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Abstract

As performance improvements from transistor process scaling have slowed, micro-
processor designers have increasingly turned to special-purpose accelerators to continue
improving the performance of their chips. Most of these accelerators deal with compute-
heavy tasks like graphics, audio/video decoding, or cryptography. However, we decided
to focus on a memory-bound task: memory to memory copies. Memory to memory
copies make up a significant portion of data center workloads, so improving its per-
formance could lead to large savings in operational cost. To that end, we designed a
memory copy accelerator which can move data at high bandwidth within the L2 cache
and main memory. Unike traditional DMA engines, this copy accelerator is virtual
memory-aware and can perform data transfers without any need for page pinning or
ahead-of-time page translation. This relieves much of the programming burden from
the operating system developer and application programmer. We compared the perfor-
mance of this accelerator to memcpy() functions implemented with scalar RISC instruc-
tions and with vector instructions. Our evaluation showed that the copy accelerator
was significantly faster than the scalar implementation for larger transfers, even when
accounting for the overhead of page faults. In addition, the copy accelerator matched
the performance of the vector implementation, while taking up an order of magnitude
less area than the vector coprocessor.
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1 Introduction
As performance gains from transistor shrinks have slowed, microprocessor designers have
increasingly turned to adding special-purpose accelerators to continue improving the perfor-
mance of their chips. These accelerators generally focus on computation-heavy tasks, such
as graphics audio/video decoding, cryptography, and, more recently, machine learning. In
this work, we focus on accelerating a much more mundane task: data movement.

Data movement within memory makes up a significant proportion of many workloads.
An investigation of a Google datacenter by Kanev, et al. [4] found that approximately 5%
of CPU cycles were spent inside the memcpy() and memmove() library routines. Memory-
memory copies are used especially heavily in kernel IO drivers (such as disk and network
device drivers), which spend most of their time copying data between device, kernel, and
userspace buffers.

There has been quite a bit of work done to reduce the overhead of copying data between
IO devices and main memory. Traditional DMA engines can lower the CPU overhead of
copying from device buffers to main memory by offloading this copying to the device itself.
However, the DMA engine generally does not have access to the page table, so it cannot
use virtual addresses. Since pages in userspace are usually not guaranteed to be resident in
memory, the operating system device drivers must allocate kernel-space buffers for the DMA
engine to write into and then copy the data again into the userspace buffer.

Some messaging technologies, such as Infiniband, have sought to completely obviate
additional copies by having the device write directly into the userspace buffer. However, these
so-called "zero-copy" DMA protocols shift a lot of the burden of buffer management from the
operating system developer to the application programmer. The application must explicitly
allocate memory for DMA and pin the virtual addresses in memory. This is potentially quite
expensive, since the operating system must translate all of the virtual addresses and page
them into physical memory up front. Also, while the pages are pinned, the physical frames
cannot be reused by the operating system for other tasks. The application must also manage
any concurrency between the device’s use of the memory region and its own. Application
frameworks can hide the complexity of low-level API calls, but this usually comes at the cost
of a significant performance overhead.

To solve these issues, we propose a coprocessor that can offload memory-memory copies.
The coprocessor has access to the CPU’s page table walker and thus can perform its own
virtual memory translations. It only requires intervention from the processor if the page
it is translating is not resident in memory and needs to be paged in. Once the page has
been moved into memory, the accelerator can resume the copy operation at the point it left
off. This removes the need to allocate a separate kernel buffer or pin userspace buffers in
memory.

2 Related Work
The most common form of memory-memory copy acceleration is to use vectorized or SIMD
load-store operations. This is the tactic taken by the glibc memcpy() function. On archi-
tectures which have these sorts of instructions (such as modern x86 machines), the memcpy
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function moves data through the wide SIMD registers. To investigate how our approach
compares to this one, we also benchmarked memory-memory copies using Hwacha, a vector
coprocessor we developed in our lab.

One interesting design by Duarte and Wong [3] removed the need for any data movement
at all by simply keeping an indirection table in the cache. Performing a copy simply placed
an entry in the table. Then, for any read access to the destination region, the data would
be pulled from the source region’s index in the data array. There was additional logic to
invalidate the indirection table entries if the source or destination regions were modified.
While this improved the performance of copy operations, it was limited by the fact that the
memory region to be copied had to fit into the cache. You could not copy a region larger
than the cache size using this method. Also, since the indirection table had to be checked
for every cache access, there was some additional overhead for regular cache accesses that
did not use the indirection. This may end up affecting the critical path of the processor.

A design by Su, et al. [5] overcomes these limitations. Their accelerator actually performs
the memory movement from main memory to the cache. Their backend design is very similar
to ours. There are multiple DMA channels that can run independently, the read and write
requests can be pipelined, and the DMA transactions can be paused at certain points and
then resumed. One key difference is that their accelerator sits outside of the core and receives
commands via the memory interface rather than through custom instructions.

Intel’s I/O Accelerator Technology (IOAT) provides support for copy acceleration through
the asynchronous DMA copy engine (ADCE). This is a PCI-enumerated device that can
perform the DMA copy asynchronously. Unlike our design, it accesses memory directly
instead of going through the L2 cache. Therefore, to keep things coherent, it must probe
into the L2 cache to force it to writeback any dirty data. This design might be good for large
transfers for which you would like to avoid cache pollution. But for smaller transfers it may
be inefficient because the application must go through a potentially lengthy cache refill when
it actually reads the data. The ADCE uses only physical addresses and is only accessible
from userspace. Work by Vaidyanathan, et al. [7] exposed the ADCE to userspace through
a kernel module. The kernel-space software took care of splitting the userspace request on
page boundaries and performing the page translation.

Other than the SIMD instructions, all of these prior acceleration technologies lack the
ability to translate virtual addresses. Therefore, the operating system must perform the
address translation ahead of time and pass physical addresses to the accelerator. In addition,
the physical frames must be pinned in memory and cannot be paged out or relocated. A
design by Tezuka, et al. [6] attempts to alleviate the overhead and high resource usage of
page pinning in a zero-copy DMA system by implementing a pin-down cache. The system
specifies a maximum number of pinned pages possible. If the application requests to release
a page it has pinned, the page is not immediately unpinned. Instead, it is marked as being a
candidate for unpinning and the actual unpinning is deferred until the the number of pinned
pages exceeds the maximum allowed. When the application requests that a page be pinned,
the system checks if the page is already pinned. If it is, nothing further need be done. If the
page is not already pinned, the system checks if pinning the page will cause the number of
pinned pages to exceed the maximum allowed. If so, then pages marked as released will be
unpinned until the number of pinned pages goes below the maximum. This technique does
provide more predictable virtual and physical memory usage and reduces the CPU overhead
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of page pinning. However, it also limits the amount of DMA transfers that can be inflight at
any given time. If the number of requested pages exceeds the maximum number of pinned
pages allowed, some of the requestors will have to wait. For our design, we removed the need
for page pinning by allowing the accelerator to perform its own address translation through
a translation lookaside buffer. The accelerator can also detect if a page is not resident in
memory and pass control back to the CPU for page fault handling.

3 Design

3.1 RISC-V ISA and memcpy() ISA extension

For this work, we rely heavily on the RISC-V instruction set [8]. The RISC-V ISA is an open
source RISC instruction set with 32-bit and 64-bit variants. It has a simple base integer
ISA and standard extensions for integer divide/multiply, atomic memory operations, and
floating-point arithmetic. The instruction set also provides support for virtual addressing
modes. In most RISC-V implementations that support virtual addressing, the L1 instruction
and data caches have TLBs that perform the address translation. These TLBs are refilled
from a page table walker that accesses the L1 data cache. If the pages are modified by the
operating system, they need to be explicitly invalidated from the TLB using the FENCE.VM
instruction.

A key feature of the ISA is that a part of the opcode space is reserved for custom non-
standard ISA extensions. We use these custom instructions to communicate between the
processor and the copy accelerator.

The custom instructions sent to the accelerator follow the format shown in Figure 1. The
main sections are the opcode, funct field, and register numbers for two source registers (rs2,
rs1) and one destination register (rd). The opcode and funct are used to distinguish different
instructions. For our memcpy() extension, we always use opcode custom2 and distinguish
the instructions with the funct. The xs2, xs1, and xd fields are booleans used to determine
whether or not the corresponding registers are being used by the instruction.

funct rs2 rs1 xs1 xs2xd rd

7 5 5 1 1 1 5 7

opcode

31 2524 2019 15 14 13 12 11 7 6 0

Figure 1: RoCC Instruction Format

The different instructions in the memcpy() ISA extension are shown in Table 1. The
"Transfer" instruction initiates a DMA transfer. The first source register provides the des-
tination start address and the second source register provides the source start address. If
virtual addressing is turned on, the two addresses will both be virtual addresses. The acceler-
ator can perform address translation using its own TLB. This accelerator TLB is refilled from
the same page table walker as the L1 caches and can be invalidated using the FENCE.VM
instruction.
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The other information needed for a DMA request is kept in control registers. These values
can be read using the "Read-CR" instruction, which returns the value of the register at the
index given by the first source register. The registers can be modified using the "Write-CR",
"Set-CR", and "Clear-CR" instructions, which updates the register at the index given by
the first source register with the data supplied by the second source register. "Write" simply
overwrites the entire control register, "Set" sets any bits in the CR that are set in the source
register, "Clear" clears any bits which are set in the source register.

Instruction funct xs2 xs1 xd
Transfer 0 1 1 0
Resume 1 0 0 0
Read-CR 4 0 1 1
Write-CR 5 1 1 0
Set-CR 6 1 1 0
Clear-CR 7 1 1 0

Table 1: memcpy() extension instructions

There are seven control registers used by the accelerator, as listed in Table 2. The
first four determine the "shape" of the memory transfer. The copy accelerator supports
strided, segmented copies. A set of NSEGMENTS chunks of SEGMENT_SIZE bytes each
are copied from the source to the destination. Each segment at the source is separated
by SRC_STRIDE bytes and will be separated by DST_STRIDE bytes at the destination.
This feature is useful for copying subsections of matrices. The segment size is the size of a
row in the submatrix being copied. The number of segments is the number of rows in the
submatrix. The stride is the difference between the size of a row in the larger matrix and
the size of a row in the submatrix.

The ACCEL_CTRL register contains several bit fields, as shown in Table 3. The first
two bits are the allocation bits. They control whether the source or destination data will be
cached in the L2 if they are not already. By default, the source data is not cached but the
destination data is. This avoids polluting the cache with duplicate data. The application
developer may wish to cache the source data if it is going to be copied more than once, or
they may wish to not cache the destination data if the transfer size is larger than the L2
size and they would like to avoid blowing out the cache. The pause bit can be set to cause
the accelerator to halt its current transfer operation. The paused operation can be restarted
later with the "Resume" instruction. To allow precise restarts, the accelerator can only halt
at segment or page boundaries. This functionality is mostly used by the operating system
in case it wants to deschedule a program that is waiting on an accelerator transfer.

Here’s an example of how one would implement copying a subset of one matrix into a
smaller matrix using the memcpy() ISA extension.
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Index Name Description
0 SRC_STRIDE Stride (in bytes) between source segments
1 DST_STRIDE Stride (in bytes) between destination segments
2 SEGMENT_SIZE Size (in bytes) of a single segment
3 NSEGMENTS Number of segments
4 ACCEL_CTRL Pause and alloc bits
5 RESP_STATUS Accelerator page fault status
6 RESP_VPN Faulting VPN

Table 2: memcpy() Control Registers

Name pause dst_alloc src_alloc
Position 2 1 0

Table 3: ACCEL_CTRL register fields

void pagein(unsigned long vpn)
{

int page_size = sysconf(_SC_PAGESIZE);
void *vaddr = (void *)(vpn * page_size);
mlock(vaddr, page_size);
munlock(vaddr, page_size);

}
void wait_for_completion(void)
{

int status;
unsigned long vpn;

while (true) {
fence();
status = read_cr(RESP_STATUS);
if (status == 0)

break;
vpn = read_cr(RESP_VPN);
pagein(vpn);
resume();

}
}
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void copy_matrix(
int *dst, int *src, int nrows, int dst_ncols, int src_ncols)

{
write_cr(SRC_STRIDE, sizeof(int) * (src_ncols - dst_ncols));
write_cr(DST_STRIDE, 0);
write_cr(SEGMENT_SIZE, sizeof(int) * dst_ncols);
write_cr(NSEGMENTS, nrows);

transfer(dst, src);
wait_for_completion();

}

After starting the transfer, the application executes the RISC-V "fence" instruction to
synchronize between the accelerator and the CPU. This instruction will halt the CPU pipeline
until all in-flight operations in the accelerator have completed. When the fence instruction
has completed, the accelerator has either successfully finished the transfer, in which case
the response status will be zero, or it has encountered some page translation error, in which
case the response status will be non-zero. In the latter case, copies for the pages before the
current one will have all completed and the internal state of the accelerator is saved. The
faulting VPN is stored in the FAULT_VPN register.

If the application encounters a translation error, the proper response would be to read
the faulted VPN from the control register and force the OS to page it in. The easiest
way to do this in a Unix OS is to call the mlock() system call to pin the page in memory
and then optionally call munlock() to allow it to unpin it. After the page is set up, the
application should execute the "Resume" instruction to continue the transfer. This will
flush the coprocessor TLB to clear out the old invalid page table entry and begin copying
again starting from the page which produced the translation error.

3.2 RocketChip SoC Generator

We developed our memory copy accelerator using the RocketChip SoC generator [1]. This is
an open-source SoC generator for processor systems implementing the RISC-V ISA. Using
this generator, we are able to generate a processor system with the Rocket CPU, an in-order
64-bit RISC-V core.

The CPU is backed by a cache-coherent memory system. Each core contains separate L1
instruction and data caches. These caches connect over a crossbar to shared L2 cache banks.
The physical address space of the processor system is strided across the L2 cache banks, so
each cache bank handles a separate set of addresses from the others. The cache banks are
backed by one or more DRAM channels. Cache banks are mapped to DRAM channels on an
N-to-1 basis. Each L2 cache bank is refilled from a single DRAM channel and each channel
handles a unique subset of the cache banks.

Alongside the cache-coherent memory system, there is a non-coherent memory-mapped
IO system. This allows the CPU to access various peripherals over an MMIO crossbar.
The generator provides a set of standard peripherals including boot ROM, programmable
interrupt controller, and system clock. Additional peripherals, such as IO devices, can be
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easily added. The MMIO network handles addresses that are distinct from those handled
by the coherent memory system. Though the CPU connects to this system through the L1
caches, the data provided through MMIO is not meant to be cached. The data cache will
never cache MMIO data. The instruction cache may cache either memory or MMIO data
read-only. Unlike the data cache, the instruction cache will not automatically invalidate its
stored data if it is modified by another client. To reflect any modifications to instruction
cache data (as in the case of self-modifying code), the RISC-V program must execute the
FENCE.I instruction, which invalidates all data stored in the instruction cache.

A key feature of RocketChip is the ability to easily integrate an accelerator with the CPU
core through the Rocket Custom Co-processor (RoCC) interface. The RoCC accelerator is
controlled by custom RISC-V instructions and shares processor resources such as access to
the page table walker and L1 data cache. The accelerator can also be given dedicated ports
into the L1-to-L2 crossbar for direct access to the L2 cache. This is the approach we take for
the copy accelerator. All of the data movement is done through the L2 interface and the L1
interface is not used. We chose this design because the L1 data cache is usually quite small.
Since the accelerator may be used to move large amounts of data and the L2 to L1 refill
latency is relatively short, we thought it would be best not to risk evicting other important
data from the L1.

A block diagram of the RocketChip system with our memory copy accelerator is shown
in Figure 2.

Rocket
Core

Memcpy
Accelerator

L1I$ L1D$

L1-to-L2 crossbar

L2 Cache
Bank

L2 Cache
Bank

To DRAM To DRAM

MMIO Crossbar

To MMIO Devices

CPU

PTW

Figure 2: System Diagram
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3.3 TileLink Memory Interface

The L1 caches and copy accelerator communicate with the outer memory system through
the TileLink coherent memory interface [2]. This interface consists of five different channels
between the client (higher level cache or non-caching client) and manager (lower level cache
or memory).

• Acquire (client to manager) - Initiates a transaction to obtain increased permissions
for the client on a cached block. Also used to read and write cache blocks without
caching them.

• Probe (manager to client) - Queries if the client is caching a block. Can also downgrade
the client’s permissions on the cache block.

• Release (client to manager) - Responds to a probe with the client’s current permissions
on the block. Acknowledges the downgrading of permissions on the block and writes
back dirty data. Also used to voluntarily write back data evicted from the client.

• Grant (manager to client) - Provides data and/or permissions to client in response to
an acquire. Also used to acknowledge voluntary releases.

• Finish (client to manager) - Acknowledges the receipt and handling of a permissions
upgrade from a grant, indicating to the manager that it is safe to accept further requests
for the cache block.

For the copy accelerator, we are concerned with the non-caching protocol, which uses
only the acquire and grant channels (although the manager may send probes to other clients
in response to the acquire). The acquire channel can carry several types of non-caching
messages. The four that we are concerned with are GetBlock, Get, PutBlock, and Put.

A GetBlock message requests data for an entire cache block. The TileLink data width is
parameterizable and may not be as large as a cache block. If the data width is smaller, the
data response will be sent back broken into several grant messages. These individual grants
are called "beats". All of the beats must be transferred in-order and cannot be interleaved
with other grant messages.

A Get message also requests data, but the amount requested must be less than or equal
to a single beat. This way, only a single grant message must be sent back in response.

A PutBlock message writes the data for an entire cache block. If the data width is smaller
than a block, the PutBlock will be broken up into multiple acquire messages (beats). The
beats for a single PutBlock must be sent in full (no omitted beats), in order, and must not be
interleaved with other acquire messages. The manager responds with a single grant message
acknowledging the receipt of the data.

A Put message writes the data for a single beat. Thus, only one acquire message is sent
for each Put transaction. A Put message contains a bytemask, which allows it to write a
smaller amount of data than a single beat. In previous iterations of the TileLink protocol,
any bytemask was acceptable. However, in the current specification, the number of bytes
written will only be allowed to be a power of two, and the write address must be aligned to
the data size.
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A TileLink manager can process multiple in-flight acquires. That is, it can accept an
acquire message before sending the grant for a preceding acquire. There is no guaranteed
ordering for the grants sent back. To distinguish which grant is for which acquire, each
acquire is given a unique client transaction ID. This ID is then echoed back in the grant
message. Each beat of a multi-beat transaction should have the same transaction ID. No
two inflight transactions from the same client can have the same transaction ID, so the
client must not reuse an ID until after it has completed the transaction by sending the finish
message.

3.4 Accelerator Microarchitecture

The design of the accelerator itself is show in Figure 3. When a RoCC command comes in
from the CPU pipeline, it is sent to either the frontend (if it is a Transfer or Resume instruc-
tion) or to the control register file. The frontend is responsible for splitting up the request by
segments and performing virtual address translation. This way, a single virtually-addressed
non-contiguous transfer may be broken up into multiple physically-addressed contiguous
transfers. If a segment crosses a page boundary, it will also be broken up into multiple
transfers, since it may not be contiguous in physical memory. For page translation, the
frontend sends requests to a TLB similar to that used by the L1 caches. If there is a page
translation error, the frontend waits for all outstanding backend transfers to finish, stores
a non-zero response status and faulting VPN in the CR file, and signals completion to the
CPU. The CPU then reads the faulted VPN from the CR file and pages it into memory.
Once the memory has been paged in, the CPU sends the Resume instruction to the frontend.
Assuming no other transfer request has been made, the internal state of the frontend will be
the same as it was before the error occurred. On resume, the TLB is flushed, the previously
erroring translation is retried, and the frontend continues from the point before the error.

The backend is composed of one or more trackers, each of which can independently handle
a single request from the frontend. Each tracker is composed of a reader unit and a writer
unit, which can independently issue TileLink requests. The data fetched by the read unit
is transferred to the write unit through a shared buffer. Each tracker is given its own port
into the L1-to-L2 crossbar. The reader and writer in each tracker must share access to the
tracker’s crossbar port through an arbiter.

The reader unit reads data starting from the source address, re-aligns the data if neces-
sary, and then stores the data in the shared buffer. To avoid unnecessary round trips, the
reader unit uses GetBlock acquires as much as possible. If the source address is not aligned
to a cache block boundary, there will be a few beat-sized reads at the beginning until the
first cache block boundary is reached. Similarly, there might be a few beat-sized reads at
the end if the end of the source region does not fall on a cache block boundary. All of the
data in between will be read a cache block at a time. The read acquires are issued in-order,
but the grants may come out-of-order. To ensure proper ordering in the buffer, the read unit
reserves space in the buffer when it sends the acquire. The reader unit saves the allocated
index in the buffer and associates it with the transaction ID of the acquire. When the reader
receives the grant for the acquire, it uses the grant transaction ID to look up the buffer index
so that it can correctly place the data in the buffer.

The writer unit takes data from the buffer in FIFO order, collects the data together into
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as large a packet as possible (up to a single beat) and writes them out to memory. As with
the reader unit, the writer uses block-size acquires (PutBlock) as much as possible. There
may be a few beat-sized writes at the beginning and end if the destination addresses are
not aligned. Writes at a smaller granularity than a beat are handled by setting the Put
bytemask. Because of the additional stipulation that writes must be power-of-two sized with
aligned addresses, there may be several sub-beat writes for each beat of data read. However,
for transfers spanning across multiple blocks, the majority of writes will still be block-sized.
Because source and destination addresses can be at any alignment within a beat, the writer
unit may need to collect two read beats together in order to form a single write beat. The
leftover data from the second read beat will be used as the initial portion of the next write
beat.

Splitting the tracker in this way allows the read and write requests to be pipelined,
thus increasing utilization of the available memory bandwidth. Utilization can be further
improved by increasing the size of the buffer. Since none of the blocks in a single transfer
are dependent on each other, the trackers can have as many concurrent requests as there is
space in the buffer. The performance can thus be improved at the cost of increasing the area
and power consumption of the design.

Since messages passing through a single TileLink channel cannot be reordered and mul-
tiple beats of the same block-sized transaction cannot be interleaved with beats from other
transactions, the backend trackers must perform flow control to avoid deadlocks. The reader
and writer unit perform flow control using reservations in the buffer. The reader unit will
not initiate a transaction unless it can reserve sufficient space in the buffer for the returned
data. Similarly, the writer unit will not initiate a transaction until all of the data for the
transaction has been reserved in the queue. The writer unit does not need to wait for all of
the data to actually be placed in the queue. If the space has been reserved in the buffer, the
read request must have already been sent out. Therefore, it is guaranteed that the data will
eventually be returned, no matter what requests the writer sends out. Beginning a PutBlock
acquire does not block the Get or GetBlock grant from being accepted. Because the start of
the source region and the start of the destination region can have arbitrary alignment, the
buffer must be, at minimum, twice the size of a single block for the system to run without
deadlocks.

3.5 Hwacha Vector Processor

Besides comparing our accelerator to a software implementation using scalar load/store
instructions, we also compared the copy accelerator to an implementation using vector
load/store instructions. Our platform for these benchmarks was Hwacha, another RoCC-
based coprocessor designed in our lab, which performs vectorized integer and floating-point
arithmetic. The microarchitecture of Hwacha is shown in Figure 4.

Hwacha is broken up into a scalar unit, vector lanes, and vector runahead unit (VRU).
Instructions coming into Hwacha from Rocket over the RoCC interface are collected in the
command queue. These instructions are then processed in FIFO order by the scalar unit,
which handles scalar computation and holds the address and scalar registers. The scalar
registers are used for computation, whereas the address registers are used only for mem-
ory addressing. If the scalar unit gets a vf instruction from the command queue, it begins
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fetching instructions from a separate instruction cache. These instructions are then broad-
cast to the vector lanes, along with the values of the relevant scalar and address registers.
The scalar unit will stop fetching from the instruction cache and return to processing the
command queue once it executes the vstop instruction.

The vector lanes are where the actual vector computation occurs. Each lane contains four
256 x 128-bit SRAM banks, which are connected by a crossbar to several heavily pipelined
functional units. The SRAM banks can be logically reconfigured to form up to 256 vector
registers. The fewer logical vector registers desired, the larger each one will be. For instance,
if only a single logical register is desired, it will have the entire 16 KB of available SRAM to
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itself. If two logical registers are requested, each will have 8 KB of SRAM and so on. Each
vector lane is also equipped with a vector memory unit (VMU), which has a dedicated port
to the L1-to-L2 crossbar.

Hwacha also has a runahead unit which can skip forward in the command queue and
instruction memory. It has its own copy of the address registers. Since the address registers
can only be changed by command queue instructions, the VRU can be certain that its view
of the address registers is the same as the scalar unit’s. The VRU skips over most of the
instructions and just considers the vmca instruction, which sets the address registers; the vf
instruction and vstop instructions for switching between command queue and instruction
cache; and the vector load and store instructions. When the VRU sees one of the latter
instructions in the instruction cache, it will issue a prefetch acquire to the L2. The L2 will
then prefetch the existing data from DRAM so that it can be more quickly supplied when
it is later requested by the VMU. Since the VRU "executes" the same instructions that the
scalar unit will eventually execute, none of the prefetching will be wasted. It is possible that
the VRU may run too far ahead and evict data from the L2 cache before the VMUs have a
chance to request them or take up L2 bandwidth that could be used by the VMUs, but the
VRU can be intelligently throttled to prevent these events.

Hwacha’s utilization is greatly increased by the significant decoupling in the system. The
RISC-V processor can submit an instruction to the command queue and continue executing
as long as it does not require a response. The scalar unit is decoupled from the vector lanes
and can continue executing from the command queue or instruction cache as the vector
lanes perform memory operations and computation. When combined with the runahead
execution, this decoupling allows the Hwacha coprocessor to easily generate a large volume
of memory requests.

4 Benchmarking Methodology

4.1 Design Points

The RocketChip generator allows us to parameterize parts of the design so that we can easily
explore many different design points. Hwacha, the copy accelerator, and the outer memory
system each have parameters that can be tweaked. For our evaluation, we were interested in
two memory system parameters: the number of DRAM channels and the number of acquire
transactors per L2 cache bank. The number of DRAM channels determines the total DRAM
bandwidth available to the L2. The number of acquire transactors determines the number
of concurrent requests that a single L2 cache bank can send to its corresponding DRAM
channel. This therefore determines how much DRAM bandwidth the L2 bank can take up,
and thus how much bandwidth a single L2 bank can supply to the accelerator.

For Hwacha, the interesting parameter was the number of vector lanes. This determines
how many ports into the L1-to-L2 crossbar the accelerator is given, and thus the number of
concurrent memory requests that can be sent at a single point in time. This is more inter-
esting for memory systems with multiple DRAM channels. Since the L1-to-L2 interconnect
is a full crossbar, two lanes can simultaneously communicate with two separate L2 banks.

For the copy accelerator, the two parameters we investigated were the size of the backend
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buffer in each tracker and the number of trackers. The size of the backend buffer determines
the number of concurrent requests the accelerator backend can make on a single port, and
thus the memory bandwidth that the accelerator can take up. The second parameter is
the number of backend trackers, which controls how many L1-to-L2 ports the accelerator is
given. As with Hwacha’s lanes, having multiple trackers is more useful when there are also
multiple DRAM channels.

We investigated the performance with buffers of size 2, 8, or 32 blocks (each block is 64
KB). 2, 4, or 8 L2 acquire transactors; 1, 2, or 4 DRAM channels; and 1, 2, or 4 backend
trackers.

4.2 Benchmarking environments

We ran our benchmarks in two different environments. The first was a bare-metal environ-
ment with no operating system. In this environment, the virtual pages are set up manually
before the test is run, meaning that there are no page faults during the transfer. The source
and destination regions are statically allocated in the executable. This was a useful bench-
marking environment because it is relatively quick to simulate (no kernel boot overhead).
We were able to test a large number of design points fairly quickly. It also helped us see the
raw memory performance without any page-fault overhead.

The second environment was a userspace executable running on top of the Linux kernel.
In this environment, the source and destination regions are dynamically allocated and the
pages are not set up ahead of time, which means that there may be page faults. Benchmark-
ing in this environment helped us determine the effect of page faults on total performance.
Due to time constraints (Linux boot in simulation takes a very long time), we only collected
data for a single design point in this environment.

4.3 memcpy() implementations

To have a baseline to compare our accelerator against, we wrote a hand-optimized memcpy
routine in C and compiled it to the 64-bit RISC-V ISA (RV64).
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#define UNROLL 8

void fast_memcpy(void *dst, void *src, size_t len)
{

uintptr_t ptr_mask = (uintptr_t) dst | (uintptr_t) src | len;

if ((ptr_mask & (sizeof(uintptr_t) - 1)) == 0) {
uintptr_t *d = dst, *s = src;
size_t n = len / sizeof(uintptr_t);
size_t lenu = ((n / UNROLL) * UNROLL) * sizeof(uintptr_t);

while (d < (uintptr_t *)(dst + lenu)) {
//for (int i = 0; i < UNROLL; i++)
// d[i] = s[i];
d[0] = s[0];
d[1] = s[1];
d[2] = s[2];
d[3] = s[3];
d[4] = s[4];
d[5] = s[5];
d[6] = s[6];
d[7] = s[7];
d += UNROLL;
s += UNROLL;

}

while (d < (uintptr_t *)(dst + len))
*(d++) = *(s++);

} else {
char *d = dst, *s = src;

while (d < (char *)(dst + len))
*(d++) = *(s++);

}
}

This implementation checks to see if the source and destination are both aligned to 64
bits. If so, it performs an optimized copy of 64 bits at a time, with the loop manually
unrolled by 8. We chose this loop unrolling factor because it provided the best performance
of the unrolling factors we checked. This unrolling also happens to match the size of a single
cache block.

We also wrote an implementation that performs the memory copy in Hwacha by loading
into a vector register and then storing out of the vector register to the destination. The vector
implementation falls back to a scalar memcpy() if the source, destination, and length are not
aligned. Otherwise, the vector memcpy() runs the following stripmining loop implemented in
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RISC-V and Hwacha assembly. The arguments to the function are the destination address,
the source address, and the number of 64-bit words to be transferred.

# a0 -> dst
# a1 -> src
# a2 -> n
vec_copy_d_asm:

li t0, VCFG(1, 0, 0, 1)
vsetcfg t0

stripmine:
vsetvl t0, a2
vmca va0, a0
vmca va1, a1
la t1, vcopy_d
vf 0(t1)
// update # of remaining words
sub a2, a2, t0
// x8 for # of bytes
slli t0, t0, 3
// update addresses
add a0, a0, t0
add a1, a1, t0
// check if we’re done
bnez a2, stripmine
fence
ret

.align 3
vcopy_d:

vld vv0, va1
vsd vv0, va0
vstop

The instructions in the vec_copy_d_asm function are RISC-V and Hwacha scalar instruc-
tions. The vsetcfg instruction configures the vector registers so that there is only a single
vector register using all of the available SRAM resources. The vsetvl instruction attempts
to set the vector length, which controls how much work will be done by the vector instruc-
tions. The application attempts to set the vector length to the number of remaining words
to be transferred. The vsetvl instruction returns the actual vector length. If the desired
vector length is larger than the maximum vector length, the actual vector length will just
be the maximum vector length. The two vmca instructions copy the current source and
destination pointers to the Hwacha address registers. The vf instruction switches control
to a "vector fetch block", a set of instructions from Hwacha’s separate instruction cache. In
this case, the vector fetch block is the vcopy_d function, which simply performs a vector load
from the source address into the vector register and then a vector store to the destination.
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It then executes the vstop instruction to complete the vector fetch block and return control
flow to the command queue. After the scalar core finishes the vector fetch block, it subtracts
the actual vector length from the count of remaining words and then increments the source
and destination addresses by the number of bytes that have just been transferred. If there
are still words remaining to be transferred, it branches back to the top of the stripmining
loop. Otherwise, it executes a fence to make sure the vector unit has finished all of its work
and then returns to the caller.

For testing the copy accelerator, we used an implementation which is basically the same
as the copy_matrix implementation shown earlier. The only difference is that there is only
a single segment.

void accel_memcpy(void *dst, void *src, size_t len)
{

mlock(dst, len);
munlock(dst, len);

write_cr(SEGMENT_SIZE, len);
write_cr(NSEGMENTS, 1);
transfer(dst, src);
wait_for_completion();

}

As an additional optimization, we force in the destination pages so that they are less likely
to cause exceptions while the accelerator is running. This avoids the overhead of returning
control from accelerator to processor and multiple mlock/unlock calls. We do not need to
do this for the source because the source region should already be resident in memory (since
it was populated with data).

In the bare-metal environment, it is not possible for the DMA transfer to page fault and
the mlock()/munlock() system calls are not available, so we replace the wait_for_completion()
call with a simple fence instruction.

For the Linux environment, we also ran a benchmark that simply performed the initial
mlock/munlock without performing the transfer. This helps us determine how much of the
time spent in the accelerated implementation is due to page-faulting and how much due to
the actual transfer.

4.4 Cycle Time and Area

To measure the cycle time and chip area taken up by the copy accelerator, we ran our RTL
through synthesis using Synopsys 32nm educational process. The design we ran through
synthesis consisted of a single CPU tile including the copy accelerator, integer/floating point
pipeline, page table walker, L1 data cache, and L1 instruction cache. We used a copy
accelerator configuration with a single tracker and 16-block buffer.
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5 Evaluation

5.1 Bare-metal microbenchmark results

In our bare-metal microbenchmarks of the various memcpy() implementations, we measured
the number of cycles taken to complete a transfer as we increased the number of bytes
transferred. We started with a size of 1 KB and kept doubling the size up to 256 KB. A
plot of this performance for a single design point is shown in Figure 5. This compares the
baseline implementation, Hwacha with a single vector lane, and a copy accelerator with a
2-block buffer and a single backend tracker on a system with two L2 trackers per bank and
a single DRAM channel. The copy accelerator is about four times faster than the baseline
implementation and comparable to the Hwacha implementation.
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Figure 5: Baremetal memcpy() performance

To make comparison between design points easier, we distilled the benchmark results for
each design point to a single number: the average number of bytes copied per cycle. To
calculate this, we simply performed a linear regression on the performance curve and took
the inverse of its slope.

The bytes per cycle numbers for the baseline implementation are shown in Table 4. The
bytes per cycle don’t change even as the memory system resources are increased. This sug-
gests that the software implementation cannot fully utilize the memory bandwidth available.

2 transactors 4 transactors 8 transactors
1 channel 1.6 1.6 1.6
2 channels 1.6 1.6 1.6
4 channels 1.6 1.6 1.6

Table 4: Software baseline results (bytes/cycle)

The Hwacha results are shown in Table 5. As expected, increasing the memory system
resources generally does lead to improved performance. However, there are some diminishing
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returns. Doubling the number of acquire transactors per bank from four to eight when there
are four DRAM channels does not confer any improvement. This may be because Hwacha
cannot keep up with the increased bandwidth.

One surprising result is that increasing the number of vector lanes sometimes leads to a
decrease in performance. This only occurs in the configurations with fewer memory system
resources. A likely explanation is that the L2 cache banks do not have sufficient resources to
satisfy the increased volume of requests, but increasing the number of crossbar ports creates
extra contention that may degrade performance for each individual lane. It seems that the
memory system must have a total of at least eight transactors for additional Hwacha lanes
to confer any performance benefit.

1 Lane 2 Lanes 4 Lanes
1 channel, 2 transactors 6.6 4.1 4.3
1 channel, 4 transactors 12.8 10.3 9.4
1 channel, 8 transactors 14.8 16.4 17.1
2 channels, 2 transactors 11.1 7.6 6.7
2 channels, 4 transactors 15.0 16.5 15.2
2 channels, 8 transactors 15.0 18.2 21.4
4 channels, 2 transactors 13.6 12.5 12.3
4 channels, 4 transactors 15.0 18.2 21.3
4 channels, 8 transactors 15.1 18.2 21.4

Table 5: Hwacha results (bytes/cycle)

Performance results for copy accelerators with 1, 2, and 4 trackers are shown in 6, 7, and
8, respectively. As we saw with Hwacha, increasing the number of backend trackers does
not necessarily improve the performance and sometimes degrades it if there aren’t sufficient
L2 resources. A similar effect is seen for increasing the size of the buffer. Increasing the
buffer from two blocks to eight blocks only improves the performance once there are at least
a total of eight transactors in the system. Increasing the size from eight to thirty two does
not seem to confer much improvement in any configuration. Also similar to Hwacha, we see
diminishing returns to increasing the amount of L2 resources. Although the performance
gains plateau more quickly if there are smaller buffers or fewer accelerator trackers. Overall,
the copy accelerator’s performance is quite comparable to Hwacha. It appears that the copy
accelerator generally does better when there are more L2 transactors or DRAM channels,
while Hwacha does better when the L2 and DRAM resources are more constrained.

5.2 Linux microbenchmark

For the Linux microbenchmark, we picked the configuration with the best performance in
the bare-metal microbenchmarks (8 L2 transactors per bank, 4 DRAM channels, 4 backend
trackers, 8 block buffer) and compared the software baseline and copy-accelerated imple-
mentations. The results of this test are shown in Figure 6. The accelerated version starts
out slower than the software version. However, the transfer time grows more slowly for the
accelerated implementation, allowing it to catch up to the baseline implementation. Once

20



2 blocks 8 blocks 32 blocks
1 channel, 2 transactors 6.4 6.4 6.3
1 channel, 4 transactors 8.9 8.8 9.0
1 channel, 8 transactors 8.7 10.3 10.3
2 channels, 2 transactors 9.5 9.5 10.3
2 channels, 4 transactors 11.6 17.9 17.6
2 channels, 8 transactors 11.6 18.6 18.5
4 channels, 2 transactors 12.3 15.7 15.7
4 channels, 4 transactors 12.3 19.4 19.4
4 channels, 8 transactors 12.3 19.4 19.4

Table 6: Single tracker copy accelerator results (bytes/cycle)

2 blocks 8 blocks 32 blocks
1 channel, 2 transactors 6.3 6.2 6.1
1 channel, 4 transactors 9.1 9.0 9.1
1 channel, 8 transactors 10.3 10.3 10.3
2 channels, 2 transactors 10.3 10.1 9.4
2 channels, 4 transactors 16.0 16.1 16.1
2 channels, 8 transactors 16.4 18.6 18.7
4 channels, 2 transactors 15.1 12.4 13.6
4 channels, 4 transactors 17.7 18.6 17.9
4 channels, 8 transactors 17.7 20.4 20.3

Table 7: Two tracker copy accelerator results (bytes/cycle)

2 blocks 8 blocks 32 blocks
1 channel, 2 transactors 6.9 7.2 7.2
1 channel, 4 transactors 9.8 9.6 9.4
1 channel, 8 transactors 10.6 10.6 10.7
2 channels, 2 transactors 9.5 9.4 9.5
2 channels, 4 transactors 15.1 12.9 11.4
2 channels, 8 transactors 19.2 18.1 16.6
4 channels, 2 transactors 13.5 10.6 10.4
4 channels, 4 transactors 19.7 16.6 16.6
4 channels, 8 transactors 19.9 20.5 19.7

Table 8: Four tracker copy accelerator results (bytes/cycle)

the transfer size reaches 64 KB, the accelerated implementation is faster than the baseline
implementation. As expected, most of the transfer time for the accelerated implementation
is spent in the initial call to mlock() and munlock(). This is likely due to extra book-keeping
done in these system calls. For instance, mlock() causes the OS page cache to be drained,
and munlock() requires a second walking of the page table in order to unpin the page. There
may be a faster alternative for forcing a page into memory that could lead to a performance
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benefit for the copy accelerator at smaller transfer sizes.
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Figure 6: Linux microbenchmark results

5.3 Cycle Time and Area

Our synthesis run showed that a Rocket CPU with copy accelerator could meet a clock rate
of 50 MHz. The copy accelerator was not on the critical path. Previous tapeouts of the
Rocket CPU on more modern processes were able to achieve a 1 GHz clock rate, so we are
confident that the copy accelerator would be able to achieve a similarly high clock rate.

As for area, the copy accelerator takes up approximately 4% of the total area of the tile.
This is slightly larger than the amount of space taken up by just the integer/floating point
pipeline. This is what we expected, since the size of the backend buffer is the same as the
combined size of the integer and floating point register files. The majority of the space in
the tile is taken up by the L1 data and instruction caches. The copy accelerator is much
smaller than Hwacha, which we have previously found to take up approximately 50% of the
tile area.

6 Discussion and Future Work
The results of our evaluation show that the memory copy accelerator confers a significant
performance benefit over the basic Rocket core. The memcpy() accelerator can match the
performance of the Hwacha vector co-processor while using an order of magnitude less area.
This makes it ideal for systems which do significant data processing (such as warehouse-scale
computers) but do not require the floating-point or integer computation features of Hwacha.

Our memory copy accelerator is also much easier to program than traditional DMA
engines. Since the accelerator can take virtual addresses and translate them without inter-
vention from the CPU, there is no need to specially allocate memory for the copy operation.
This also allows the accelerator to be programmed almost entirely from userspace. The ap-
plication using the accelerator only needs to invoke the operating system kernel if memory
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must be paged in. We did not need to write any additional kernel code to run the accelerator
in Linux.

There is still one major limitation in the current design. Since the CPU can only syn-
chronize with the accelerator by waiting for the entire transfer to finish, it is difficult to write
software that overlaps data movement and computation. An application could achieve some
overlap through double-buffering. For instance, the application could start a transfer for one
set of data while concurrently performing computation on the set of data that was previ-
ously transferred. However, to make this efficient, the application programer would have to
manually divide the work into sets so that the computation and data movement complete
at approximately the same time. This may not be possible if the copying and computation
progress at different rates.

Another way of achieving parallelism between accelerator and CPU would be through
multitasking. When the application starts an accelerator transfer and waits for it to finish,
it would be swapped out with a different application which then continues computing. Once
the transfer completes, it would send an interrupt, causing the original requesting thread
to be woken and rescheduled. The current accelerator design would not be able to support
this sort of multitasking, since its TLB shares the same PTW as the CPU. If the page table
base register gets swapped out in the context switch, the accelerator would no longer be able
to correctly translate the virtual addresses for the ongoing transfer. One solution to this
problem would be to give the accelerator a separate page table walker. The PTBR for this
separate PTW would be sent to the accelerator bundled with the RoCC instruction. This
way, the CPU could context switch to a different process while the accelerator continues
processing the request. One potential drawback of this design is that it would no longer be
possible to program the accelerator entirely from kernel space. The application would have
to call into the kernel after every transfer request. The extra overhead from sleeping and
waking the process may adversely affect the latency of short transfers.

For further evaluation of the accelerator design, we would like to measure how using
accelerated copies in place of the standard software memcpy() would affect the overall per-
formance of an existing application. Distributed computing frameworks like Hadoop and
Spark are good candidates for such a benchmark, since they tend to move large blocks of
data around (either within memory, to the disk, or over the network). However, this would
require more engineering effort to add networking devices to the RocketChip generator and
port the JVM to the RISC-V ISA.

We would also like to investigate using the copy accelerator in more heterogeneous mem-
ory systems. It would be interesting to see how the accelerator could improve systems with
non-uniform memory access. An accelerated memcpy() could be used to speed up com-
putation by moving data to a memory location physically closer to the CPU. The copy
accelerator could also be used to move data between memory and peripheral devices like a
disk or network controller.

The copy accelerator is slated for inclusion in our upcoming tapeouts. This will give us
the opportunity to validate its design in working silicon. One of these tapeouts will include
radio antennae and DSP blocks. We intend to use the copy accelerator as a general-purpose
DMA engine for moving data between memory and the DSP buffers. This will allow us to
investigate the how effective the copy accelerator is at improving IO performance.
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