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1. ABSTRACT
We present an auto-tuning system for optimizing I/O per-

formance of HDF5 applications and demonstrate its value
across platforms, applications, and scale. The system uses
a genetic algorithm to search a large space of tunable pa-
rameters and to identify e↵ective settings at all layers of the
parallel I/O stack. The parameter settings are applied trans-
parently by the auto-tuning system via intercepted HDF5
calls.

To validate our auto-tuning system, we applied it to three
I/O benchmarks (VPIC, VORPAL and GCRM) that repli-
cate the I/O activity of their respective applications. We
tested the system with di↵erent weak-scaling configurations
(128, 2048 and 4096 CPU cores) that generate 30 GB to
1 TB of data, and executed these configurations on diverse
HPC platforms (Cray XE6, IBM BG/P, and Dell Cluster).
In all cases, the auto-tuning framework identified tunable
parameters that substantially improved write performance
over default system settings. We consistently demonstrate
I/O write speedups between 2x and 50x for test configura-
tions.

General Terms
Parallel I/O, Auto-Tuning, Performance Optimization, Par-
allel file systems

2. INTRODUCTION
Parallel I/O is an essential component of modern high-

performance computing (HPC). Obtaining good I/O per-
formance for a broad range of applications on diverse HPC
platforms is a major challenge, in part because of complex
inter-dependencies between I/O middleware and hardware.
The parallel file system and I/O middleware layers all o↵er
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optimization parameters that can, in theory, result in bet-
ter I/O performance. Unfortunately, the right combination
of parameters is highly dependent on the application, HPC
platform and problem size/concurrency. Scientific applica-
tion developers do not have the time or expertise to take on
the substantial burden of identifying good parameters for
each problem configuration. They resort to using system
defaults, a choice that frequently results in poor I/O per-
formance. We expect this problem to be compounded on
exascale class machines, which will likely have a deeper soft-
ware stack with hierarchically arranged hardware resources.
Application developers should be able to achieve good I/O

performance without becoming experts on the tunable pa-
rameters for every filesystem and I/O middleware layer they
encounter. Scientists want to write their application once
and obtain reasonable performance across multiple systems–
they want I/O performance portability across platforms. From
an I/O research-centric viewpoint, a considerable amount
of e↵ort is spent optimizing individual applications for spe-
cific platforms. While the benefits are definitely worthwhile
for specific application codes, and some optimizations carry
over to other applications and middleware layers, it would
be ideal if a single optimization framework was capable of
generalizing across multiple applications.
In order to use HPC machines and human resources e↵ec-

tively, it is imperative that we design systems that can hide
the complexity of the I/O stack from scientific application
developers without penalizing performance. Our vision is to
develop a system that will allow application developers to is-
sue I/O calls without modification and rely on an intelligent
runtime system to transparently determine and execute an
I/O strategy that takes all the levels of the I/O stack into
account.
In this paper, we present our first step towards accom-

plishing this ambitious goal. We develop an auto-tuning
system that transparently sets I/O parameters at runtime
via intercepted HDF5 calls and that searches a large space of
configurable parameters for multiple layers of the I/O stack
to identify parameter settings that perform well. We ap-
ply the auto-tuning system to three I/O kernels extracted
from real scientific applications and identify tuned parame-
ters on three HPC systems that have di↵erent architectures
and parallel file systems.
In brief, our paper makes the following research contribu-
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Figure 1: Parallel I/O Stack and various tunable
parameters

tions:

• We design and implement an auto-tuning system that
hides the complexity of tuning the Parallel I/O stack.

• We demonstrate performance portability across diverse
HPC platforms.

• We demonstrate the applicability of the system to mul-
tiple scientific application benchmarks.

• We demonstrate I/O performance tuning at di↵erent
scales (both concurrency and dataset size).

The remainder of the paper is structured as follows: Sec-
tion 3 presents our I/O auto-tuning system; Section 4 dis-
cusses the experimental setup used to evaluate benefits of
the auto-tuning system across platforms, applications, and
scale. Section 5 presents performance results from our tests
and discusses the insights gained from the auto-tuning e↵ort
and current limitations. Finally, Section 6 presents our work
in context of existing research literature and Section 8 o↵ers
concluding thoughts.

3. AUTO-TUNING FRAMEWORK
Figure 1 shows a contemporary parallel I/O software stack

with HDF5 [26] as the high-level I/O library, MPI-IO as the
middleware layer, and a parallel file system (Lustre, GPFS,
etc). While each layer of the stack exposes tunable pa-
rameters for improving performance, there is little guidance
for application developers on how these parameters interact
with each other and a↵ect overall I/O performance. Ideally,
an auto-tuning system should provide a unified approach
that targets the entire stack and discovers I/O tuning pa-
rameters at each layer that result in good I/O rates.

The main challenges in designing and implementing an
I/O auto-tuning system are (1) selecting an e↵ective set of
tunable parameters at all layers of the stack, and (2) ap-
plying the parameters to applications or I/O benchmarks
without modifying the source code. We tackle these chal-
lenges with the development of two components: H5Evolve
and H5Tuner.

For selecting tunable parameters, a näıve strategy is to
execute an application using all possible combinations of
tunable parameters for all layers of the I/O stack. This

Figure 2: Overall Architecture of the Auto-Tuning
Framework

is an extremely time and resource consuming approach, as
there are many thousands of combinations in a typical pa-
rameter space. A reasonable approach is to search the pa-
rameter space with a small number of tests. Towards this
goal, we developed H5Evolve to search the I/O parameter
space using a genetic algorithm (GA). H5Evolve samples
the parameter space by testing a set of parameter combi-
nations and then, based on I/O performance, adjusts the
combination of tunable parameters for further testing. As
H5Evolve passes through multiple generations, better pa-
rameter combinations (i.e., sets of tuned parameters with
high I/O performance) emerge.
An application can control tuning parameters for each

layer of the I/O stack using hints set via API calls. For
instance, HDF5 alignment parameters can be set using the
H5Pset_alignment() function. MPI-IO hints can be set in a
similar fashion for the collective I/O and file system striping
parameters. While changing the application source code is
possible if the code is available, it is impractical when test-
ing a sizable number of parameter combinations. H5Tuner
solves this problem by intercepting HDF5 calls and injecting
optimization parameters into parallel I/O calls at multiple
layers of the stack. H5Tuner is a transparent shared library
that can be preloaded before the HDF5 library, prioritizing
it over the original HDF5 function calls.
Figure 2 shows our auto-tuning system that uses both

H5Tuner and H5Evolve for searching a parallel I/O param-
eter space. H5Evolve takes an I/O parameter space as in-
put and generates a configuration file in XML format. The
parameter space contains possible values for I/O tuning pa-
rameters at each layer of the I/O stack and the configu-
ration file contains the the parameter settings that will be
used for a given run. H5Tuner reads the configuration file
and dynamically links to HDF5 calls of an application or
I/O benchmark. After running the executable, the param-
eter settings and I/O performance results are fed back to
H5Evolve and influence the contents of the next configu-
ration file. As H5Evolve tests various combinations of pa-
rameter settings, the auto-tuning system selects the best



Figure 3: A pictorial depiction of the genetic algo-
rithm used in the auto-tuning framework.

performing configuration for a specific I/O benchmark.

3.1 H5Evolve: Sampling the Search Space
As mentioned previously, due to large size of the param-

eter space and possibly long execution time of a trial run,
finding optimal parameter sets for writing data of a given
size is a nontrivial task. Depending on the granularity with
which the parameter values are set, the size of the parameter
space can grow exponentially and unmanageably large for a
brute force and enumerative optimization approach.

Exact optimization techniques are not appropriate for sam-
pling the search space given the nondeterministic nature of
the objective function which is the runtime of a particular
configuration. Instead of relying on the simplest approach,
manual tweaking, adaptive heuristic search approaches such
as genetic evolution algorithms, simulated annealing, etc.,
can traverse the search space in a reasonable amount of time.
In H5Evolve, we explore genetic algorithms for sampling the
search space.

A genetic algorithm (GA) is a meta-heuristic for approach-
ing an optimization problem, particularly one that is ill-
suited for traditional exact or approximation methods. A
GA is meant to emulate the natural process of evolution,
working with a “population” of potential solutions through
successive “generations” (iterations) as they “reproduce” (in-
termingle portions between two members of the population)
and are subject to “mutations” (random changes to portions
of the solution). A GA is expected, although it cannot nec-
essarily be shown, to converge to an optimal or near-optimal
solution, as strong solutions beget stronger children, while
the random mutations o↵er a sampling of the remainder of
the space.

Our implementation, dubbed H5Evolve, is shown in Fig-
ure 3. It was built in Python using the Pyevolve [20] mod-
ule, which provides an intuitive framework for performing
genetic algorithm experiments in Python.

The workflow of H5Evolve is as follows. For a given bench-
mark at a specific concurrency and problem size, H5Evolve
runs the genetic algorithm (GA). H5Evolve takes a prede-
fined parameter space which contains possible values for the

I/O tuning parameters at each layer of the I/O stack. The
evolution process starts with randomly selected initial pop-
ulation. H5Evolve generates an XML file containing the se-
lected I/O parameters (an I/O configuration) that H5Tuner
injects into the benchmark. In all of our experiments, the
H5Evolve GA uses a population size of 15; this size is a con-
figurable option. Starting with an initial group of configu-
ration sets, the genetic algorithm passes through successive
generations. H5Evolve uses the runtime as the fitness eval-
uation for a given I/O configuration. After each generation
has completed, H5Evolve evaluates the fitness of the popu-
lation and considers the fastest I/O configurations (i.e., the
“elite members”) for inclusion in the next generation. Ad-
ditionally, the entire current population undergoes a series
of mutations and crossovers to populate the other member
sets in the population of the next generation. This process
repeats for each generation. In our experiments, we set the
number of generations to 40, meaning that H5Evolve runs a
maximum of 600 executions of a given benchmark. We used
a mutation rate of 15%, meaning that 15% of the population
undergoes mutation at each generation. After H5Evolve fin-
ishes sampling the search space, the best performing I/O
configuration is stored as the tuned parameter set.

3.2 H5Tuner: Setting I/O Parameters at Run-
time

The goal of the H5Tuner component is to develop an au-
tonomous parallel I/O parameter injector for scientific ap-
plications with minimal user involvement, allowing param-
eters to be altered without requiring a recompilation of the
application. The H5Tuner dynamic library is able to set
the parameters of di↵erent levels of the I/O stack—namely,
the HDF5, MPI-IO, and parallel file system levels in our
implementation. Assuming all the I/O optimization param-
eters for di↵erent levels of the stack are in a configuration
file, H5Tuner first reads the values of the I/O configuration.
When the HDF5 calls appear in the code during the exe-
cution of a benchmark or application, the H5Tuner library
intercepts the HDF5 function calls via dynamic linking. The
library reroutes the intercepted HDF5 calls to a new imple-
mentation, where the parameters from the configuration are
set and then the original HDF5 function is called using the
dynamic library package functions. This approach has the
added benefit of being completely transparent to the user;
the function calls remain exactly the same and all alterations
are made without change to the source code. We show an
example in Figure 4, where H5Tuner intercepts H5FCreate()
function call that creates a HDF5 file, applies various I/O
parameters, and calls the original H5FCreate() function call.
H5Tuner uses MiniXML [24], a small XML library to read

the XML configuration files. In our implementation, we are
reading the configuration file from user’s home directory.
A user has full flexibility to change the configuration file.
Figure 5 shows a sample configuration file with HDF5, MPI-
IO, and Lustre parallel file system tunable parameters.

4. EXPERIMENTAL SETUP
We have evaluated the e↵ectiveness of our auto-tuning

framework on three HPC platforms using three I/O bench-
marks at three di↵erent scales. The HPC platforms in-
clude Hopper, a Cray XE6 system at National Energy Re-
search Scientific Computing Center (NERSC); Intrepid, a
IBM BlueGene/P (BG/P) system at Argonne Leadership



HPC System Architecture Node Hardware Filesystem Storage Hardware Peak I/O BW

NERSC/Hopper Cray XE6
AMD Opteron processors,
24 cores per node,
32 GB memory

Lustre 156 OSTs, 26 OSSs 35 GB/s

ALCF/Intrepid IBM BG/P
PowerPC 450 processors,
4 cores per node,
2 GB memory

GPFS 640 IO Nodes, 128 file servers 47 GB/s (write) [18]

TACC/Stampede Dell PowerEdge C8220
Xeon E5-2680 processors,
16 cores per node,
32GB memory

Lustre 160 OSTs, 58 OSSs 159 GB/s [21]

Table 1: Details of various HPC systems used in this study

H5Tuner Design

hid_t H5Fcreate(const char *name, unsigned flags, 
hid_t create_id, hid_t access_id )

HDF5 Library (Unmodified)

Application,  
I/O benchmark,
Appl. I/O kernel

H5Fcreate()

H5Tuner

1. Obtain the address of H5Fcreate using dlsym()
2. Read I/O parameters from the XML control file
3. Set the I/O parameters(e.g. for MPI we use 
MPI_Info_set()) 
4. Setup the new access_id using new MPI_Info
5. Call real_H5Fcreate(name, flags, 
create_id, new_access_id)

H5Fcreate()

6. Return the result of call to real_H5Fcreate()

Figure 4: Design of H5Tuner component as a dy-
namic library which intercepts HDF5 functions to
tune for I/O parameters

Computing Facility (ALCF); and Stampede, a Dell Pow-
erEdge C8220 cluster at Texas Advanced Computing Cen-
ter (TACC). The I/O benchmarks are derived from the I/O
traces of the VPIC, VORPAL, and GCRM applications. We
ran these benchmarks using 128, 2048, and 4096 cores. In
the following subsections, we briefly explain the I/O subsys-
tem of the machines, the benchmarks, and the data sizes at
di↵erent concurrencies.

4.1 Platforms
To demonstrate the portability of our framework, we chose

three diverse HPC platforms for our tests. Table 1 lists
details of these HPC systems; note that the number and
type of I/O resources vary across these platforms. We also
note that the I/O middleware stack is di↵erent on Intrepid
than on Hopper and Stampede. On Intrepid, the parallel
file system is GPFS, while Hopper and Stampede use the
Lustre file system.

4.2 Application I/O Kernels
We chose three parallel I/O kernels to evaluate our auto-

tuning framework: VPIC-IO, VORPAL-IO, and GCRM-IO.
These kernels are derived from the I/O calls of three appli-
cations, Vector Particle-In-Cell (VPIC) [6], VORPAL [19],
and Global Cloud Resolving Model (GCRM), respectively.
These I/O kernels represent three distinct I/O write motifs
with di↵erent data sizes.

VPIC-IO—plasma physics (1D array): VPIC is
a highly optimized and scalable particle physics simulation
developed by Los Alamos National Lab [6]. VPIC-IO uses

<Parameters>
    <High_Level_IO_Library>
        <alignment> 0, 65536 </alignment>
    </High_Level_IO_Library>

    <Middleware_Layer>
        <cb_buffer_size> 1048576 </cb_buffer_size>
        <cb_nodes> 32 </cb_nodes>
    </Middleware_Layer>

    <Parallel_File_System>
        <striping_factor FileName="sample_dataset.h5part"> 4 </striping_factor>
        <striping_factor> 16 </striping_factor>
        <striping_unit> 65536 </striping_unit>
    </Parallel_File_System>
</Parameters>

Figure 5: An XML file showing a sample configura-
tion with optimization parameters at di↵erent levels
of the parallel I/O stack. The tuning can be applied
to all the files a user application writes or to a spe-
cific file.

the H5Part [5] API to create a file, write eight variables
and close the file. H5Part provides a simple veneer API for
issuing HDF5 calls corresponding to a time-varying, multi-
variate particle data model. We extracted all the H5Part
function calls of the VPIC code to form the VPIC-IO kernel.
The particle data written in the kernel is random data of
float data type. The I/O motif of VPIC-IO is a 1D particle
array of a given number of particles and each particle has
eight variables. The kernel writes 8M particles per MPI
process for all experiments reported in this paper.
VORPAL-IO—accelerator modeling (3D block struc-

tured grid): This I/O kernel is extracted from a computa-
tional plasma framework application simulating the dynam-
ics of electromagnetic systems, plasmas, and rarefied as well
as dense gases, named VORPAL developed by TechX [19].
This benchmark uses H5Block to write non-uniform chunks
of 3D data per processor. The kernel takes 3D block dimen-
sions (x, y, and z) and the number of components as input.
The number of MPI processes is equal to the product of the
three dimensions. In our experiments, we used 3D blocks
of 100x100x60 with di↵erent number of processors and 20
time steps. By default, it has 3 components and runs for 1
iteration.
GCRM-IO—global atmospheric model (semi struc-

tured mesh): This I/O kernel simulates I/O for GCRM,
a global atmospheric circulation model, simulating the cir-
culations associated with large convective clouds. This I/O
benchmark also uses H5Part to perform I/O operations. The
kernel performs all the GCRM I/O operations with ran-
dom data. The I/O motif corresponds to a semi-structured
geodesic mesh, where the grid resolution and subdomain res-
olution are specified as input. In our tests we used varying



grid resolutions at di↵erent concurrencies. By default, this
benchmark uses 25 vertical levels and 1 iteration.

4.3 Concurrency and Dataset Sizes
We designed a weak-scaling configuration to test the per-

formance of the auto-tuning framework at three concurrencies–
128, 2048, and 4096 cores. The amount of data each core
writes is constant for a given I/O kernel, i.e., the amount of
data an I/O kernel increases proportional to the number of
cores used. Table 2 shows the sizes of the datasets generated
by the I/O benchmarks. The amount of data written by a
kernel ranges from 32 GB (with 128 cores) to 1.1 TB (with
4,096 cores).

I/O Benchmark 128 Cores 2048 Cores 4096 Cores
VPIC-IO 32 GB 512 GB 1.1 TB
VORPAL-IO 34 GB 549 GB 1.1 TB
GCRM-IO 40 GB 650 GB 1.3 TB

Table 2: Weak scaling configuration for the three
I/O benchmarks

4.4 Parameter Space
H5Evolve can take arbitrary values as input for a param-

eter space. However, evolution of GA will require more gen-
erations for searching a parameter space with arbitrary val-
ues. To shorten the search time, we selected a few mean-
ingful parallel I/O parameters for all the layers of the I/O
stack based on previous research e↵orts [15] and our expe-
rience [7]. We have chosen most of the parameter values to
be powers-of-two. A couple of exceptions are the parallel
file system parameters. We set the last parameter value of
Lustre stripe count to be equal to the maximum number
of OSTs, which is 156 on Hopper and 160 on Stampede.
The GPFS parameters that we tuned are boolean. Table
3 shows ranges of various parameter values. A user of our
auto-tuning system can set the parameter space by simply
modifying the parameter list in H5Evolve. The following is
a list of parameters we used as part of the parameter space
and their target platforms.

• Lustre (on Hopper and Stampede):

– Stripe count (strp_fac) sets the number of OSTs
over which a file is distributed.

– Stripe size (strp_unt) sets the number of bytes
written to an OST before cycling to the next OST.

• GPFS (on BG/P Intrepid):

Parameter Min Max # Values
strp_fac 4 156/160 10
strp_unt / cb_buf_siz 1 MB 128 MB 8
cb_nds 1 256 12
align(thresh, bndry) (1,1) (16KB, 32MB) 14
bglockless True False 2
IBM_largeblock_io True False 2
chunk_size 10 MB 2 GB 25

Table 3: A list of the tuned parameters in the search
space. We show the minimum and maximum values
set for each parameter, with powers-of-two values
in between. The last column shows the number of
values set for each parameter.

– Locking: Intrepid has a ROMIO (an MPI-IO im-
plementation [25]) driver to avoid NFS-type file
locking. This option is enabled by prefixing a file
name with bglockless:.

– Large blocks: ROMIO has a hint for GPFS named
IBM_largeblock_io which optimizes I/O with op-
erations on large blocks.

• MPI-IO (on all three platforms):

– Number of collective bu↵ering nodes (cb_nds) sets
the number of aggregators for collective bu↵ering.
On Intrepid, the parameter to set the number of
aggregators is bgl_nodes_pset.

– Collective bu↵er size (cb_buf_size) is the size of
the intermediate bu↵er on an aggregator for col-
lective I/O. We set this value to be equal to the
stripe size on Hopper and Stampede systems.

• HDF5 (on all three platforms):

– Alignment (align(thresh, bndry)): HDF5 file
access is faster if certain data elements are aligned
in a specific manner. Alignment sets any file ob-
ject with size more than a threshold value to an
address that is a multiple of an alignment value.

– Chunk size (chunk_size): In addition to contigu-
ous datasets, where datasets are stored in sin-
gle blocks in files, HDF5 supports chunked layout
in which the data are stored in separate chunks.
We used this parameter specifically for GCRM-IO
kernel.

5. RESULTS
Out of the possible 27 experiments (3 I/O benchmarks x

3 concurrencies x 3 HPC platforms), we successfully com-
pleted 22 experiments in time for this submission. 1 We
expect the performance improvement trends in the remain-
ing runs to be the same as the completed experiments.
In the following subsections, we first compare the I/O

rates that our auto-tuning system achieved with those ob-
tained from system default settings. We then analyze the
achieved speedup with respect to di↵erent platforms, I/O
benchmarks, and concurrency/scale in Sections 5.2, 5.3, and
5.4, respectively.

5.1 Auto-Tuning Framework

5.1.1 Tuned I/O Performance Results
The plots in Figure 6 present the I/O rate improvement

using tuned parameters that our auto-tuning system de-
tected for the three I/O benchmarks. H5Evolve ran for 10
hours, 12 hours, and 24 hours for the three concurrencies to
search through the parameter space of each experiment. In
most cases, GA evolved through 15 to 40 generations. We
selected the tuned configuration that achieves the best I/O
performance through the course of the GA evolution. Figure
6 compares the tuned I/O rate with the default I/O rate for
all applications on all HPC systems at 128, 2048, and 4096

1Our computer resource allocation on these platforms needs
to be renewed to complete the remaining experiments. We
expect to be able to complete the remaining runs in time for
the final version of the paper.
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Figure 6: Summary of performance improvement for each I/O benchmark running on (a) 128 cores, (b) 2048
cores, (c) 4096 cores. The scales of I/O bandwidth axes are di↵erent in each of the plots

Application/
Bandwidth (MB/s)

# Cores
Platform VPIC-IO VORPAL-IO GCRM-IO

Default Tuned Speedup Default Tuned Speedup Default Tuned Speedup

128
Hopper 400 3034 7.57 378 2614 6.90 757 2348 3.10
Intrepid 659 1126 1.70 846 1102 1.30 255 1801 7.05
Stampede 394 2328 5.90 439 2130 4.85 331 2291 6.90

2048
Hopper 365 8464 23.18 370 9233 24.89 240 17816 74.12
Intrepid 2282 5964 2.61 2033 4842 2.38 414 870 2.10
Stampede 380 13047 34.28 436 12542 28.70 128 13825 107.73

4096
Hopper 348 17620 50.60 320 12192 38.00 – – –
Intrepid 2841 7014 2.46 3131 7766 2.47 – – –
Stampede – – – – – – – – –

Table 4: I/O rate and speedups of I/O Benchmarks with Tuned Parameters over Default Parameters

core concurrencies. We calculated I/O rate as the ratio of
the amount of data a benchmark writes into a HDF5 file
at any given scale to the time taken for writing the data.
The time taken includes the overhead of opening, writing,
and closing the HDF5 file. The I/O rate on the y-axis is
expressed in MB/s. Readers should note that the range of
I/O rate shown in each of the three plots is di↵erent. The
measured default I/O rate for a benchmark on a HPC plat-
form is the average I/O rate we obtained after running the
benchmark multiple times. The default experiments corre-
spond to the system default settings that a typical user of
the HPC platform would encounter should he/she not have
access to an auto-tuning framework.

Table 4 shows the raw I/O rate numbers (in MB/s) of
the default and the tuned experiments for all the 22 ex-
periments. We also show the speedup that the auto-tuned
settings achieved over the default settings for each experi-
ment. For all the benchmarks, platforms, and concurrencies,
the speedup numbers are generally between 1.3X and 38X,
with 50X, 70X and a 100X speedups in three cases. We
note that the default I/O rates for the Intrepid platform
are noticeably higher than those on Hopper and Stampede.
Hence, the speedups on Hopper and Stampede with tuned
parameters are much higher than those on Intrepid.

5.1.2 Tuned Configurations
Table 5 shows the sets of tuned parameters for all the

benchmarks on all the systems for 2048-core experiments.
Due to space constraints, we cannot present a detailed anal-
ysis for all experimental configurations, however we gener-
ally observe similar trends for the 128-core and 4096-core
experiments. First, we note that the tuned parameters are
di↵erent for all benchmarks and platforms. This highlights

the strength of the auto-tuning framework: while I/O ex-
perts and sysadmins can probably recommend good settings
for a few cases based on their experience, it is hard to en-
capsulate that knowledge and generalize it across multiple
problem configurations.
VPIC-IO and VORPAL-IO on Hopper and Stampede have

similar tuned parameters, i.e., strp_fac, strp_unt, cb_nds,
cb_buf_size, and align. On Intrepid, these two bench-
marks include bgl_nodes_pset, cb_buf_size, bglockless,
IBM_largeblock_io, and align. On all platforms, GCRM-
IO achieved better performance with HDF5’s chunking and
alignment parameters, and Lustre parameters (stripe factor
and stripe size) without the MPI-IO collective bu↵ering pa-
rameters. We chose this parameter space for GCRM-IO as
Howison et al. [15] demonstrated that the HDF5 chunk-
ing provides a significant performance improvement for this
I/O benchmark. Moreover, we show that the auto-tuning
system is capable of searching a parameter space with multi-
ple HDF5 tunable parameters. On Intrepid, GCRM-IO did
not use GPFS tunable parameters because going through
HDF5’s MPI-POSIX driver avoids MPI-IO layer, which is
needed to set the GPFS parameters. Despite that, HDF5
tuning alone achieves 2X improvement.
We note some higher-level trends from Table 5. For the

same concurrency and with the same benchmark, the tuned
parameters are di↵erent on various platforms, even with the
same parallel file system. For example, although VPIC-IO
benchmark on Hopper and Stampede use Lustre file system,
their stripe settings to achieve highest performance are dif-
ferent. The tuned parameters can be di↵erent on the same
platform and at the concurrency for di↵erent benchmarks.
For instance, VPIC-IO and VORPAL-IO benchmarks obtain



I/O Kernel System Tuned Parameters

VPIC-IO Hopper
strp_fac=156, strp_unt=32MB,

cb_nds=512,

cb_buf_size=32MB, align=(1K,64K)

VPIC-IO Intrepid

bgl_nodes_pset=512,

cb_buf_size=128MB,

bglockless=true, large-

block_io=false, align=(8K, 1MB)

VPIC-IO Stampede
strp_fac=128, strp_unt=8MB,

cb_nds=512,

cb_buf_size=8MB, align=(8K, 2MB)

VORPAL-IO Hopper
strp_fac=156, strp_unt=32MB,

cb_nds=128,

cb_buf_size=32MB, align=(4K,256K)

VORPAL-IO Intrepid

bgl_nodes_pset=128,

cb_buf_size=128MB,

bglockless=true, large-

block_io=true, align=(8K, 8MB)

VORPAL-IO Stampede
strp_fac=160, strp_unt=2MB,

cb_nds=512,

cb_buf_size=2MB, align=(8K, 8MB)

GCRM-IO Hopper
strp_fac=156, strp_unt=32MB,

chunk_size=(1,26,327680)=32MB,

align=(2K, 64KB)

GCRM-IO Intrepid
chunk_size=(1,26,1048760)=1GB,

align=(1MB, 4MB)

GCRM-IO Stampede
strp_fac=160, strp_unt=32MB,

chunk_size=(1,26,1048760)=1GB,

align=(1MB, 4MB)

Table 5: Tuned parameters of all benchmarks on all
the systems for 2048-core experiments

highest I/O rates with di↵erent MPI-IO collective bu↵ering
settings and HDF5 alignment settings, whereas their Lus-
tre settings are the same. Similarly, same benchmark at
di↵erent scale on the same platform have di↵erent tunable
parameters. For example, at 128-cores (not shown in the
table), VPIC-IO achieves tuned performance with 48 Lustre
stripes and 32 MB stripe size, whereas at 2048-core case,
VPIC-IO uses 156 stripes with 32 MB stripe size. We ana-
lyze these observations further in the following sections.

5.1.3 Partial Tuning
The auto-tuning framework returns a set of tuned param-

eters across all layers of the I/O stack. In order to assess the
impact of each of these parameters (as opposed to the fully
tuned set), we devised a set of “Partial Tuning”experiments.
These experiments start with the default values for each pa-
rameter setting, and then iteratively set each parameter to
the tuned value returned from the GA result. For example,
when we set the Lustre striping settings (Lustre.Only case
in the Figure 7), we disable HDF5 settings. However, on
Hopper and Stampede, when we set the Lustre striping pa-
rameters only, the implementation of MPI-IO on these ma-
chines also set the MPI-IO collective bu↵ering parameters
by default. In our measurements of Lustre.Only setting, we
did not isolate the impact of these default MPI-IO collective
bu↵ering parameters.

Figure 7 shows the results of these “Partial Tuning” runs
at 2048-core scale. There are some gaps between the bars
grouped under a particular benchmark. These gaps refer to
untested configurations. For example, in evaluating GCRM-
IO partial tuning performance, the tuned parameters are not
available for MPI-IO collective bu↵ering.

From Figure 7, we can observe that on Hopper and Stam-
pede, Lustre striping (Lustre.Only) has the highest impact
on I/O tuning. Readers should note that this setting in-

cludes MPI-IO settings that the corresponding platforms set
by default. MPI-IO collective bu↵ering
(MPI-IO.Collective.Bu↵ering.Only) also has more performance
impact on Hopper and on Intrepid than on Stampede for
VPIC-IO and VORPAL-IO benchmarks. HDF5 alignment
tuning also has a noticeable impact on tuning in most cases.
We applied HDF5 chunk size setting alone for the GCRM-
IO benchmark and it has more impact on Hopper, but not
much on Intrepid or Stampede. Overall, a strategy involv-
ing tuning of all parameters outperform partial tuning in all
cases.
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Figure 7: Summary of performance with default,
partial runs, and tuned settings for all benchmarks
running on 2048 cores

5.2 Tuned I/O performance across platforms
Figure 8(a) shows the distribution of speedups with tuned

parameters across Hopper, Intrepid, and Stampede systems
representing three di↵erent architectures. The speedups are
color-coded by each I/O benchmark. Overall, the auto-
tuning system has achieved improved performance with tun-
ing on all platforms for all benchmarks. We can observe that
the speedups on Hopper and on Intrepid are lower than that
on Stampede. The speedups on Hopper range from 3.10 to
74.12, with an average of 28.55. Speedups on Intrepid range
from 1.30 to 7.05 with an average of 2.76. Speedups on Stam-
pede ranges from 4.85 to 107.73, with an average of 31.39.
As mentioned earlier, higher speedups on Stampede are due
to poor default performance. In contrast, lower speedups on
Intrepid can be attributed to higher default performance.
The tuned raw I/O rates on Stampede are similar to those
on Hopper.
The aim of this section is to highlight how the auto-tuning

framework can deduce high performance configurations for
the same application at the same concurrency, but run-
ning on di↵erent platforms. We highlight this capability
by choosing the VPIC-IO benchmark running on 2048 cores
on Hopper and Intrepid, and provide some insights on the
configuration returned by the GA.
We consider the e↵ect of choosing the collective bu↵er size

parameter for VPIC-IO as illustrated by Figures 9 and 10.
On Hopper (Figure 9), multiple bu↵er size values (equal to
the Lustre stripe sizes) obtain good I/O performance, and
32 MB bu↵er size achieves the best I/O rate. In VPIC-
IO benchmark, each MPI process writes eight variables and
the size of each variable is equal to 32 MB. When the Lustre
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Figure 8: Speedups with respect to platforms, benchmarks, and scale of the experiments.

stripe size is equal to 32 MB, it obtains the best performance
on Hopper. The powers-of-two fractions and multiples of 32
MB also obtain reasonably good performance. On Intrepid
(Figure 10), we obtain the best performance when the col-
lective bu↵er size is 128 MB. From Table 5, we can see that
the number of pset nodes from the tuned parameters is 512,
i.e., four MPI processes are being served by one collective
bu↵er. When VPIC-IO writes 32 MB per process, a total
of 128 MB data gets collected at the collective bu↵er node
(aggregator) and this node writes data to the file system as
one I/O request, which we believe aligns well with GPFS
file system to achieve the best performance. We note that
the framework is able to derive these meaningful configura-
tions without detailed prior knowledge of platform specific
features.
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Figure 9: The e↵ect of Hopper’s CB Bu↵er Size on
performance of VPIC-IO at 2048 cores

5.3 Tuned I/O for different benchmarks
Figure 8(b) presents the speedup numbers with respect to

di↵erent I/O benchmarks. Speedups for VPIC range from
1.70 to 50.60, with an average of 16.04. Speedups for VOR-
PAL range from 1.30 to 38.00 with an average of 13.69.
Speedups for GCRM ranges from 2.10 to 107.73 with an
average of 33.50.

We now discuss the configurations returned by the auto-
tuning framework for di↵erent applications, while holding
the platform and concurrency constant. We highlight the
VORPAL-IO and GCRM-IO applications, running on 2048
cores of Stampede, and consider tuned Lustre configurations
returned by the GA. Figures 11 and 12 show the impact of
Lustre stripe size on VORPAL-IO and GCRM-IO bench-
marks. Both these benchmarks obtain the highest perfor-
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Figure 10: The e↵ect of Intrepid’s CB Bu↵er Size
on performance of VPIC-IO at 2048 cores

mance using Lustre stripe count of 160. However, VORPAL-
IO obtains the best performance using 2 MB stripe size,
where as GCRM-IO works well using 32 MB stripe size.
We note that these di↵erent high performance configura-
tions likely results from the di↵erent I/O patterns exercised
by these benchmarks: VORPAL-IO uses MPI-IO in collec-
tive mode where as GCRM-IO uses MPI-POSIX driver. We
are conducting further analysis to better understand why
these configurations in particular provide the best I/O per-
formance. This result highlights a strength and weakness of
the auto-tuning approach: the auto-tuning process can pro-
duce a good configuration which performs well in practice,
but is hard to reason about. On the other hand, it would be
very hard for a human expert to propose this configuration
in the first place; since the interactions in the software stack
are very complicated to analyze.

5.4 Tuned I/O at different scales
Figure 8(c) demonstrates weak scaling performance ob-

tained by our framework. We observe that the auto-tuning
system obtains higher speedups at 2048 and 4096-core exper-
iments. This shows that the default settings on all platforms
fare reasonably at a smaller scale. But as the concurrency of
the application increases, more resources are at stake, and
that presents more opportunities to optimize the stack.
Figure 13 shows another view of Figure 8(c) with raw I/O

rates of benchmarks at various concurrencies grouped based
on platforms. Each box illustrates the range of I/O rate of
the benchmarks. This also illustrates our observation above
that auto-tuning is more beneficial at larger scale. This fig-
ure also shows that Lustre based platforms, i.e., Hopper and
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Figure 11: The e↵ect of Lustre Stripe Size value on
performance of VORPAL at 2048 cores of Stampede
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Figure 12: The e↵ect of Lustre Stripe Size value on
performance of GCRM at 2048 cores of Stampede

Stampede, can achieve higher I/O rates with tuning at the
concurrencies we experimented. We also show that tuning
helps improving performance on BG/P based Intrepid.
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Figure 13: Raw Bandwidth plots and breakdown
across scale

6. RELATED WORK
Auto-tuning in computer science is a prevalent term for

improving performance of computational kernels. There has
been extensive research in developing optimized linear alge-
bra libraries and matrix operation kernels using auto-tuning
[29, 14, 16, 28, 31, 12, 30]. The search space in these e↵orts
involves optimization of CPU cache and DRAM parame-
ters along with code changes. All these auto-tuning tech-
niques search various data structure and code transforma-

tions using performance models of processor architectures,
computation kernels, and compilers. Our study focuses on
auto-tuning I/O subsystem for writing and reading data to
a parallel file system in contrast to tuning computational
kernels.
There are a few key challenges unique to the I/O auto-

tuning problem. Each function evaluation for the I/O case
takes in the order of minutes, as opposed to milli-seconds for
computational kernels. Thus an exhaustive search through
the parameter space is infeasible and a heuristic based search
approach is needed. I/O runs also face dynamic variability
and system noise while linear algebra tuning assumes a clean
and isolated single node system. The interaction between
various I/O parameters and how they impact performance
are not very well studied, making interpreting tuned results
much more complex task.
We use genetic algorithms as a parameter space searching

strategy. Heuristics and meta-heuristics have been studied
extensively for combinatorial optimization problems as well
as code optimization [22] and parameter optimization [8]
problems similar to the one we addressed. Of the heuristic
approaches, genetic algorithms seem to be particularly well
suited for real-parameter optimization problems, and a vari-
ety of literature exists detailing the e�cacy of the approach
[3, 13, 32]. A few recent studies have used genetic algo-
rithms [27] and a combination of approximation algorithm
with search space reduction technique [17]. Both of them
are again targeted to auto-tune compiler options for linear
algebra kernels. We chose to implement a genetic algorithm
to attempt to intelligently traverse the sample space for each
test case; we found our approach produced well-performing
configurations after a suitably small number of test runs.
Various optimization strategies have been proposed to tune

parallel I/O performance for a specific application or an I/O
kernel. However, they are not designed for automatic tun-
ing of any given application and require manual selection of
optimization strategies. Our auto-tuning framework is de-
signed towards tuning an arbitrary parallel I/O application.
Hence, we do not discuss the exhaustive list of research ef-
forts. We focus on comparing our research with automatic
performance tuning e↵orts.
There are a few research e↵orts to auto-tune and optimize

resource provisioning and system design for storage system
[1, 2, 23]. In contrast, our study focuses on tuning the par-
allel I/O stack on top of a working storage system.
Auto-tuning of parallel I/O has not been studied at the

same level as the tuning for computation kernels. The Panda
project [11, 10] studied automatic performance optimization
for collective I/O operations where all the processes used by
an application to synchronize I/O operations such as read-
ing and writing an array. The Panda project searched for
disk layout and disk bu↵er size parameters using a combina-
tion of a rule-based strategy and randomized search-based
algorithms. The rule-based strategy is used when the opti-
mal settings are understood and simulated annealing is used
otherwise. The simulated annealing problem is solved as a
general minimization problem, where the I/O cost is mini-
mized. The Panda project also used genetic algorithms to
search for tuning parameters [9]. The optimization approach
proposed for in this project were applicable to the Panda
I/O library, which existed before MPI-IO and HDF5. The
Panda I/O is not in use now and the optimization strategy
was not designed for parallel file systems that are in current



Figure 14: Proposed architecture for the Intelligent
Runtime System

use.
Yu et al. [34] characterize, tune, and optimize parallel I/O

performance on Lustre file system of Jaguar, a Cray XT su-
percomputer, at Oak Ridge National Laboratory (ORNL).
The authors tuned data sieving bu↵er size, I/O aggrega-
tor bu↵er size, and the number of I/O aggregator processes.
This study did not propose an auto-tuning framework but
manually ran a selected set of codes several times with dif-
ferent parameters. Howison et al. [15] also perform man-
ual tuning of various benchmarks that select parameters for
HDF5 (chunk size), MPI-IO (collective bu↵er size and the
number of aggregator nodes) and Lustre parameters (stripe
size and stripe count) on Hopper supercomputer at NERSC.
These two studies prove that tuning parallel I/O parameters
can achieve better performance. In our study we develop an
auto-tuning framework that can select tuning parameters.

You et al. [33] proposed an auto-tuning framework for
Lustre file system on Cray XT5 systems at ORNL. They
search for file system stripe count, stripe size, I/O trans-
fer size, and the number of I/O processes. This study uses
mathematical models based on queuing models. The auto-
tuning framework first develops a model in a training phase
that is close to the real system. The framework then searches
for optimal parameters using search heuristics such as simu-
lated annealing, genetic algorithms, etc. Developing a math-
ematical model for di↵erent systems based on queuing the-
ory can be farther from the real system and may produce
inaccurate performance results. In contrast, our framework
searches for parameters on real system using search heuris-
tics. A preliminary version of our auto-tuning framework
appears in earlier work[4], where we primarily study the
performance of system at a small scale. In this paper, we
do a more thorough analysis of the system on diverse plat-
forms, applications and concurrencies, and conduct an in-
depth analysis of resulting configurations.

7. LIMITATIONS AND FUTURE WORK
In this paper, we have focused on developing and testing

the auto-tuning system on multiple platforms using di↵erent
I/O benchmarks. We have not addressed the issue of how
one can generalize the results from running benchmarks to
arbitrary applications. We believe that I/O motifs are the
key to this generalization problem: in the future, we will
characterize and enumerate prototypical motifs and use the
current auto-tuning framework to populate a database of
good configurations for these motifs. We will then imple-
ment an intelligent runtime system, which will be capable of
extracting I/O motifs from arbitrary applications, and con-
sulting the performance database to propose an optimal I/O
strategy. Figure 14 illustrates our proposed architecture for
an intelligent runtime system that could address this chal-
lenge.
The long runtime of the GA is a potential concern, es-

pecially for individual application developers. We believe
that the GA runs (on a per-motif basis) can be incorporated
into a “health-check” suite run by sysadmins on a system-
wide basis. Thereby, we can both incrementally populate
the database of motifs, and characterize the performance
variability. Following results from our Partial Runs, we are
considering designing a genetic algorithm with a custom mu-
tation rate that would initially favor the sensitive parame-
ters on each platform (Lustre or MPI-IO) and then focus
on other layers of the I/O stack. We are also looking into
machine learning based approaches (such as Gaussian Pro-
cesses) to intelligently sample the search space, and further
reduce the runtime.
Finally, runtime noise and dynamic interference from other

users is a fact of life in production HPC facilities. While our
auto-tuning framework has presented compelling results, we
are assuming that the user will encounter a runtime work-
load which is comparable to the one encountered during the
auto-tuning process. We believe that measuring noise and
interference during the tuning process, and deriving models
for projecting their e↵ect at runtime will be key in tackling
this hard problem.

8. CONCLUSIONS
We have presented an auto-tuning framework for optimiz-

ing I/O performance of scientific applications. The frame-
work is capable of transparently optimizing all levels of the
I/O stack, consisting of HDF5, MPI-IO and Lustre/GPFS
parameters, without requiring any modification of user code.
We have successfully demonstrated the power of the frame-
work by obtaining a wide range of speedups across diverse
HPC platforms, benchmarks and concurrencies. Perhaps
most importantly, we believe that the auto-tuning frame-
work can provide a route to hiding the complexity of the
I/O stack from application developers, thereby providing a
truly performance portable I/O solution for scientific appli-
cations.

9. ACKNOWLEDGMENTS
This work is supported by the Director, O�ce of Science,

O�ce of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research used resources of the National
Energy Research Scientific Computing Center, the Texas
Advanced Computing Center and the Argonne Leadership
Computing Facility. The authors would like to acknowledge
Wes Bethel, Mohamad Chaarawi, Bill Gropp, John Shalf



and Venkat Vishwanath for their support and guidance. 10. REFERENCES
[1] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,

R. Becker-Szendy, R. Golding, A. Merchant,
M. Spasojevic, A. Veitch, and J. Wilkes. Minerva: An
automated resource provisioning tool for large-scale
storage systems. ACM Trans. Comput. Syst.,
19(4):483–518, Nov. 2001.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. Veitch. Hippodrome: Running
circles around storage administration. In Proceedings
of the 1st USENIX Conference on File and Storage
Technologies, FAST ’02, Berkeley, CA, USA, 2002.
USENIX Association.
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