= Microsoft

Hack In The Box

Amsterdam | 13 April 2017

=22 Microsoft

-

X" Threat
Q .9 Intelligence

Center

m Microsoft

Andrea Allievi — Microsoft Lta s
Richard Johnson — Cisco Systems Inc

~~=_ Microsoft

#’X" Threat
% | 9 Intelligence

Center

Who we are - Richard Johnson

Talos Vulndev

— Third party vulnerability research
170 bug finds in last 12 months

Microsoft

Apple

Oracle

Adobe

Google

IBM, HP, Intel

7zip, libarchive, NTP

 Research Lead

— Security tool development
» Cisco Talos VulnDev Fuzzers, Crash Triage

— Mitigation development
FreeSentry

Who we are - Andrea Alliev

- Italian Security research Engineer, mainly focused on OS
Security, Kernel Analysis and Malware Research

« Microsoft OSs Internals enthusiast / Kernel system level
developer

« Work for the Threat Intelligence Center of Microsoft Ltd
(MSTIC)

 Previously worked for Cisco Systems in the TALOS Security
Research and Intelligence Group

 Previously worked for PrevX, Webroot and Saferbytes

 Original designer of the first UEFI Bootkit in 2012, Patchguard 8.1 bypass in 2014, and
other research projects/analysis

« Windows Intel Pt Driver designer and developer

INntroduction

In 2014 - 2016 | have been researching high performance tracing and fuzzing
« 2014/2015 - High Performance Fuzzing
« 2015/2016 - Go Speed Tracer

Ruxcon 2015 | demoed a working prototype of Intel PT for coverage fuzzing

June 2016 we developed a prototype Intel Processor Trace driver for Windows
- The driver has been released open-source:
https://github.com/intelpt

This talk picks up where the last one left off...
 See http://moflow.org for previous slides and talk videos

https://github.com/talos-vulndev/TalosIntelPtDriver
http://moflow.org/

INntel Processor Trace

Intel Processor Trace

 Intel Processor Trace is a low-overhead hardware execution tracing feature

It works by capturing information about software execution on each hardware thread using
dedicated hardware in the CPU’s Performance Monitoring Unit (PMU)

- After the execution completes software can process the captured trace data and reconstruct the
exact program flow

- The trace format is highly compressed for efficient logging and requires some effort to decode

Why is this useful?

- Diagnostic code coverage
- Coverage driven fuzzing — automatically find software vulnerabilities
« Malware analysis — sandboxes can trace malware and feed it to the detection filtering platform

« Current malware does not attempt to discover intelpt tracing*

Detecting Intel PT

« CPUID with leaf 0x7 can detect the support for Intel PT

« If supported, CPUID with leaf 0x14 can return the supported PT features
- Different CPUs implement different capabilities

 The architecture defines different MSRs to control each tracing operation

» Intel initially released Intel PT as part of Broadwell architecture
Limited tracing and logging modes

* Intel expanded on the functionality in Skylake
Multiple log buffer management modes

 Skylake architecture to be available on Xeon CPUs in 2017

Detecting Intel PT

INTEL_PT_CAPABILITIES ptCap = { © };
int cpuid ctx[4] = { © };// EAX, EBX, ECX, EDX

// Processor support for Intel Processor Trace is indicated by
// CPUID.(EAX=07H,ECX=0H) :EBX[bit 25] = 1.
__cpuidex(cpuid ctx, 0xe7, 0);

if (!(cpuid _ctx[1] & (1 << 25))) return FALSE;

// Now enumerate the Intel Processor Trace capabilities
RtlZeroMemory(cpuid ctx, sizeof(cpuid ctx));
__cpuidex(cpuid ctx, ox1l4, 0);

// If the maximum valid sub-leaf index is @ exit immediately
if (cpuid ctx[@] == @) return FALSE;

Detecting Intel PT

EAX = 0x14 - Intel Processor Trace

EBX
« Bit 00: IA32 _RTIT CTL.CR3Filter can be set to 1
« |A32_RTIT_CR3_MATCH MSR can be accessed.
« Bit 01: Configurable PSB and Cycle-Accurate Mode.
- Bit 02: IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across warm reset.
 Bit 03: MTC timing packet and suppression of COFI-based packets.
ECX
« Bit 00: Tracing can be enabled with I1A32_RTIT_CTL.ToPA = 1 utilizing the ToPA output scheme
« |A32_RTIT_OUTPUT _BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: ToPA tables can hold any number of output entries
« Maximum specified by the MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 02: Single-Range Output scheme.
Bit 03: Output to Trace Transport subsystem.
Bit 31: Generated packets which contain IP payloads have LIP values
« Includes the CS base component

Detecting Intel PT

EAX = 0Ox14 - Intel Processor Trace
Packet Generation (ECX = 1)

EAX
« Bits 2:0: Number of configurable Address Ranges for filtering.
- Bit 31:16: Bitmap of supported MTC period encodings

EBX
« Bits 15-0: Bitmap of supported Cycle Threshold value encodings
« Bit 31:16: Bitmap of supported Configurable PSB frequency encodings

Why is Intel PT so interesting?

 Implemented entirely in hardware
 You can trace all software that the CPU runs (except for SGX secure containers)

« Suppose you have to analyze an hypervisor or an evil SVM handler
« With Intel PT you can do that!

 Performance
« Low over-head (15% CPU perf hit for recording)
 Logs directly to physical memory, bypassing TLB and eliminating cache pollution

« Minimal log format takes little time to record
- One bit per conditional branch
» Only indirect branches log dest address

How it works - Summary

Different kinds of trace filtering:
1. Current Privilege Level (CPL) — used to trace all of user or kernel
2. PML4 Page Table — used to trace a single process
3. Instruction Pointer — used to trace a particular slice of code (or module)

« Two types of output logging:
1. Single Range
2. Table of Physical Addresses

Single Range

« OS should allocate a contiguous physical memory buffer
(MmAllocateContiguousMemory is a good fit)

This mode is best suited for

1. Tracing of single application with sufficient size of buffer

2. Redirect the output to a MMIO port or some JTAG controllers
3. Always-On tracing for post-mortem or forensic analysis

To enable:
« Set the proper MSRs

MSR_TA32 RTIT OUTPUT BASE and MSR IA32 RTIT OUTPUT MASK PTRS
Start the Tracing by setting the “traceEn” flag in the control register
The buffer will be filled by the processor in a circular-manner

Table of Physical Addresses

- Table of Physical Addresses (aka ToPA) is a list of tables that describes each physical
address used for storing the trace

« A well-known data-structure definition PML4 (see the Intel Manual)
 This allows the processor to write data to non-contiguous memory regions
Binary compatibility with the “MDL" data structure of Windows kernel

Modality best suited for:
1. Tracing big code areas and/or dump the results in a user-mode file
2. Supporting pause/resume of a application and on-the-fly analysis of the dump

Very powerful — an Interrupt could be generated by the processor at a certain
point if the buffer is going to be full, or STOP signal

Different type of Trace Packets

1. Packet Stream Boundary (PSB) packets - ‘heartbeats’ that are generated at regular intervals
(configurable), synchronization points for the decoder

2. Paging Information Packets (PIP) - record modifications made to the CR3 register

3. Timing packets (TSC, MTC & CYC) packets - helps in tracking wall-clock time (related to events
or not)

4. Control flow packets: taken-not-taken (TNT), target IP (TIP), Flow update (FUP), MODE packets
5. Core bus ratio packets: highlights modifications in the CPU clock
6. Overflow packets: sent when the processor encounters an internal buffer overflow

In our driver the user can decide if enable or not the generation of some kind of packets (control
flow — TSC/MTC/CYC)

* Refer to the Intel’'s manual for the details

Different type of Trace Packets

Outside
Inside traced program traced Execution frace Alignment Time
program
Redirection Environment Misc

Processor Trace Packets

Windows Intel PT Driver

The Project

We have decided to write a Windows driver, with the goal of supporting all trace and filtering
modes for kernel and userspace

At the time of this writing the driver is in version 0.5

Supports all the filtering mode combinations and both output modes
e Supports multi-processors

Supports kernel mode code tracing and kernel mode API

« Some issues had been resolved:

1. APIC controller programming for the PMI interrupt notification
2. User-mode buffer mapping

3. Multi processor issues
4

How to trace spawned processes

The PMI Interrupt

The ToPA output scheme supports a mode in which the CPU triggers a PMI
(performance monitor interrupt) every time the buffer is full*

We would like to enable and connect to that interrupt

In that way we can process the trace content when buffer is full

To control the traced process, either

* Use a hypervisor -> VMEXIT

« Suspend the target process from kernel, dump the trace data and resume
Another problem here: the IRQL in which the code runs is HIGH_LEVEL
Solved dividing the job in 3 phase: PMI Handler -> DPC -> Work ltem

Connecting the ISR and find a way to map the loApic memory space have
been not an easy task

The User mode buffer

* Processor Trace works with physical addresses - not Virtual addresses
« ToPAs describe a big buffer composed by different smaller physical chunks.

* Need a way to create a big virtual buffer composed by each chunk and map
this to user-mode in a very secure manner (otherwise the driver will be
subject of kernel-exploitation)

 Intel is not stupid. The ToPA and the MDL data structures are compatible
« Solution:

* allocate physical memory using the OS facilities*

« Convert the MDL descriptor into ToPA entries

e Securely map the final virtual buffer using the OS

Multi-Processor and Multi Thread support

New feature in version 0.5

Each processor has an associated PT Buffer mapped in the target user-mode
process (but not in kernel-mode)

Only an event signaled when the PMI Interrupt fires was not enough

* |ntroduced the User-mode callbacks — a smart method to manage the PT
log directly from User-mode

Still some problems in managing multi-threaded and multi process
application

Kernel mode Tracing

* New feature in version 0.5
* The Driver is able to perform the tracing of Kernel mode code in 2 ways

1. From the user-mode application (executed with Admin privileges) ->
Uses IP filtering mode

2. From another kernel-mode driver -> the driver must use the exported
APls and manage the PT buffer(s), and multi-processor stuff on its own

 In this way we have been able to perform the trace of:
1. The loading / unloading of a new Kernel module
2. Some IOCTL called by a test user application

The client code

Quite a simple setup:

1. Get an handle to the PT Device
hPtDev = CreateFile(L"\\\\.\\WindowsIntelPtDev", FILE ALL_ ACCESS, 0, NULL,
OPEN_EXISTING, ©, NULL);

2. Spawn the process / decide what to trace and set the options in the pT_UsER_REQ
data structure (process ID, CPU Affinity mask, buffer size, ...)

3. Start the tracing
DeviceIloControl(hPtDev, IOCTL PTDRV_START TRACE, (LPVOID)&ptStartStruct,
sizeof(PT USER REQ), 1pPtBuffArray, sizeof(LPVOID) * dwNumOfCpus,
&dwBytesIo, NULL);

4. Stop the trace and clear the resources (important)
bRetVal = DeviceIoControl(hPtDev, IOCTL PTDRV_CLEAR_TRACE,
(LPVOID)&dwTargetCpu, sizeof(DWORD), NULL, ©, &dwBytesIo, NULL);

The Multiprocessor client code

1. Spawn a new thread for each CPU

2. To register the user-mode callback use the new PTDRV_REGISTER_PMI_ROUTINE
IOCTL code (one call for each thread)

3. Specify an affinity mask composed by only the executing processor ID
4. Perform a wait in an alertable state

That's all!

Your User-mode callback will be called each time the CPU trace buffer will
become full

Some other challenges

* CR3 physical page swappable?
* Quick analysis shows that in Windows 10586
* Only the main PML4 table page is always in memory
e Otherwise make use of the PIP packets

« The problem of the spawned processes has been resolved using the trace by
IP — detect when a new process is spawned and add the new range

OR
» Use the tracing by CPL and parse the PIP packets

Demo

Vulnerability Discovery

* Now we have a fast tracing engine
 How will we utilize it for vulnerability discovery?

Evolutionary Fuzzing

Incrementally better mutational dumb fuzzing
Trace while fuzzing and provide feedback signal
Evolutionary algorithms

Focused on security bugs

Evolutionary Fuzzing

* From previous research, these are the required components

* Block based granularity
* Memory resident coverage map

* Minimum of global population map, pool diversity

Amercian Fuzzy Lop

Michal Zalewski 2013
— Delivered the first performant opensource evolutionary fuzzer

Features
— Uses variety of traditional mutation fuzzing strategies
— Block coverage via compile time instrumentation

— Simplified approach to genetic algorithm

 Edge transitions are encoded as tuple and tracked in a bloom filter
* Includes coverage and frequency

— Uses portable* Posix APl for shared memory, process creation

Windows Evolutionary Fuzzing

Started research into this area in 2015

Windows Software primarily distributed as binaries

Seemed like a good opportunity to use Intel Processor Trace

Lack of a usable driver for Windows lead to partnership with Andrea

WinAFL

 |van Fratric July 2016

e Features

Block tracing by default due to issues with multi-threading
* After chatting with Ivan about it he tracks last branch in TLS for edge tracing

Persistent execution mode

WinAFL

 |van Fratric July 2016
— First performant windows evolutionary fuzzer

* Persistence
— Multiple inputs can be parsed without exiting the process
— DynamoRIO allows hooking of target function
— User specifies address and number of arguments
— On function exit, WinAFL repopulates args and loops function
— User specifies number of loops before process restart

WinAFL

 |van Fratric July 2016
— First performant windows evolutionary fuzzer

e Persistence is key
— Restart process each time (disable persistence) ~2.3 exec/s
— Persist 100 iterations before restart ~72 exec/s
— Persist 1000 iterations ~123 exec/s
— Persist 10000 iterations ~133 exec/s

WinAFL IntelPT

 Richard Johnson 2016/2017
— Windows hardware driven evolutionary fuzzer

 Key problems to solve

— The IntelPT log does not contain Block IDs or all branch targets
— Parsing large compressed logs is time consuming
— Persistence on native code without using DBI

— We can filter up to 4 address ranges or whole process

WinAFL IntelPT

e Richard Johnson 2016/2017

e Current status

We must disassemble from last known IP to recover conditional branch target
We use a discovered branch cache to reduce disassembly time
*Still need to implement disk persistence to disk

See Go Speed Tracer for experiments in Windows fork()

WinAFL IntelPT

e Richard Johnson 2016/2017

e Current status

Application Verifier DLL for target DLL injection
DistormX for trampolines
Named Pipes for shared memory

Performance

WinAFL IntelPT

american fuzzy lop 1.96b (test gdiplus.exe)

+- process timing --------------"-"“"-"-------o - +- overall results ----+
run time : @ days, @ hrs, 1 min, @ sec	cycles done : @
last new path : none seen yet	total paths : 10
last unig crash : none seen yet	unig crashes : @
1last unig hang : none seen yet	unig hangs : @
+- cycle progress -------------------- +- map coverage -+-----------------—---—- +

| now processing : 7* (70.00%) | map density : 1 (0.00%) |

| paths timed out : @ (0.00%) | count coverage : 1.00 bits/tuple

+- stage progress -------------------- + findings in depth -------------------- +

now trying :
stage execs :
1 4945

|
|
| total execs
|

exec speed :

havoc
1272/2500 (50.88%)

85.16/sec (slow!)

| favored paths :

| new edges on :

| total crashes

| total hangs :

1 (10.00%)
1 (10.00%)

: @ (0 unique)

@ (@ unique)

+- fuzzing strategy yields ----------- e e +- path geometry ------- +
| bit flips : @/64, ©/62, 0/58 levels : 1 |
| byte flips : o/8, @/6, 0/2 pending : 9 |
| arithmetics : ©/446, /74, 0/5 pend fav : @ |
| known ints : ©/45, /187, 0/79 own finds : @ |
| dictionary : ©/0, 0/0, 0/0 imported : n/a |
| havoc : ©/2500, 0/0 variable : @ |
| trim : 99.93%/36, ©.00% = dmmmmmmmmmmmme e +

Performance

WinAFL IntelPT

american fuzzy lop 1.96b (test gdiplus.exe)

+- process timing ----------------~- -~~~ -~~~ +- overall results ----+
run time : @ days, © hrs, 1 min, @ sec cycles done : ©
last new path : none seen yet total paths : 10

last uniq crash : none seen yet uniq crashes : 0

1last uniqg hang : none seen yet	uniqg hangs : @
+- cycle progress -------------------- +- Map COVEerage -+---------=--=--——-———-——- +	
now processing : 7* (70.00%)	map density : 1 (0.00%)
paths timed out : @ (0.00%)	count coverage : 1.00 bits/tuple

+- stage progress -------------------- + findings in depth -------------------- +

now trying :

total execs

|
| stage execs :
|
|

exec speed :

havoc
763/2500 (30.52%)

: 4436

72.19/sec (slow!)

| favored paths :

| new edges on :

| total crashes

| total hangs

1 (10.00%)
1 (10.00%)

: @ (0 unique)
: @ (0 unique)

+- fuzzing strategy yields ----------- e e +- path geometry ------- +
| bit flips : @/64, ©/62, 0/58 levels : 1 |
| byte flips : o/8, @/6, 0/2 pending : 9 |
| arithmetics : ©/446, /74, 0/5 pend fav : @ |
| known ints : ©/45, /187, 0/79 own finds : @ |
| dictionary : ©/0, 0/0, 0/0 imported : n/a |
| havoc : ©/2500, 0/0 variable : @ |
| trim : 99.93%/36, ©.00% = dmmmmmmmmmmmme e +

Performance

WinAFL IntelPT

american fuzzy lop 1.96b (test gdiplus.exe)

+- process timing ----------------~- -~~~ -~~~ +- overall results ----+

run time : @ days, © hrs, 1 min, @ sec cycles done : ©

last new path : @ days, @ hrs, @ min, @ sec total paths : 48

last uniq crash : none seen yet uniq crashes : 0

1last unig hang : none seen yet	unig hangs : @
+- cycle progress -------------------- +- Map COVEerage -+---------=--=--——-———-——- +

| now processing : @ (0.00%) | map density : 2594 (3.96%) |
| paths timed out : @ (0.00%) | count coverage : 1.49 bits/tuple

+- stage progress -------------------- + findings in depth -------------------- +

now trying :
stage execs :
total execs :

exec speed :

calibration
20/40 (50.00%)
3359

55.81/sec (slow!)

| favored paths :

| new edges on

| total crashes

| total hangs :

9 (18.75%)

: 47 (97.92%)
: @ (0 unique)
@ (@ unique)

+- fuzzing strategy yields ----------- e e +- path geometry ------- +
bit flips : o/0, @/e, 0/0	levels : 2
byte flips : ©/0, /e, 0/0	pending : 48
arithmetics : ©/0, 0/0, 0/0	pend fav : 9
known ints : ©/0, ©/0, 0/0	own finds : 37

| dictionary : ©/0, 0/0, 0/0 | dimported : n/a |
| havoc : ©/0, 0/0 | variable : 47 |
| trim : 0.00%/1341, n/a o m e +
T T T +

INTELPT + Persistence

WinAFL IntelPT

WinAFL 1.06 based on AFL 1.96b (gdiplus_test.exe)

+- process timing --------------"-"“"-"-------o - +- overall results ----+
| run time : @ days, @ hrs, 2 min, 5 sec | cycles done : 1 |
| last new path : none yet (odd, check syntax!) | total paths : 15

| last unig crash : none seen yet | unig crashes : @ |
| 1last unig hang : none seen yet | unig hangs : @ |
+- cycle progress -------------------- +- map coverage -+-----------------—---—- +

| now processing
| paths timed out

+- stage progress

: 0% (0.00%) |
: @ (0.00%)

map density

| count coverage

-------------------- + findings in depth

: 0 (0.00%)

: 0.00 bits/tuple

+- fuzzing strategy yields -----------
bit flips :
byte flips :

arithmetics :

dictionary :
havoc :

trim :

now trying :
stage execs :
total execs :

exec speed :

|
|
|
| known ints :
|
|
|

havoc

2366/2500 (94.64%)
32.9k

260.8/sec

0/32, /31, 0/29
0/4, 0/3, 0/1
9/223, 0/0, 0/0
9/27, /102, 0/40
0/0, 0/0, 8/0
0/30.0k, 0/0
98.17%/15, ©.00%

| favored paths
| new edges on
| total crashes

| total hangs

: 0 (0.00%)
: 0 (0.00%)

: @ (0 unique)
: @ (0 unique)

e e +- path geometry
| levels : 1
| pending : @
| pend fav : @
| own finds : @
| dimported : n/a
| variable : @
PR . S ol
o

Demo

WINAFL + IntelPT

Conclusions

 Tracing is used very often in fuzzing and dynamic analysis
* Intel Processor Trace is a promising mechanism for hardware tracing
* Intel is dedicated to producing high performance trace features

« TODO List;

1. Implement thread context switch tracing in a reliable way
We attempted ETW but the APl is asynchronous
New solution is to use APC

2. Modify a Hypervisor to be able to use Intel PT inside a Guest VM
Coming in 2017!

3. Understand how to trace VMM, SMM code and test with SGX software

Thank you!
https://github.com/intelpt

@richinseattle / rjohnson@moflow.org
@aall86

Questions?

B2 Microsoft

Extra Slides

© 2016 Microsoft Corporation. All rights reserved.

Multi-Threaded and Multi-Process applications

Always increasing in their number (think about AppContainer or Browsers for
example)

A simple solution resides in the log parser:
= Make use of the PIP (Page information packets) to identify each process

Big drawbacks: the size of the log is HUGE — the time needed to parse it is
even MORE

Register a Process / Thread Creation callback in Kernel mode and trace one
process per time

= Simple solution, log size still acceptable

= Some malware or complex applications requires process interactions

BUT ...

In the beginning was a PUSHAD ...

Do you remember the old glorious PUSAHD instructions?
From the Intel manuals: “Pushes the contents of the general-purpose registers onto the stack.”
No equivalence for X64 registers or Kernel MSR

| was studying how to trace only a single thread, intercepting the Windows
Thread Context Switcher

Someone has pinpoint to me the existence of another very-cool instruction in
the AMDG64 architecture, but no so known by the research community

Special thanks to Xinyang Ge of Microsoft Research for signaling this

-and now It is XSAVE

» Saves some processor state components to the XSAVE area

« MMX, SSE, AVX, AVX-512 user mode registers (What a heck is AVX-5127)

« ...and even the new CPU registers that belongs to Intel PT and Intel MPX
* New CPUID leaf functions for compatibility verification, new CPUs opcodes

« Basically is a very fast way to save even X64 Kernel-accessible Register in a
particular memory buffer

 To use this feature in user-mode you have to fill the XCRO register with
XSETBV instruction

 Instead for kernel mode staff, you have to fill a special MSR register: IA32_XSS
(number OxODAO)

 Finally a call to the XSAVE (or XSAVES if in Kernel mode) fills the buffer with
the needed information *

Thread tracing

 Originally I planned to manual save each Intel PT MSRs after intercepting the
thread context switcher

« While analyzing the Windows 10 Context Switcher, | realized that it already
supports the XSAVE feature

« 2 solutions -> We conclude that it was not feasible in a very stable manner:

1. Find a way to hook or divert the KeSwapContext routine -> No public-
available method -> Patchguard become angry

2. Use EPW APC

Research still in progress!

