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» Hidden Markov models Q/j :(:3
have close connection -
with mixture models. /—\\ /,_%_
> A mixture model ‘\2 \@ 9

generates data as

follows. £
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Hidden Markov Model

» For sequence or spatial data, the assumption of independent
samples is too constrained.

» The statistical dependence among samples may bear critical
information.

» Examples:

» Speech signal
» Genomic sequences
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Hidden Markov Model

Model Setup

» Suppose we have a sequential data
_ d
u= {Ul, ug,...,Ug, ..., UT}, up € RE.
» As in the mixture model, every u;, t =1,..., T, is generated
by a hidden state, s;.
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» The underlying states follow a Markov chain.
» Given present, the future is independent of the past:

P(St+1 | Sty St—1, ...,50) = P(St+1 | St) .
» Transition probabilities:
ak) = P(ser1 =1 st = k),

k,I=1,2,..., M, where M is the total number of states. Initial
probabilities of states: 7.

M M
Zak’/z:l foranyk,Zﬁkzl.
=1 k=1
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> P(s1,%,...,57) = P(s1)P(s2|s1)P(s3]s2) - - - P(sT|sT-1)
= T519s),59s),53 * " " dsy_y,s7

» Given the state s;, the observation u; is independent of other
observations and states.

» For a fixed state, the observation u; is generated according to
a fixed probability law.
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» Given state k, the probability law of U is specified by bx(u).

» Discrete: suppose U takes finitely many possible values, by(u)
is specified by the pmf (probability mass function).
» Continuous: most often the Gaussian distribution is assumed.

1 L ts—1(,
by(u) = mexp(—g(u—uk) (v — )
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» In summary:

P(u,s) = P(s)P(u]s)

s b51(u1)‘9$1,52 sz(UQ) ©rtdsy_q,st bST(uT) C

P(u) = Z P(s)P(u | s) total prob. formula

= Zﬂ-sl 51 (U1)as;,s, bs, (U2) -+~ asy_y 57 bsr (uT)
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Example

» Suppose we have a video sequence and would like to
automatically decide whether a speaker is in a frame.

» Two underlying states: with a speaker (state 1) vs. without a
speaker (state 2).

» From frame 1to T, let s;, t =1,..., T denotes whether there
is a speaker in the frame.

» |t does not seem appropriate to assume that s;'s are
independent. We may assume the state sequence follows a
Markov chain.

> If one frame contains a speaker, it is highly likely that the next
frame also contains a speaker because of the strong
frame-to-frame dependence. On the other hand, a frame
without a speaker is much more likely to be followed by
another frame without a speaker.
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» For a computer program, the states are unknown. Only
features can be extracted for each frame. The features are the
observation, which can be organized into a vector.

» The goal is to figure out the state sequence given the
observed sequence of feature vectors.

» We expect the probability distribution of the feature vector to
differ according to the state. However, these distributions may
overlap, causing classification errors.

» By using the dependence among states, we may make better

guesses of the states than guessing each state separately using
only the feature vector of that frame.
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Model Estimation

» Parameters involved:
» Transition probabilities: ax;, k,/=1,..., M.
» Initial probabilities: 7y, k =1, ..., M.
» For each state k, ux, 2.
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Definitions

» Under a given set of parameters, let Lx(t) be the conditional
probability of being in state k at position t given the entire
observed sequence u = {uy, up, ..., ut }.

Li(t) = P(st = klu) = P(s | u)l(st = k) .

» Under a given set of parameters, let Hy ;(t) be the conditional
probability of being in state k at position t and being in state
| at position t + 1, i.e., seeing a transition from k to / at t,
given the entire observed sequence u.

Hk,/(t) = P(St =k , St41 = /| )
ZPS| I(st = K)I(sex1 = 1)

> Note that Ly(t) = oM, He(t), Sohy Li(t) = 1
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» Maximum likelihood estimation by EM:

» E step: Under the current set of parameters, compute L,(t)
and Hy (t), for k,/=1,. .M, t=1,...,T.
» M step: Update parameters.

= Lz LelB)ue
Zz-:1 Li(t)
Y, = ZtT=1 Le(t)(ue — pui)(up — i)t
2;1 Li(t)

ak,| =

!
1 Li(t)
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» Note: the initial probabilities of states 7 are often manually
determined. We can also estimate them by

Tk X ZLk(t Zﬂ'kzl

or Tm Lk(].)

Jia Li  http://www.stat.psu.edu/~ jiali



Hidden Markov Model

Comparison with the Mixture Model

» L,(t) is playing the same role as the posterior probability of a
component (state) given the observation, i.e., p «.

Le(t) = P(st = k|lur,uo,...,uz,...,uT)
Ptk = P(s: = k|u¢)

If we view a mixture model as a special hidden Markov model
with the underlying state process being i.i.d (a reduced
Markov chain), p; k is exactly Ly(t).

Jia Li  http://www.stat.psu.edu/~ jiali



Hidden Markov Model

> The posterior probabilities p; x in the mixture model can be

determined using only sample u; because of the independent
sample assumption.

» L,(t) depends on the entire sequence because of the
underlying Markov process.

» For a mixture model, we have

_ 2;1 Pt kUt

ik =
Zt:l pt,k

s S b1 Pek (e — ) (e — pk)?
A T
Zt:l pt,k
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Derivation from EM

» The incomplete data areu={u;: t =1,..., T}. The
complete data are x = {s;,us : t =1,..., T}.

» Note Q(¢'|0) = E(log(f(x|6"))|u, ).
> Let M ={1,2,..., M}.
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» The function f(x | 0') is

f(x|0) = P(s]@)P(u]s,d)

= P(s|dly: k1€ M)P(u s ik, T k € M)
T T
= 77;1 Halst_l,st x H P(ue | ps,, 5, -
t=2 t=1

We then have

-
logf(x|0") = log(me, )+ Z logay, |+
t—2

)
S log P(ue | 1, %) (1)
t=1
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E(log f(x | 6')|u, 0)

.
— Z P(s|u, ) [Iog(wgl) + Z log a, , s+
s =2
T
Zlog P(u | p,» Z5,)
t—1

M T M M
= ZLk ) log(7},) -I—ZZZH, Iogak,
k=1

t=2 k=1 |=1

T M

+ZZLk(t) log P(ut | 'u/lwz/k)

t=1 k=1
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» Prove the equality of the second term

-
Z P(s|u, ) Z log agtil,st
3 t=2
T M M

= ZZZHk’I(t) Iogaf(’,

t=2 k=1 I=1

Similar proof applies to the equality corresponding to other
terms.
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» The maximization of the above expectation gives the update
formulas in the M-step.

» Note that the optimization of p}, X} can be separated from

that of ak, and m,. The optimization of ak, can be separated
for different k.

» The optimization of y) and X} is the same as for the mixture
model with p; x replaced by Li(t).

Jia Li  http://www.stat.psu.edu/~ jiali
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Forward-Backward Algorithm

» The forward-backward algorithm is used to compute L(t)
and H (t) efficiently.

» The amount of computation needed is at the order of M?T.
Memory required is at the order of MT.

» Define the forward probability a(t) as the joint probability of
observing the first t vectors u,, 7 =1, ..., t, and being in state
k at time t.

ak(t) = P(u, ua, ..., us, st = k)

Jia Li  http://www.stat.psu.edu/~ jiali
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» This probability can be evaluated by the following recursive
formula:

M
ax(t) = bk(ut)za/(t—l)a/,k,
=1

1<t<T,1<k<M.
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» Proof:

a(t) = P(uy, up, ..., ut, st = k)
M

= P(uy,up,...;ut,s¢ = k,sp_1 = 1)
I=1
M

= Z P(uy,...;up—1,50—1 = 1) - P(ut, st = k | sg—1 = |, u1, .o, up—1)
I=1
M

= D a(t—1)P(ur,st =k | si—1 = 1)
I=1
M

= D at—1)P(ut | se=k,se—1 =1)-Plst = k | st_1 =1)
I=1
M

= D ay(t—1)P(ut | st = k)P(st = k | s—1 = 1)
I=1
M

= > ay(t — 1)by(ur)ay,k

Il
-

The fourth equality comes from the fact given s;_1, s; is
independent of all s,, 7 =1,2,...,t — 2 and hence u,,
7=1,...,t—2. Also s; is independent of u;_; since s;_; is given.

Jia Li  http://www.stat.psu.edu/~ jiali
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» Define the backward probability Gx(t) as the conditional
probability of observing the vectors after time ¢, u,,
T=t+1,..., T, given the state at time t is k.

Bi(t) = Plutsr,..our |se=k),1<t<T-1
Set Gk(T)=1, forall k.

» As with the forward probability, the backward probability can
be evaluated using the following recursion

B(T) = 1
M

ﬁk(t) = Zak,/bl(utﬂ)ﬁ/(t-l- 1) 1<t<T.
=il
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» Proof: /Bk(t) = P(Ut+17-"7 urt ‘ St = k)

M
= ZP(ut+17"'7 ur,st+1 = / | St = k)
=1

M
= ZP(SH—I = 1| st = k)P(tuts1,.-, Ut | St11 = I,5: = k)
=1

M
= Zak,/P(le, o UT | Sep1 =1)
=1

M

= Zak,IP(Ut+1 | sev1 = DP(uey2, .,ur | Sey1 = 1, upi1)
1=1
M

= Zak’,P(qu | St+1 = /)P(Ut+2, L ur | St+1 = /)
=1

M
= ) asbi(ues1)Bi(t + 1)
=1
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> The probabilities Li(t) and Hy (t) are solved by

Le(t) = P(st=k|u):w

= @5
Hk,l(t) = P(St =k,Sep1 =1 ’ I.l)
P(u,s; = k,st41 =1)
P(u)

= ﬁak(t)aky/b/(uwl)ﬁl(t +1).

Jia Li  http://www.stat.psu.edu/~jiali
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» Proof for Li(t):

P(u,s: = k) = P(u1, ..., U, ..., ut, st = k)
= P(ui,...,ut,st = K)P(Uts1, ..., ut | st = k, u1, ...y U)
= ak(t)P(ut+17 - UT I St = k)

= o(t)B(2)
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> Proof for Hy (t):

P(u,s; = k,s¢41 =1)
= P(ui,... WUt St =k, ser1=1)
= P(ui,...,ut,st = k) -

P(uts1,se41 =1 | st = k,u1, ..., uz) -

P(uts2y .oy ut | Se41 = 1,5t = ky U1, ooy Upi1)
= ak(t)P(uts1,5t41 =1 | st = k) -
P(utt2, .oy ut | se41 = 1)
= ax(t)P(str1=1] s =k)-
P(utyi | sev1 = 1,5t = k)Bi(t + 1)
= ak(t)akP(ury1 | sev1 = 1)Bi(t + 1)
= ou(t)ak,b/(ue+1)Bi(t + 1)
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> Note that the amount of computation for L,(t) and H (t),
k,l=1,...M, t=1,.. Tis at the order of M?T.

» Note:

M
P(u) = Zak(t)ﬂk(t), for any t
k=1

» In particular, if we let t =T,

M M
P(u) =Y on(T)B(T) =D an(T) .
k=1 k=1
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Proof:

Pu) = P

—~~

ULy ooy Uty ooy UT)

P(uy, ..., Uty ...;ur, s¢ = k)

P(ui, ..., us, st = K)P(Uts1,y ooy UT | St U1, oo, Ug)

ak(t)P(Ues1y ..., ut | St)

M= IM= IM= M=

ak(t)Bi(t)

>
Il
o
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The Estimation Algorithm
The estimation algorithm iterates the following steps:
» Compute the forward and backward probabilities ax(t), Bk(t),
k=1,...,.M, t=1,..., T under the current set of parameters.

Ozk(].) = 7rkbk(u1) 1 < k < M

M
ar(t) = bi(ur) D> ay(t —1)a,
=1
1<t<T,1<k<M.

Bu(T) = 1
M
Br(t) = Zak,lbl(ut—i-l)ﬂl(t‘i‘ 1) 1<t<T.
1=1

Jia Li  http://www.stat.psu.edu/~jiali
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» Compute L (t), Hi (t) using a(t), Bi(t). Let
P(u) = 32kL; ax(1)B(1).

Li(t) = ﬁak(rmkm

Hk7/(t) = %ak(t)amb/(uﬂ_l)ﬂ/(t TF 1) .

Jia Li  http://www.stat.psu.edu/~jiali
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» Update the parameters using Ly (t), Hi (t).

Sy Le(t)ur

ST L)

T = ZZ—:1 Lk(t)(ut - ,uk)(ut - ,uk)t
k= T
2:1—:1 Lk(t)

> Hea(t)
Ul = "T-1, )
S Li(t)

Jia Li  http://www.stat.psu.edu/~jiali
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Multiple Sequences

» If we estimate an HMM using multiple sequences, the previous
estimation algorithm can be extended naturally.

» For brevity, let's assume all the sequences are of length T.
Denote the ith sequence by u; = {uj 1, uj2,...,ui T},
i=1,...,N.

» In each iteration, we compute the forward and backward
probabilities for each sequence separately in the same way as
previously described.

» Compute L (t) and Hy (t) separately for each sequence, also
in the same way as previously described.

» Update parameters similarly.

Jia Li  http://www.stat.psu.edu/~jiali
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» Compute the forward and backward probabilities afj)(t),
BIt), k=1,..,M, t=1,..,T, i=1,... N, under the
current set of parameters.

ay)(l) = mubk(ui1),1<k<M, 1<i<N.

M

a(t) = bi(uie) Y of(t — )ay,
1=1

1<t<T,1<k<M 1<i<N.
BNT) = 1,1<k<M, 1<i<N

BI) = Zak,/b/(ui,tﬂ)ﬁ/(i)(t-l-l)

1=1
1<t<T,1<k<M,1<i<N.

Jia Li  http://www.stat.psu.edu/~ jiali
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» Compute L(i)( t), H,E')(t) using ak )(#), ﬂk (t). Let
P(u) = TiLy 0} (1)5) (1),

Lg(i)(t) = P(lu,) ()ﬁk (t)
H/(<9(t) = P(lul_)Oég)(t)ak,/bl(ui,r+1)ﬁ/(i)(t +1).

Jia Li  http://www.stat.psu.edu/~jiali
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» Update the parameters using Li(t), Hi (t).

N L ()i
Uk = N

SM Sl ()

>, Ilﬂ(wwm—uowu—uof

Y, =
’ SV L )

S S HO)
SN S ()

ak,| =

Jia Li  http://www.stat.psu.edu/~ jiali
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HMM with Discrete Data

» Given a state k, the distribution of the data U is discrete,
specified by a pmf.
> Assume U € U = {1,2,...J}. Denote by(j) = qx .,

Jj=1,...J.
» Parameters in the HMM: a, ; and gy, k,/ =1,..., M,
j=1..J.

Jia Li  http://www.stat.psu.edu/~jiali
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» Model estimation by the following iteration:
» Compute the forward and backward probabilities ax(t), Gk(t).
Note that bx(u:) = g, y,-
» Compute Lg(t), Hi (t) using ax(t), Bk(t).
» Update the parameters as follows:

T-1
Lo Hel®) oy

a = ————-

kil T—1
t=1 Lk(t)

Z-zl Lk(t)l(ut :J)
Yos Li(t)

Gy = Ck=1,.,M; j=1,..J

Jia Li  http://www.stat.psu.edu/~jiali
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Viterbi Algorithm

» In many applications using HMM, we need to predict the
state sequence s = {s1, ..., 5T} based on the observed data

u={u,..,ur}.
» Optimization criterion: find s that maximizes P(s | u):

P(s, u)
P(u)
» This criterion is called the rule of Maximum A Posteriori
(MAP).
» The optimal sequence {si, s, ..., sT} can be found by the
Viterbi algorithm.

s* = argmax P(s | u) = arg max = arg max P(s, u)
S S S

» The amount of computation in the Viterbi algorithm is at the
order of M?T. Memory required is at the order of MT.

Jia Li  http://www.stat.psu.edu/~jiali
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Jia Li

» The Viterbi algorithm maximizes an objective function G(s),
where s = {s1,...,s7}, st € {1, ..., M}, is a state sequence
and G(s) has a special property.

» Brute-force optimization of G(s) involves an exhaustive search
of all the MT possible sequences.

> Property of G(s):

G(s) = gi(s1) + &(s2,51) + g3(s3, %) + - - + gr(sT,57-1)

» The key is the objective function can be written as a sum of
“merit” functions depending on one state and its preceding
one.

http://www.stat.psu.edu/~jiali
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» A Markovian kind of property:

» Suppose in the optimal state sequence s*, the tth position
s; = k. To maximize G(s1, Sy, ..., ST), We can maximize the
following two functions separately:

Ge (St -, 5t—1) = g1(s1) + g&2(s2, 1) + - - - + ge(k, Se—1)
Gt k(St41s e ST) = Geg1(Se41, k) + - - - + gr(ST,57-1)

The first function involves only states before t; and the second
only states after t.
> Also note the recursion of Gy «(s1, ..., St—1):

Gei(S1, s St—2, k) = Ge—1.k(s1, .., Se—2) + ge (1, k) .

Jia Li  http://www.stat.psu.edu/~jiali
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gl(3)

glid)
t=1 t=2 =3 t=4 =3 t=6
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» Every state sequence s corresponds to a path from t =1 to
t=T.

» We put weight g:(k, /) on the link from state / at t — 1 to
state k at t.

> At the starting node, we put weight g1 (k) for state k.

» G(s) is the sum of the weights on the links in path s.

» In the figure, suppose the colored path is the optimal one. At
t = 3, this path passes through state 2. Then the sub-path
before t = 3 should be the best among all paths from t =1
to t = 3 that end at state 2. The sub-path after t = 3 should
be the best among all paths from t = 3 to t = 6 that start at
state 2.

Jia Li  http://www.stat.psu.edu/~ jiali
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How the Viterbi Algorithm Works (Pseudocode)

Total number of paths: 4*6=4096; Number of candidate paths in Viterbi=4

Jia Li  http://www.stat.psu.edu/~jiali
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Pseudocode
> At t =1, for each node (state) k = 1,..., M, record Gy, = gi(k).

» At t = 2, for each node k =1,..., M, only need to record which
node is the best preceding one. Suppose node k is linked to node /*
at t =1, record /[* and
sz = max/:1,27___7M[G1*’, + gz(k, /)] = Gl*,l* I gz(k, /*).

» The same procedure is applied successively for t = 2,3,..., T. At
every node, link it to its best preceding one. Set
Gl =maxiz12. MGy + gk, )] = Gy o + ge(k, 7). Gy is
the sum of weights of the best path up to t and with the end tied at
state k and /* is the best preceding state. Record /* and G, .

> At the end, only M paths are formed, each ending with a different
state at t = T. The objective function for a path ending at node k
is GT 4. Pick k* that maximizes G ,. Trace the path backwards
from the last state k*.

Jia Li  http://www.stat.psu.edu/~ jiali
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Proof for the Viterbi Algorithm

Notation:
> Let s*(t, k) be the sequence {si, ..., s;—1} that maximizes
Gt,k(sla 000 St_]_):

s*(t,k) =arg max Ggi(st,...,Se—1)

S1,--+5St—1

Let sz = MaXs, . s_; Gt7k(51, ey 5t—1)-
> Let §%(t, k) be the sequence {s¢41,..., ST} that maximizes
Gt k(St41, -, ST):

(t k) = arg +rI1aX Gt k(5t+17 75T)
St41s-+45S

Jia Li  http://www.stat.psu.edu/~jiali
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Key facts for proving the Viterbi algorithm:

> If the optimal state sequence s* has the last state s} = k,
then the subsequence of s* from 1 to T — 1 should be
s*(T, k) and

max G(s) = GTx(s"(T,k)) .

» Since we don't know what should be s7, we should compare
all the possible states k =1, ..., M:

max G(s) = max GTk(s*(T,k)) .

S

> G k(s*(t, k)) and s*(t, k) can be obtained recursively for
t=1,..T.

Jia Li  http://www.stat.psu.edu/~jiali
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Proof for the recursion:

> Suppose Gy_1 x(s*(t —1,k)) and s*(t —1,k) for k=1,.... M
have been obtained. For any I =1,..., M:

G (s*(t,1)) = max Ggy(st,...,Se-1)
S15--+ySt—1
= max max G (si,...,St—2, k)
S1y-+4ySt—2

= max max (Ge_1(st,...,se—2) + gt(/, k))

k  S15..,5t—2

= max(gt(l k) + max Gi_1k(s1,...,St—2))

S15-++,St—2

= mkax(gt(l, k) + Gi—1k(s*(t — 1, k))

Jia Li  http://www.stat.psu.edu/~jiali
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» Suppose k* achieves the maximum, that is,
k* = arg maxy(ge(/, k) + Ge—1.4(s*(t — 1, k)). Then
s*(t, 1) = {s*(t — 1, k*), k*}, that is, for s*(¢, /), the last state
s;_1 = k™ and the subsequence from position 1 to t — 2 is
s*(t — 1, k%).

> The amount of computation involved in deciding Gy (s*(t,/))
and s*(t, /) for all | =1,..., M is at the order of M?. For each
I, we have to exhaust M possible k's to find k*.

» To start the recursion, we have

Gl,k(') = gl(k)v S*(lv k) = {} 0

Note: at t=1, there is no preceding state.

Jia Li  http://www.stat.psu.edu/~ jiali
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Optimal State Sequence for HMM
» We want to find the optimal state sequence s*:
s* = argmax P(s,u) = arg maxlog P(s, u)
S S
» The objective function:

G(s) = logP(s,u) = log[ms, bs (u1)as, s, bs,(t) - - asr_, 57 bsy(UT)]
= [logms, + log bs, (u1)] + [log as, s, + log b, (u2)] +
<+ + [log as;_, sy + log bs; (ur)]
If we define
gi(s1) = logms + log b (u1)
ge(st,s5t—1) = logas, s, , + log b (u:) ,

then G(s) = gi(s1) + 2;2 gt(St, st—1). Hence, the Viterbi
algorithm can be applied.
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Viterbi Training

» Viterbi training to HMM resembles the classification EM
estimation to a mixture model.

> Replace “soft” classification reflected by Lx(t) and Hy (t) by
“hard” classification.

» In particular:

» Replace the step of computing forward and backward
probabilities by selecting the optimal state sequence s* under
the current parameters using the Viterbi algorithm.

> Let Li(t) = I(s; = k), i.e., Lk(t) equals 1 when the optimal
state sequence is in state k at t; and zero otherwise. Similarly,
let Hk7/(t) = I(st—l = k)/(St = /)

» Update parameters using Lx(t) and H (t) and the same
formulas.
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Applications

Speech recognition:

» Goal: identify words spoken according to speech signals
» Automatic voice recognition systems used by airline companies
» Automatic stock price reporting

» Raw data: voice amplitude sampled at discrete time spots (a

time sequence).
» Input data: speech feature vectors computed at the sampling

time.
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State College t  San Francisco

amplitude

(fcature . feature )
vector | vector i
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» Methodology:

» Estimate an Hidden Markov Model (HMM) for each word,
e.g., State College, San Francisco,

Pittsburgh. The training provides a dictionary of models
Wi, Wy, ...}

» For a new word, find the HMM that yields the maximum
likelihood. Denote the sequence of feature vectors extracted
for this voice signal by u = {uy, ..., ut}. Classify to word i* if
Wi« maximizes P(u | W;).

> Recall that P(u) = Zyzl ax(T), where a(T) are the forward
probabilities at t = T, computed using parameters specified by
Wi

» In the above example, HMM is used for “profiling”. Similar
ideas have been applied to genomics sequence analysis, e.g.,
profiling families of protein sequences by HMMs.
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Supervised learning:

» Use image classification as an example.
» The image is segmented into man-made and natural regions.
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» Training data: the original images and their manually labeled
segmentation.

» Associate each block in the image with a class label. A block
is an element for the interest of learning.

» At each block, compute a feature vector that is anticipated to
reflect the difference between the two classes (man-made vs.
natural).

» For the purpose of classification, each image is an array of
feature vectors, whose true classes are known in training.
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» If we ignore the spatial dependence among the blocks, an
image becomes a collection of independent samples
{u1, up,...,ur}. For training data, we know the true classes
{z1,...,zT}. Any classification algorithm can be applied.

» Mixture discriminant analysis: model each class by a mixture
model.

» What if we want to take spatial dependence into
consideration?

» Use a hidden Markov model! A 2-D HMM would be even
better.

» Assume each class contains several states. The underlying
states follow a Markov chain. We need to scan the image in a
certain way, say row by row or zig-zag.

» This HMM is an extension of mixture discriminant analysis
with spatial dependence taken into consideration.
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» Details:

» Suppose we have M states, each belonging to a certain class.
Use C(k) to denote the class state k belongs to. If a block is
in a certain class, it can only exist in one of the states that
belong to its class.

» Train the HMM using the feature vectors
{u1, U, ...,ur} and their classes {z, z, ..., zT }.

There are some minor modifications from the training
algorithm described before since no class labels are involved
there.

» For a test image, find the optimal sequence of states
{s1,%2, .-, ST} with maximum a posteriori probability (MAP)
using the Viterbi algorithm.

» Map the state sequence into classes: 2, = C(s}).
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Unsupervised learning:

» Since a mixture model can be used for clustering, HMM can
be used for the same purpose. The difference lies in the fact
HMM takes spatial dependence into consideration.

» For a given number of states, fit an HMM to a sequential
data.

» Find the optimal state sequence s* by the Viterbi algorithm.
» Each state represents a cluster.

» Examples: image segmentation, etc.
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