i=0; i<(keySize/16); i++){
LD_0(0); LD_1(); HOPQ);
LD_0Q); LD_10);
HOP(); ST_0(); ST_10);
¥
HOPQ) ;
ST_0(); ST_10);
}

Figure 7: Integer Hash Function: C code with newly
developed instructions

To improve the comprehension of the progression, Fig-
ure 8 visualizes the processor’s pipeline. The load instruc-
tions LD_0 and LD_1 are used twice subsequently. Thereby,
within the next two clock cycles 16 32-bit keys are loaded
from the two local data memories. Two cycles later, HOP is
performed over the loaded keys. After two or three cycles,
ST_0 and ST_1 store eight 16-bit hash keys each into the local
data memories. Altogether, by using the presented pipelined
approach, it consumes three clock cycles for hashing 16 keys.
The latency is six cycles.

Sampling uses the same load instructions LD_0 and LD_1 as
the integer hashing operation explained above. As before,
each LSU fetches 128 bits from the local data memory. It dif-
fers only in the actual operation, which is executed on eight
keys in parallel (see Figure 9). Thereby, the bit-values at
the same bit-position of each key are added to a dedicated
16 bit histogram accumulator processor state (aggregated
bit-weights). Altogether, 32 accumulator states are present
— one for each bit position. A configurable increment for
each pointer enables the selection of the keys, which shall
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Figure 8: Hashing pipeline snippet and data flow

be included into the data sample. This sampling operation
(SOP) processes all previously listed actions in one clock cy-
cle. Even this hardware block alone is sufficient to achieve
a high sample throughput due to its powerful parallelism.
Hence, no further logic is necessary, e.g., to identify depen-
dencies among the keys for speeding up the algorithm. A
corollary is that the actual values of the keys are not taken
into consideration.
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Figure 9: Sampling Instruction

3.2 String Hashing

Due to the high sequential fraction in the CityHash32
function, the algorithm itself can not be fully parallelized.
However, the string is distributed over the two local data
memories to utilize our two load-store units. That enables
us to parallelize load and store instructions. Due to our de-
veloped application-specific hardware, multiple operations
are merged into one instruction, which is executed within
one cycle. The corresponding C code, including the newly
developed instructions, is depicted in Figure 10.

The algorithm starts with an initialization of the proces-
sor’s internal states. For instance, the states contain the
address and the length of the string. Afterwards, the oper-
ation CityHash32_load loads two 128-bit vectors from the

unsigned CityHash32(char *s, int len){
int i;
init_states(s, len);

CityHash32_load();
CityHash32_comp_1();

for(i=len/20; i>0; i--){
CityHash32_load();
CityHash32_comp_2Q);

¥

return CityHash32_comp_3();

Figure 10: CityHash32: C code with newly devel-
oped instructions

local data memories in parallel by using LSUO and LSU1. All
following operations perform the same calculations as shown
before in Figure 3 of Section 2.1. Again, the internal result
and the next 20 characters are used within the next call of
the instruction. In contrast to the pure C code, these inter-
nal results are stored in states. However, the computations
operate on 20 characters (160 bit). Hence, the load instruc-
tion holds remaining characters in internal states and per-
forms a first-in-first-out implementation. This ensures the
availability of 20 characters in every loop iteration. Finally,
CityHash32_comp_3 executes the last computations and re-
turns the 32-bit hash value.

3.3 Lookup and Insert

The lookup operation is accelerated by searching on eight
keys in parallel. The procedure is executed as follows:

1) Load eight 32-bit keys from the local data memories using
LSUO and LSU1, consuming one single clock cycle.

2) Extract the specific bits of those eight keys by applying
the 8-fold SIMD hash key computation of Figure 6. Ad-
ditionally, calculate the addresses of the buckets by using
the hash values. Altogether, both steps needs only one
additional clock cycle, too.

3) Load the buckets that are corresponding to the hash val-
ues. Since the hash table is distributed over the two lo-
cal memories, the implementation tries to use both load-
store units to load two buckets simultaneously. This is
only applicable, if the considered buckets are not located
within the same local memory. If the buckets are in the
same local memory, the needed number of clock cycles
changes from four to eight.

4) Compare each key with all four fields of the related
bucket. The comparison returns a result containing the
hash value and the information of possible matched keys.
The results of all eight keys are stored to the local data
memory. Again, this consumes two clock cycles.

In summary, to search eight 32-bit keys, our instructions
need at least eight clock cycles, but at most twelve cycles.
For random input values, the average number of clock cycles
is ten.

As well as the Hash 4+ Lookup algorithm, our extended in-
struction set provides an optimized insert operation, which
maps a key into the corresponding hash table. We again use
the hash key computation of Figure 6 to parallelize hashing
of eight 32-bit keys. Figure 11 exemplarily ties in with the
depiction. The shown processing chain uses the eight result-
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Figure 11: Hash + Insert Instruction

ing hash values and the hash table parameters to compute
the addresses of the related buckets. Up to this point, the
steps are equal to steps 1) and 2) of the Hash + Lookup
algorithm. Then, the eight keys are stored on the next free
position of the related bucket. A histogram located in in-
tern states of the processor indicates the inserted keys. That
consumes one clock cycle for each key, resulting in eight cy-
cles for all eight keys. In total, we need ten clock cycles
to insert eight 32-bit keys into the hash table. Wether we
assume a hash function decreasing collisions efficiently, the
keys are stored into arbitrary distributed buckets of the local
data memory. Thus, we do not gain of our 128-bit memory
interface.

4. EXPERIMENTAL RESULTS

In this section, we evaluate our hashing-specific instruc-
tion set and compare the results to base line implementa-
tions on general purpose architectures.

4.1 Processor Setup

As already mentioned, we use the configurable Tensilica
Xtensa LX5 Core, called HASH_RISC, as a foundation of
our processor. The processor has similar features like the
108MiNt'. The 108MINI is a Standard Diamond processor
from Tensilica, which forms the initial point in our investi-
gations. In contrast to the two 32 KByte local data stores
of the HASH_RISC, the 108 MINI includes one 64 KByte
data store. Furthermore, the HASH_RISC integrates a
32 KByte local instruction memory. In comparison to the
108MINI, the instruction and data bus width of the proces-
sor is increased from 32 to 64 and from 32 to 2x128 bit,
respectively. Each data bus can be accessed by a dedicated
load-store unit. Our HASHI processor is equivalent to the
HASH_RISC core, but includes additionally the newly de-
veloped application-specific instructions.

4.2 Performance

In the first set of experiments, we compare the perfor-
mance of our processors for several hash relevant algorithms.
We obtain the throughput T for the integer hash functions

Nkey fmax

and the sampling algorithm by calculating T' =

Mecycle

"http://ip.cadence.com/uploads/pdf/108Mini.pdf con-
tains more information about this processor.

O
=2
- faet
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e << <<
Benchmark — o jas
Frequency [MHz] 442 555 488

Hash + Lookup [MHashs/s] 1.0 21 386

Hash + Insert [MHashs/s] 1.1 23 389
Hash Keys [MHashs/s] 1.1 2.4 2,533
Hash Sampling [MHashs/s| 20 34 2,575
CityHash32 [MChars/s] 38.3 64.5 4,770

Table 1: Performance Results

where nye, denotes the number of keys, fmas is the maxi-
mum frequency for each processor, and ncycie means the re-
quired number of cycles to process the complete operation.
The throughput for CityHash32 is achieved by substitut-
ing the number of keys nye, of the previous equation by the
string length ncpar, i-€., the number of 8-bit characters. Fur-
thermore, all algorithms are performed with cycle-accurate
simulation models of the processors.

Except for the Hash + Lookup benchmark all other al-
gorithms have data-independent processing times on our
HASHI. The other evaluation-cores perform slightly differ-
ent with various input data sets and hash table sizes, re-
spectively. For example, the more bits are set to one in the
hash mask, the faster the algorithm has finished. Excluded
from all is the CityHash32 algorithm never showing data
dependencies on all processors. In summary, all implemen-
tations of the algorithms compute their result in expected
time O(n), where n is the number of processed elements.

Table 1 provides the clock frequency and the achieved
throughput. Due to the data dependency, the Hash +
Search algorithm uses randomly distributed values residing
in their respective domains. Thereby, we make sure to ob-
tain an average throughput. The input data sets of all other
algorithms consist of a linear increasing sequence of num-
bers. The used hash mask holds ten arbitrary set bits re-
sulting in a hash table size of 1024 buckets. Note that the
distribution of a fixed number of bits in the hash mask has
no impact on the processing time. The throughputs in Ta-
ble 1 are obtained with the following set sizes: the Hash +
Insert and Hash + Search algorithms use 5600 keys each,
Sampling and Parallel Hashing perform on 8000 keys, re-
spectively, and CityHash32 operates on 16000 characters.

In general, the throughput of the HASH_RISC is nearly
doubled related to the 108 MINI. In the case of the Hash
+ Insert and the Hash + Lookup algorithm, the average
throughput is increased by around 350x (108MINI) and 180x
(HASH_RISC) to almost 390 MHashs/s (HASHI). Never-
theless, maximum throughput of Hash + Lookup on the
HASHI is 488 MHash/s. The hash key generation of the
HASHI is approximately 2,300x and the CityHash32 al-
gorithm is 120x faster than our standard RISC controller
108 MINT.

Figure 12 depicts the throughputs of our processor con-
figurations for a various number of keys and string lengths,
respectively. The used hash mask and the distribution of the
input values are adopted from the previous explanation. Our
extended processor HASHI is employed with one or rather
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Figure 12: Throughputs by varying input data sizes

two load-store units (LSU). In contrast to the HASHI with
one LSU, the throughput of HASHI applying two LSUs is
nearly doubled for all three algorithms.

Additionally, the throughput slightly increases while per-
forming on greater input set sizes. Then, the percentage
of the initialization part is negligible and the throughput
tends to the ideal case. For example, our implementation
of the integer hash function consumes three cycles while
performing on 16 keys per loop iteration (cf. Figure 7 of
section 3.1). This leads to a maximum theoretical through-
put of 2,603 MHashs/s for HASHI at 488 MHz. As already
discovered in Table 1, 108 MiNI and HASH_RISC always

—
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g g ST ET x§ £ 3
e 2 SE 3§ IE :ES
& & <& <E S22 7o
65 nm  108MINI 0.220! - 442 2741
HASH_RISC 0.164 0.874 555 63.2
HASHI 0.731 0.874 488 138.4
28 nm HASHI 0.214 0.213 500 -

Thttp://ip.cadence.com/uploads/pdf/108Mini.pdf

Table 2: Synthesis Results

exhibit the lowest throughputs. Due to the pure C code
implementations, this throughput is not dependent of the
input set sizes.

4.3 Area, Timing and Power Consumption

In the next set of experiments, we compare the maxi-
mum frequency, area, and power consumption of the dif-
ferent processor configurations. All versions of the proces-
sors, including the memories, have been synthesized with
Synopsys Design Compiler for a 65 nm low-power TSMC
process using typical case conditions (25°C, 1.25 V). Synop-
sys PrimeTime estimation tool is used to obtain the power
consumption of the processor configurations. Table 2 pro-
vides the measurement results for all three processor con-
figurations. Due to the integration of the newly developed
instructions, the overall area of the basic core HASH_RISC
is increased from 1.038 mm? to 1.605 mm? for the HASHI
processor. These areas include 0.874 mm? each for the local
memories. Furthermore, the maximum clock frequency of
the HASH_RISC core is slightly decreased from 555 MHz
to 488 MHz (HASHI). Power consumption of HASH_RISC
core is increased from 63.2 mW to 138.4 mW for the HASHI
processor (including memories). The same tool flow is used
with a 28 nm super low-power (SLP) Global Foundries pro-
cess, including super low-voltage (SLVT) parameters. Typi-
cal case conditions are applied (25°C, 1.0 V). Due to the im-
provements in fabrication technology, the area of the HASHI
processor is decreased to 0.427 mm?.

Table 3 provides the relative area for the newly developed
instructions for the 65 nm low-power TSMC process. Ma-
jor parts of the area are consumed by Hash + Insert and
the CityHash32 instructions. Especially, due to the proces-
sor intern histogram, the Hash + Insert algorithm consumes
much area. Similarly, additional 32 bit multipliers are re-
quired by CityHash32, inflating the area consumption. The
area part ALL contains general load instructions with ded-
icated states that are used by each algorithm.

Part Area[%)]
Basic Core 18.4
Hash + Lookup 4.4
Hash + Insert 26.9
Hash Keys 5.7
Hash Sampling 13.3
CityHash32 25.8
ALL 5.5
SUM 100

Table 3: Relative area consumption per newly in-
troduced instruction (HASHI processor)


http://ip.cadence.com/uploads/pdf/108Mini.pdf

4.4 Comparison with Other Architectures

Within the last set of experiments, we compare the per-
formance of algorithms using our instruction set extension
with existing highly-optimized algorithms running on gen-
eral purpose CPU architectures. Table 4 compares the
HASHI with an INTEL 17-4550U2, based on the Haswell
architecture, and an INTEL 17-3960X3, based on the Sandy-
Bridge architecture. The input data is placed in the L1 cache
before starting the experiments. Despite the advantage in
fabrication technology and clock frequency of the Intel cores
the HASHI outperforms the 17-4550U as well as the 17-
3960X processor. The hash key generation of the HASHI
is 120x and 170x faster than the 17-4550U and 17-3960X,
respectively. However, INTEL introduced the AVX2-PEXT
instruction in their new architectures, speeding up hash key
generation significantly. There, HASHI shows only a slight
speedup.

In the case of the sampling algorithm, HASHI reveals
our advantage of newly developed instructions. Due to a
grand data level parallelism as explained in section 3.1, we
achieve a high speedup of around 180x compared to the
INTEL processors.

Note that all processors have similar throughputs for the
CityHash32 algorithm. The reason for that is that on the
one hand, the algorithm is well suited for a cache-based
architecture due to many predictable operations. On the
other hand, the algorithm cannot be parallelized by SIMD,
because of a long sequential execution path. Hence, the
HASHI has not the ability to deploy all its optimization
techniques thoroughly. Nevertheless, it is also important to
mention that the INTEL 17-4550U has an advanced fabrica-
tion technology and its clock frequency is over 6x higher.

The HASHI keeps up with modern general purpose pro-
cessors and further has a clear advantage regarding area as
well as power consumption. It consumes less than one per-
cent of the area and only two percent of the power compared
to the INTEL 17-4550U processor. Compared with the INTEL
17-3960X it is even better.

5. RELATED WORK

Modern general-purpose CPUs already implement a rich
set of instruction set extensions (e.g., MMX, SSE, AVX,
and AES). Those instruction set extensions are usually de-
signed for a wide field of different applications and thus do
not primarily target the acceleration of database systems.
Nevertheless, those instructions became attractive when in-
memory DBMSs became more and more popular, because
the processing bottleneck moved closer to the computing
power of the CPU. Thus, several previous works focused on
leveraging general-purpose instruction sets for database op-
erations like compression [10, 12], tree traversal [8], or hash-
ing [11]. In our specific scenario, the PEXT instruction [7] of
the AVX2 extensions allows the execution of bit-extraction-
based hashing within a single cycle. However, this instruc-
tion neither implements our SIMD optimizations to increase
its throughput nor does it execute as energy-efficient as our
instruction as proved by our evaluation. To summarize, all
these algorithms only depend on a small fraction of the im-
plemented instruction space of general-purpose CPUs and
thus a lot of chip space is wasted for instructions that are

’http://ark.intel.com/products/75112
3http://ark.intel.com/products/63696
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Frequency [GHz] 0.488 1.5 3.3

(3.03) (3.93)

Power Consumption [W] 0.138 7.91 24.31

Area [mm?] 1.605 181 434.7

Hash Keys [MHashs/s] 2,533 20.6 14.9
2,0632

Sampling [MHashs/s] 2,575 14.5 14.0

CityHash32 [MChars/s] 4,770 4,720 3,678

TMeasured with RAPL Counter (only core power: PPO)
2w/ Intel AVX2-PEXT instruction
3Max turbo frequency

Table 4: Performance, Power Consumption and
Area Comparison

not beneficial for the database system. In contrast, our ap-
proach of using a customizable processor, allows the directed
construction of comprehensive instruction sets that aim pri-
marily at database operators. Additionally, the extensible
processor model enables us to add additional load-store units
to the core, to find a trade-off between memory bandwidth
and computing power.

Efficient hashing has been researched for the last 40
years. However, only a few works concentrate on hardware-
supported hashing acceleration. These works mostly focus
on optimizing the algorithm for a given platform. On CPUs,
parallelism and the memory hierarchies are mainly exploited
[3, 13, 9] through best-effort partitioning and optimal hash
table sizes. GPUs offer a much higher degree of parallelism,
which was investigated in the context of hashing [1]. How-
ever, GPUs are not suitable for data-intensive applications,
because of the bandwidth limitation between system mem-
ory and the dedicated GPU memory. Moreover, this ap-
proach faces severe scalability limitations, because of the
low energy efficiency of general purpose CPUs and GPUs.

6. CONCLUSIONS

In this paper, we improved the performance of hashing al-
gorithms by a newly developed hashing-specific instruction
set. Performance, area- and energy-efficiency is significantly
increased compared to modern general purpose processors.
We attached the hashing-specific instruction set to a cus-
tomizable processor. To show the applicability of our in-
struction set extensions, we implemented a bit extraction
hashing scheme for 32-bit integer keys and the correspond-
ing sampling as well as the CityHash32 function for string
values. For instance, the sampling is 178x and 184x faster
compared to the INTEL 17-4550U and the INTEL 17-3960X,
respectively. Moreover, the hash key computation is 170x
faster than the INTEL 17-3960X. We showed that area- and
energy-efficiency is improved by several orders of magnitude
allowing a higher packing density and thus increased scala-
bility of the hardware in terms of parallelism.
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