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Abstract
A minimal perfect hash function (MPHF) is a bijection from a set of objects S to the first |S|
integers. It can be used as a building block in databases and data compression. RecSplit [Espos-
ito et al., ALENEX’20] is currently the most space efficient practical minimal perfect hash function.
Its main building blocks are splittings and bijections. Using a tree-like data structure, RecSplit first
splits the input set into small sets of constant size ` and then computes a bijection on each leaf.
Both splittings and bijections heavily rely on trying multiple hash functions in a brute-force way.

We greatly improve the construction time of RecSplit using two orthogonal approaches. On
the one hand, we explore the trade-off between (exponential time) brute force and more informed
(polynomial time) search heuristics. Rotation fitting hashes the objects in each leaf to two sets
and tries to combine them to a bijection by cyclically shifting one set to fill the holes in the other.
ShockHash constructs a small cuckoo hash table in each leaf, which is overloaded to hold more
objects than the asymptotic maximum.

On the other hand, we harness parallelism on the level of bits, vectors, cores, and GPUs. In
combination, the resulting improvements yield speedups up to 241 on a CPU and up to 2072 using
a GPU. The original RecSplit implementation needs 19 minutes to construct an MPHF for 1 Million
objects with 1.56 bits per object. On the GPU, we achieve the same space usage in just 1.5 seconds.
Given that the speedups are larger than the increase in energy consumption, our implementation is
more energy efficient than the original implementation.

As a result, our improved RecSplit implementation is now the approach to perfect hashing with
the fastest construction time over a wide range of space budgets. Surprisingly, this even holds for
rather high space budgets where asymptotically faster methods are available.

2012 ACM Subject Classification Theory of computation→ Data compression; Information systems
→ Point lookups

Keywords and phrases compressed data structure, parallel perfect hashing, bit parallelism, GPU,
SIMD, parallel computing, vector instructions

Supplementary Material All implementations presented in this paper and scripts to reproduce our
experimental evaluation are available on GitHub.
Library implementation: https://github.com/ByteHamster/GpuRecSplit
Scripts for reproduction of results: https://github.com/ByteHamster/MPHF-Experiments

1 Introduction

A Perfect Hash Function (PHF) is a hash function that does not have collisions, i.e., is
injective, on a given set S of objects. Evaluating the PHF on any object not in S can
return an arbitrary value. A Minimal Perfect Hash Function (MPHF) maps the objects
in S to the first |S| integers, so it is bijective. MPHFs are useful in many applications, for
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example, to implement hash tables with guaranteed constant access time [20]. By storing
only fingerprints in the hash function cells [14, 3], we obtain an approximate membership
data structure. Storing payload data in the cells, we obtain an updatable retrieval data
structure [28]. Finally, the perfect hash function values can be used as small identifiers of
the input objects [5], which are easier to handle and more space efficient than, for example,
strings.

MPHFs can be very compact – the theoretically minimal space usage is 1.44 bits per
object [2]. Currently, the most space-efficient practical MPHF is RecSplit [13]. It provides
various tradeoffs between the space consumption, construction time, and query time. For
example, RecSplit can construct an MPHF with 1.56 bits per object in less than 2 ms per
object. This, however, is too slow for large inputs.

In this paper, we provide several improvements inside the RecSplit framework. We first
describe RecSplit and other preliminaries in Section 2, and briefly review related work in
Section 3. As a core step during construction, RecSplit tries out hash functions on a small
set of objects until one hash function is a bijection. We introduce two new bijection search
mechanisms in Section 4, which reduce the search space of the brute force algorithm compared
to the original method. Rotation fitting hashes the objects to two sets and tries to fit one
set into the “holes” of the other set by rotating (cyclically shifting) it. As a side-effect, this
approach makes good use of bit parallelism. ShockHash stores, for each object, a choice
between two possible hash functions in a 1-bit retrieval data structure. This choice (when it
exists) can be efficiently computed using cuckoo hashing as in SicHash [26]. This greatly
reduces the number of necessary brute force trials.

We then parallelize RecSplit (with and without rotation fitting) using the vector parallelism
available with Single Instruction Multiple Data (SIMD) instructions and the thread parallelism
available with multicore CPUs and GPUs. Given that hash function construction here is
mostly compute bound and can be done in parallel for a huge number of small subproblems,
the GPU is an ideal hardware. Utilizing GPUs for evaluating hash functions is known
from mining of cryptocurrencies with proof-of-work approach (e.g., Bitcoin). Our extensive
evaluation in Section 6 shows speedups of up to 50 using SIMD, 241 using multi threading,
and 2072 using a GPU. Because GPUs are so much faster at constructing MPHFs, they
lead to a better energy efficiency than the CPU, as we show in the experiments. Finally, in
Section 7, we summarize the results and give directions for future research.

Our Contributions. We introduce two new methods for searching for bijections that can be
used in RecSplit: Rotation fitting and the use of retrieval data structures. We significantly
accelerate the construction by four kinds of parallelism (bits, vectors, multicores and GPU).
This accelerates RecSplit constructions by a factor up to 2072 and even makes its construction
performance competitive to significantly less space efficient minimal perfect hash functions.

2 Preliminaries

In Section 2.1, we first shortly describe basic techniques needed by our implementation. We
then continue with describing RecSplit in detail in Section 2.2. Finally, we describe SIMD in
Section 2.3 and GPUs in Section 2.4.

2.1 Basics
Words and Bit Vectors. An important operation in RecSplit is popcount, which returns
the number of bits in a word that are set to 1. Given a bit vector, the select1(x) operation
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Bucket 0 Bucket 1 Bucket 2

Input objects

Figure 1 Illustration of the overall RecSplit data structure.

returns the position of the x-th 1-bit in the vector. The operation can be executed in constant
time [9] and has very fast implementations [24]. An additional operation we need in this
paper is rotik(x) which rotates (i.e., cyclically shifts) the k least significant bits of x by i bit
positions. This can be implemented in a bit parallel way using shifting and masking.

Golomb-Rice. Golomb-Rice codes are space-efficient variable-length codes that allow for
storing arbitrarily large numbers. Golomb codes [21] are optimal for geometric distributions,
and Golomb-Rice codes [35] are a faster special case, which is almost as space efficient. Given
a parameter τ and the number x to store, the τ least significant bits of x are stored directly
and the remaining most significant bits of x are encoded in unary. The first part is called
fixed part and the second is called unary part. The unary part consists of bx/2τc 0-bits and
a final 1-bit. To access one element, we can get the lower bits from the array of fixed parts
and the upper bits through two select1 queries.

Elias-Fano. An Elias-Fano representation [12, 15] can be used to store a monotonic sequence
of integers. Similar to Golomb-Rice codes, the least significant bits of each value are stored
directly in the lower-bits array and can be accessed directly. Using this representation, a
monotonic sequence p1, . . . , pk with pk ≤ U can be stored using k(2 + log(U/k)) bits. The
remaining most significant bits u at index i are encoded as a 1-bit in a bit vector at position
i+ u. This means that by executing a select1 query on the upper bits and looking up the
lower bits, we can restore any value in constant time.

Prefix Sums. Let xi for i ∈ [k] be a sequence of k numbers. We define the inclusive prefix
sum as X̂j =

∑j
i=0 xi and the exclusive prefix sum as X̂j =

∑j−1
i=0 xi. This means for each

j, they indicate the sum of all previous elements (the prefix). Because prefix sums are
monotonic, they can be stored with Elias-Fano coding.

2.2 RecSplit
We now describe RecSplit [13], the MPHF that this paper is based on. Before diving into
the details of the most important steps, splittings and bijections, we give a broad overview
over the data structure. The first step of the construction is to apply an initial hash function
on every object of the input to generate objects of uniform distribution. These objects are
mapped to different buckets of expected size b, where b is a tuning parameter. For each
bucket, RecSplit constructs a splitting tree, which we describe in more detail later. Each
inner node of the tree uses brute force to search for a hash function that distributes the
objects to the child nodes such that the children have a specific size. The leaf nodes of the
tree (except possibly the last) then have exactly ` objects, where a bijection is searched also
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using brute force. The hash function indices for splittings and bijections, as well as prefix
sums of bucket sizes and bucket encoding lengths are stored in compressed form. Figure 1
illustrates the overall data structure.

The combination of brute force splitting and bijections is highly space efficient from an
information-theoretical point of view – disregarding overheads due to encoding and metadata,
optimal space consumption can be achieved. Consequently, as the leaf size ` gets larger,
optimal space is approached [13].

A RecSplit hash function can be evaluated by first applying the initial hash function on
the object. Then the bucket is determined and the encoding of the bucket is located. The
splitting tree in the bucket is traversed from the root to a leaf by applying the splittings
stored at each node. The number of objects in earlier buckets and for each splitting the
number of objects left to the current node are accumulated. This value is added to the result
of applying the bijection in the leaf.

Splitting Trees. In each bucket, RecSplit constructs an independent splitting tree. The
tree partitions the objects into smaller and smaller sets until the individual sets are small
enough such that a bijection on them can be found in reasonable time. At each inner node,
RecSplit tries random hash functions to find one that distributes the objects to the child
nodes such that each child node gets a specific number of objects. The number of child
nodes of an inner node is called fanout. The fanout is optimized in such a way that the
expected amount of work to find the splitting is roughly equal to the amount of work in all
children combined. The fanouts of the two bottom-most levels are max{2, d0.35`+ 0.55e}
and max{2, d0.21`+ 0.9e}. In the terminology of the RecSplit paper, these levels are called
lower aggregation levels. The levels above, also called upper aggregation levels, simply use a
fanout of 2. The splitting tree has a well-defined shape, depending only on the leaf size `
and the number of objects in the bucket.

Bijections. The lowest level of the splitting tree is called leaf level. Each leaf, except for
possibly the last, contains ` objects. On all of these small sets of objects, RecSplit can try
random hash functions until one of the functions happens to map the m objects bijectively
to the first m integers. While the technique is impractical for large sets, the splitting tree
ensures that the sets are small enough. A larger leaf size leads to a longer construction time
since searching for bijections is expensive for large leaves. On the flip side, larger ` make
the data structure more space efficient and faster to query. The inner loop of the bijection
search applies a hash function modulo ` on each object. It converts the value to a bit by
taking two to the power of it, and sets the corresponding bit in a bit vector of length ` using
a logical OR operation. After hashing all objects, if the resulting bit vector has all its bits
set to 1, it means that the hash function is a bijection on the leaf. If it is not, RecSplit tries
the next hash function. To speed up the case of unsuccessful trials, RecSplit uses a bijection
midstop. Bijection midstop is a way to immediately check for a collision, allowing to possibly
skip hashing all objects when earlier objects already have a collision. When the probability
of a collision is about 90%, RecSplit executes a popcount instruction on the bit vector. If
the number of bits does not match the number of objects already hashed, it can already stop
and continue trying the next hash function.

Representation. The shapes of the splitting trees are not stored explicitly. Only the hash
function identifiers are stored in preorder, i.e., first the root, then the whole subtree of the
first child, then the whole subtree of the second child and so forth. The numbers are encoded
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with Golomb-Rice code (see Section 2.1), where all unary parts and all binary parts of a
tree are stored together. The optimal Golomb parameter τ depends on the probability that
a given hash function is a valid splitting or bijection, respectively. Because the tree has a
well-defined shape, the optimal parameters can be pre-calculated. During a query, the tree
needs to be traversed. When traversing into a subtree, the encoding of the children left of it
need to be skipped. The number of bits to skip in the fixed parts is known because of the
well-defined shape. The number of bits to skip in the unary parts can be determined with a
select1 query.

The encodings of all splitting trees from all buckets are concatenated in a single bit vector.
To evaluate the hash function at a bucket, we need to know the number of objects in previous
buckets (prefix sum) and the position in the bit vector where the encoding of each bucket
starts. These are two monotonic sequences that can be stored with Elias-Fano codes (see
Section 2.1). Because both sequences are strongly correlated, RecSplit uses a modification of
Elias-Fano codes to store both of them together in a more space efficient way.

2.3 SIMD
It is common, especially in perfect hashing, that the same operation needs to be executed on
different data. This can be achieved with a simple loop, which means that the corresponding
instructions must be decoded by the hardware for every element. This can be improved by
using Single Instruction, Multiple Data (SIMD) [16]. A single instruction is used to apply
the same operation on a vector of several elements. This reduces the number of instructions
that need to be decoded and allows the hardware to process the whole vector in parallel.

We refer to a single element within a SIMD vector as a lane. A lane is a word with a
specified number of bits. For example, a vector may contain 16 lanes with 32 bits each,
i.e., the vector contains 512 bits overall. It is advisable to use as many lanes as possible to
maximize throughput.

SIMD is not restricted to simple operations like addition. It may also provide operations
to permute the elements in the vector, load and store non-contiguous data (gather and
scatter), or other advanced operations. The exact set of operations depends on the concrete
implementation of the SIMD model. The Advanced Vector Extensions (AVX) [22] are
extensions to the x86 instruction set which is used by many Intel and AMD processors.
AVX-512 [23] extends these operations to 512-bit vectors and adds many new instructions,
e.g., for using masks to mask out specific lanes. AVX-512 is divided in many smaller subsets,
where each processor may only support some of them. One of these subsets which is useful for
our implementation is AVX512VPOPCNTDQ which provides popcount on 512-bit vectors
with lanes of size 32 and 64 bits. The rotik function that cyclically shifts bits (see Section 2.1)
can be implemented in a SIMD parallel way.

2.4 GPUs
Graphics Processing Units (GPUs) are specialized processors initially designed for computer
graphics applications. Over the last decades, GPUs evolved to general purpose processors
for highly parallelizable tasks. We now describe the hardware and programming interface in
the following paragraphs. To provide a grasp of the dimensions of a current GPU, we give
metrics of the NVIDIA RTX 3090 [30], which is also used for our experiments (see Section 6).

Compute Hardware. A GPU consists of several streaming multiprocessors (SMs) (RTX
3090: 82). Each SM contains many arithmetic logic units (ALUs) to perform computations
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(RTX 3090: 64 integer ALUs). Several threads (RTX 3090: 32) operate in lock-step, i.e.,
they execute the same instruction at the same time. Such a bundle of threads is called warp.
Threads are masked out for instructions they should not execute. This means that in loops,
each thread in a warp has to iterate as many times as the thread with the largest number
of iterations. To hide latencies, e.g., for memory access, each SM is oversubscribed with
more threads than ALUs, and the GPU schedules the threads efficiently. Multiple warps of
threads form a thread block. Thread blocks are guaranteed to reside on the same SM, which
enables them to cooperate. In particular, they can synchronize, and they have access to the
same shared memory.

Memory. The global memory is the largest and slowest memory on the GPU (RTX 3090:
24 GB). When multiple threads of a warp access the memory simultaneously, the hardware
serves the requests with as few memory transactions as possible. To improve performance, the
memory access pattern should lead to as few transactions as possible and these transactions
should contain as few unused bytes as possible.

Shared memory is a fast memory placed on each SM. It can be used by the treads within
the same thread block. On the RTX 3090, shared memory is part of a unified data cache,
where the memory that is not reserved for shared memory is used as the L1 cache. The
data in shared memory is partitioned into 32 memory banks, and the i-th 32-bit word is
stored in bank i mod 32. When n threads of the same warp simultaneously access different
words within the same bank, an n-way bank conflict occurs. The operations now have to be
serialized and the whole warp has to wait.

CUDA. An efficient way to develop applications on NVIDIA GPUs is CUDA [31]. Functions
which can be executed on the GPU (also often called device) are called kernels. Each kernel
is executed on a grid of thread blocks. The grid size and the number of threads per block
can be selected by the user. The user can create several streams on the host and launch
kernels and data transfers into streams. The operations launched into a specific stream are
executed in order, but operations in different streams can arbitrarily overlap if no explicit
synchronization is done.

3 Related Work

Perfect Hashing is an active area of research [10, 37, 2, 26, 33, 27, 7, 19, 6, 8, 29]. Due to
a lack of space, we only describe the most recent and fastest algorithms here. For a more
detailed overview of recent methods, refer to Ref. [26]. To the best of our knowledge, there
is no technique that constructs MPHFs on the GPU yet. Lefebvre and Hoppe [25] describe
the GPU evaluation of MPHFs that were constructed on CPUs.

FiPHa/BBHash. A fast and simple approach to minimal perfect hashing uses fingerprinting
and bumping [8, 29, 27]. BBHash [27] is a publicly available parallel implementation. The
set S of input objects is hashed using a hash function h → βn for a tuning parameter β.
The set S′ of objects that have a collision is handled recursively. Consider the bit vector
b with b[i] = 1 iff |{s ∈ S : h(s) = i}| = 1. Then rank(h(s)) defines an MPHF on S \ S′
where rank(h(s)) counts the number of one-bits in b up to h(s) and can be implemented
in constant time [9, 24]. This approach needs at least e bits per object (when β = 1) and
provides efficient queries when about 4 or more bits per object are available (using larger
values of β). An advantage is very simple and easily parallelizable construction.
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PTHash. PTHash [33] is based on FCH [19] which can be considered a predecessor of the
hash-and-displace technique [2]. The objects are first distributed into different buckets using
a hash function, but the distribution is not uniform. Specifically, about 60% of the objects
are mapped to 30% of the buckets. The buckets are then processed in order of decreasing
size. For each bucket, a hash function is searched such that each object can be placed
in the output domain without colliding with the objects of an earlier bucket. The hash
function identifiers are searched linearly and then stored in compressed form with several
possible compression schemes. The proclaimed goal of PTHash is fast query times. Using an
appropriate compression scheme, only a single memory access is required to find the hash
value, and the remaining operations are simple hash function evaluations and arithmetic.
Compared to the original implementation of RecSplit, PTHash consumes 0.5 to 2.5 more
bits per object, but has two to four times faster queries and can be constructed in less time.

SicHash. SicHash [26] is based on the simple idea to store the index of the hash function to
be used in a retrieval data structure. It can capitalize on recent progress on fast and nearly
space optimal retrieval [11]. Computing the right index amounts to constructing a cuckoo
hash table [32, 18]. In contrast to brute force methods like PTHash and RecSplit, this can
be done in near linear time even on large tables. SicHash refines this basic approach using a
mix of several fixed precision retrieval data structures and by using many small(ish) cuckoo
hash tables rather than a single large table. Through overloading, it can fit more objects
into each cuckoo hash table than the asymptotic maximum, exploiting that the tables are
small. Roughly, SicHash allows faster construction than PTHash while offering similar query
time and space consumption.

4 Improved Bijection Search

The general idea of RecSplit consists of two independent steps, bijections and splittings (see
Section 2.2). In this section, we now introduce two new methods for searching for bijections.
As a reminder, given m objects, we are looking for a way to quickly find a mapping of the
objects to the numbers in [m] without any collisions. The original implementation tries out
hash functions using brute force until one of them is a bijection. Let us imagine different
bijection methods on a scale between plain brute force and a deterministic, linear-time
algorithm. Our new methods provide two more data points on the scale that move away
from plain brute force methods.

4.1 ShockHash
Our first technique, ShockHash (small, heavily overloaded cuckoo hash tables), is based on
an idea introduced in SicHash [26]. In a (binary) cuckoo hash table [32], each object can
be placed at two different positions, determined by two hash functions. When we create a
cuckoo hash table of size m and then also insert m objects, the object positions implicitly
describe a bijection. We can then use a 1-bit retrieval data structure that maps each object
to a bit indicating which of the hash functions was used to place it. The retrieval data
structure can be stored with space close to 1 bit per object [11]. A reader familiar with
cuckoo hash tables will notice that cuckoo hash tables have a load threshold of 50%. This
means that the probability of successful construction of a table that is filled more than 50%
tends to 0 for m→∞. As observed in Ref. [26], though, small cuckoo hash tables have not
only a higher variance in their load factors, but also a higher median load factor. This means
that when we only look at very small cuckoo hash tables, we can get away with filling them
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completely, requiring only a small number of retries. ShockHash needs more storage space
than the original brute force bijection implementation, but is significantly faster. It reduces
the need for undirected, brute force searching significantly and replaces it with the more
directed construction of cuckoo hash tables. In order to adapt to the faster bijection search,
we also modify the fanout to be 2 for the entire splitting tree.

4.2 Rotation Fitting

We now introduce a second approach for bijection search, which we call rotation fitting. The
method is mainly based on brute force, but ensures that we need significantly fewer hash
function evaluations. From the result of one evaluation, we derive additional candidates that
are very fast to compute. Rotation fitting is efficient for finding a bijection on m objects,
where m ≤ w (the word size of the machine). We randomly distribute the objects into two
sets A and B by using a 1-bit hash function. Like in the original RecSplit implementation,
given a hash function h, we calculate the hash value of all objects in A and set the respective
bits in the word a to 1. The function h may be ruled out as a valid bijection by calculating
the popcount of a. Analogously, the set B is mapped to the word b. Let us now rotate (i.e.,
cyclically shift) the bits in b. If we can find a rotation value such that the bits in b fit exactly
onto the zeroes in a, we have found a bijection. More formally, this is the case if there is
an r ∈ [m], such that a|rotrm(b) has the m least significant bits all set. To efficiently store r,
only every m-th hash function is tried, which means the hash function index is congruent
to zero modulo m. This number plus r is stored for each leaf. We can restore r later by
calculating modulo m and restore the hash function index by rounding down to the next
multiple of m. At query time, a rotation corresponds to an addition modulo m to each object
in the set B. Given that all except one leaf have m = `, we only use rotation fitting for these
leaves and let the compiler optimize the modulo operation.

Lookup Tables. It is possible to avoid trying out all m rotations by using a lookup table t.
For all possible values of a, this table contains a rotation parameter t[a] such that rott[a]

m (a)
is minimal. If a value x can be rotated to get the value y, then rott[x]

m (x) = rott[y]
m (y). Let

c = 2m − 1 be the word where the m least significant bits are set. The value b̂ = b ⊕ c is
b with the m least significant bits flipped. Note that b can fill the holes in a if and only
if b̂ can be rotated to match a. Thus, the necessary rotation of b can be calculated as
r = (t[b̂]− t[a]) mod m using two table lookups. Rotation r is valid if a|rotrm(b) = c.

Because rotation is a very cheap operation, preliminary experiments show no improvement
by lookup tables. Especially in the case of GPUs, the shared memory is a scarce resource
and the global memory is too slow. Our implementation therefore does not use lookup tables,
even though we find the idea to normalize random permutations like this an interesting and
novel concept. Applying this idea to other permutations is left for future research.

5 Parallelization

We describe the SIMD implementation in Section 5.1 and, on top of it, a multi-threaded
implementation in Section 5.2. Finally, we describe our implementation for GPUs in
Section 5.3. Because rotation fitting seems more promising than ShockHash in preliminary
experiments, we parallelize only the original brute force method and rotation fitting.
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5.1 SIMD
For the SIMD parallelization, we mainly focus on the description of bijections and splittings,
which take most time of the construction. While we do accelerate additional parts of the
code, the ideas are more straight forward and are omitted due to space constraints. The
main idea of our SIMD implementation is to try multiple hash function seeds simultaneously.

Bijections. For the bijections, each SIMD lane is responsible for trying one hash function.
For this, we load consecutive hash function identifiers and the same input object to each
lane of a SIMD vector, and evaluate the hash function of range m, where m is the size of
this leaf (usually = `). The resulting hash value in each lane is converted to a single bit by
taking two to the power of it. After calculating the logical OR of these bits for all objects in
the set, we check for a bijection by comparing each lane with a constant that has all m lower
bits set to 1.

A Bijection midstop (see Section 2.2) is a way to check for collisions before hashing all
objects. In contrast to the sequential implementation, we cannot simply stop trying one
hash function because that would leave one SIMD lane unused. This can be avoided in the
SIMD implementation by using a backlog. After the midstop, we store the collision-free hash
function identifiers and the respective bit vectors holding already hashed object positions in
a backlog. When there are enough objects in the backlog to fill a complete SIMD vector,
then this vector is processed as usual to find a bijection. This way, no vector operations are
wasted on vectors where most lanes are irrelevant.

For the rotation fitting technique, remember that the number we store as a seed is the
hash function identification plus the rotation. This number should be as small as possible to
avoid wasting space. To achieve this and to ensure that the resulting MPHF is equal to the
one produced by the sequential implementation, caution must be taken when trying out the
rotations. When trying out one rotation after the other, another lane with a smaller lane
ID might find a bijection for a higher rotation number, which leads to an overall smaller
number. Therefore, all rotations are tried out and only at the end it is checked whether a
bijection was found.

Splittings. For the splittings, the original implementation uses small arrays of counters.
Each counter contains the number of objects hashed to each split section. Using an array for
the counts is problematic in the SIMD version. Each SIMD lane would need its own array
and expensive gather and scatter instructions are necessary to increment the counts. We
therefore use two different methods.

For the upper aggregation levels with fanout 2, we use a single counter for the number
of objects hashed to the left child. The number of objects in the right child can then be
determined by subtraction.

For leaf size ` ≤ 24, each counter of a valid lower level splitting in the current RecSplit
implementation fits into a single byte. Because an overflowing counter for one child would
then just add 1 to the next counter, such overflows cannot make an invalid splitting look
valid. With this, we can then use a lookup table to increment one of the packed counters
after hashing an object. For almost all practically relevant leaf sizes (` ≤ 21), this lookup
uses a VGATHER instruction. VGATHER performs an array lookup for all lanes in parallel,
which is fast starting with Intel Skylake processors.

When a seed for a valid splitting is found, we need to redistribute the objects. We now
use SIMD to apply the same hash function to several objects at once, and store the results
in an array. We then redistribute the objects without SIMD parallelism.
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Figure 2 Illustration of how each splitting tree is handled on the GPU.

5.2 Multi-Threading
The original RecSplit implementation only uses a single thread. This leaves a lot of processing
power unused since most modern processors contain several processing cores. As stated
in the original RecSplit paper, parallelizing RecSplit is fairly easy because the buckets are
completely independent of each other. On top of the SIMD parallelization, we therefore
now use multiple threads to accelerate the construction even further. We parallelize the
implementation by spawning several threads and assigning a consecutive portion of the
buckets to each thread. Because the number of buckets is large and the input objects are
hashed to buckets uniformly, the load of all threads is reasonably balanced. Each thread
needs to know the beginning of its first bucket which is already available after sorting the
input.

Until they are finished processing their buckets, all threads work independently. After
a splitting or bijection is found, it must be stored in the Golomb-Rice coded sequence. To
avoid synchronization, each thread uses its own local sequence and treats its input as if it
was the complete input. This means it also stores the pointers to the start of each bucket
encoding locally. After all threads are done, we sequentially concatenate the Golomb-Rice
sequences and build the combined Elias-Fano data structure holding the prefix sum of bucket
sizes and pointers to the bucket encodings.

5.3 GPU
For the GPU implementation, which we describe in the following, we use ideas very similar
to the SIMD implementation. First, we reserve enough global memory to store the input
and output data for constructing 128 buckets concurrently. Each bucket is constructed
individually with its own kernel calls. The reason is that the shape of each tree in a bucket
depends on the number of objects hashed to it, which makes it hard to run a single kernel
for multiple buckets. Using 128 streams, we still construct 128 buckets concurrently. The
buckets are distributed round-robin to the streams. This approach is mainly aimed at large
leaf sizes `, where the overhead of starting a kernel is negligible. Better performance for
smaller leaves is left for future work as our initial goal was to obtain good performance for
the most space efficient configurations. The corresponding kernel calls and asynchronous
memory transfers are initiated from the host system.

Each node in each splitting tree is handled by one thread block. For the three lowest
levels (bijections and two aggregation levels), all thread blocks are started together using one
kernel call (see Figure 2). Note that on these three levels, the size of a node and the starting
seed is constant for all nodes on the level (except for possibly the last node for which we
launch an extra kernel if necessary). Therefore, these three levels are very homogeneous.
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Conversely, the higher levels with fanout s = 2 are heterogeneous. The size may be
different for different nodes on the same level. This information would need to be provided
to every single thread block if we used kernels with more than one thread block. In fact,
it is not even clear which nodes could be seen as part of the same level since the splitting
tree may not be perfectly balanced, i.e., the length of the shortest path from the root to
a leaf may be different for different leaves. Moreover, the number of nodes in the higher
levels is generally small compared to the lower levels since each inner node has at least two
child nodes. This is especially true for high leaf sizes, which also means high fanouts in the
aggregation levels. Therefore, only a single block per splitting is used in the higher levels.

We use the GPU only for splittings and bijections. Because the kernels are launched per
level, the results are stored in BFS order. For the final data structure, we need to store
them in preorder. For multiple buckets in parallel, the CPU unpacks the resulting seeds
recursively and writes them to an encoded sequence. Finally, the already encoded sequences
from multiple threads are concatenated sequentially.

Bijections. We load all objects relevant for that node into the shared memory. Then each
thread tries out a distinct hash function index. If it finds a bijection, it updates an atomic
variable. After k tries, the threads synchronize, check if a bijection was found and if it was,
load the hash function index into global memory. The value k is dependent on the size m of
that leaf. For m < 14 or when using rotation fitting, then k = 1.

Since a warp works in lock-step, a bijection midstop (see Section 2.2) is only effective
if all threads in a warp detect a conflict. If at least one thread does not detect a conflict,
the whole warp has to continue processing the remaining objects. We therefore modify the
midstop to again provide a probability of about 90% that all threads in the warp find a
collision. Bijection midstop is only used for m ≥ 14, and not for our new rotation fitting
technique.

Splittings. Finding a valid splitting works similar to the SIMD implementation. A word c
is initialized to zero, where each thread has its own c. All counts are packed in c, one byte
per count. Other than in the SIMD implementation, no lookup table is used for incrementing
individual bytes since memory is too slow for this use. Instead, we use multiplication and
shifts. An alternative variant that stores counters in shared memory is slower in preliminary
experiments, even when padding the counters to reduce the probability of bank conflicts. We
therefore use the packed variant in our implementation. To redistribute the objects, we store
one counter for each each child bucket. Each thread then takes one object, increments the
bucket’s counter atomically, and writes the object to the respective position in the bucket.

6 Experiments

We first describe the experimental setup and general improvements. We then continue with
the bijection techniques and parallelization. Finally, we compare our implementation with
competitors from the literature. The code and scripts needed to reproduce our experiments
are available on GitHub: https://github.com/ByteHamster/GpuRecSplit. The code for
the comparison with competitors is available on GitHub as well: https://github.com/
ByteHamster/MPHF-Experiments.

Experimental Setup. We run our experiments on an Intel i7 11700 processor with 8 cores
(16 hardware threads) and a base clock speed of 2.5 GHz. The machine runs Ubuntu 22.04

https://github.com/ByteHamster/GpuRecSplit
https://github.com/ByteHamster/MPHF-Experiments
https://github.com/ByteHamster/MPHF-Experiments
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with Linux 5.15.0. We use the GNU C++ compiler version 11.2.0 with optimization flags
-O3 -march=native.

We use the Vector Class Library (VCL) by Fog [17] for most SIMD operations. The SIMD
implementation only supports x86 CPUs and is optimized towards AVX2 and AVX-512. The
GPU implementation uses CUDA 11. As a reminder, only the construction is using SIMD,
multithreading, and/or the GPU. The query implementation is identical for the SIMD and
GPU implementation and almost equal to the original implementation [13].

For the comparison of different configurations of our data structure, we use random 128-bit
integers as input data, following the approach used in the original implementation [13]. For the
comparison with competitors, we use strings of uniform random length ∈ [10, 50] containing
random characters except for the zero byte. Note that, as a first step, all competitors generate
a master hash code (MHC) of each object using a high quality hash function. This makes
the remaining computation largely independent of the input distribution. For RecSplit, all
subsequent hashing is derived from the MHC using the remix function from MurmurHash3,
an efficient and simple way to scramble the bits in a hash value.

6.1 Our Implementation
While the original implementation [13] uses std::sort, we use counting sort [36], which is
up to ten times faster. It also gives us the prefix sum of bucket sizes directly, which we
can use for parallelization. The focus of our implementation are the most space efficient
configurations with large ` and b. It turns out that the implementation is even competitive
for less space efficient configurations, but in these cases sequential sorting is a bottle-neck,
limiting the scalability. Parallelizing this step is left for future work.

Because 64-bit multiplications are inefficient on GPUs [1] and SIMD units, we replace the
64-bit multiplicative remix function by a 32-bit version which sufficies as buckets are small.

Bijection Search Techniques. Figure 3 demonstrates the effect of different bijection search
methods using a single-threaded, non-vectorized CPU implementation. Given that the
methods’ parameters are not directly comparable, we plot a Pareto front1 for space usage
versus construction time. The construction time refers to the entire MPHF construction,
including the time used for splittings.

Using the same leaf size `, ShockHash is significantly faster than brute force, but it also
needs more space. ShockHash achieves speedups of up to 2 with the same space usage, but
usually the method is slower at the same space usage.

The rotation fitting technique is consistently faster than the brute force method, making
the entire MPHF construction up to 3 times faster. The space overhead of rotation fitting
becomes negligible to the noise for large `. Additionally, it is easier to vectorize than a
cuckoo hash table construction. Therefore, all following experiments are conducted using
only rotation fitting. This also makes the plots easier to read because we only have one set
of parameters to deal with.

Dependence on Input Parameters. In Figure 4, we plot the performance of the SIMD,
GPU and non-vectorized versions for different leaf sizes ` and bucket sizes b. For better
comparability with the original paper [13], we include a wide range of configurations, even

1A configuration is on the Pareto front if it is not dominated by any other configuration with respect
to both construction time and space consumption.
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to the brute force method.2
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Figure 4 Construction throughput with different hardware architectures based on different input
parameters. N = 5 Million objects, 1 CPU thread.

ones that are not very competitive. The SIMD version is consistently up to 4.5 times faster
than the non-vectorized version and shows the same scaling behavior. The plot indicates
that there is no configuration where one would prefer the non-vectorized version. While the
GPU has significant speedups for space efficient configurations, it does not speed up the fast,
space-inefficient configurations. Reasons for this are overhead due to kernel launches and
data transfer. Given that it is more competitive than we expected even for the smaller leaf
sizes, we plan to reduce the overhead caused by a large number of kernel calls in future work.

Scaling. Figure 5 shows how the SIMD and GPU versions scale when selecting a different
number of CPU threads. The configurations are adopted from the RecSplit paper [13] and

2Note that giving speedups is non-trivial here because there might not be a configuration that achieves
the same space usage that we could compare with. We therefore calculate the speedup relative to an
interpolation of the next larger and next smaller data points. This is reasonable since RecSplit instances
can be interpolated as well by hashing a certain fraction of objects into data structures with different
configurations.



14 High Performance Construction of RecSplit Based Minimal Perfect Hash Functions

5 10 15

1

2

3

4

5 HT

Threads

Sp
ee
du

p
SIMDRecSplit

5 10 15

1

1.5

2

2.5
HT

Threads

GPURecSplit

` = 5, b = 5
` = 8, b = 100
` = 12, b = 9
` = 16, b = 2000

Figure 5 Construction speedup by number of threads used, on a machine with 8 cores and 16
hardware threads (HT), for different configurations. We scale both the number of processors and N
(weak scaling). The number of input objects N for the single-threaded measurements is selected such
that a construction takes about 3 seconds. Configurations are the examples that are highlighted in
the RecSplit paper [13].

each have significantly different scaling behavior.
On the CPU, the most space efficient variant achieves significant speedups. The variants

that have rather small buckets spend more time building the data structures holding per-
bucket metadata, which is a sequential operation in our implementation. Therefore, the
space-inefficient configurations do not profit much from parallelization. This is also visible
in the Pareto fronts comparing SIMDRecSplit with competitors from the literature (see
Figure 6). Note that our implementation is mainly focused on the most space-efficient
configurations. Achieving good scaling behavior with space-inefficient variants is left for
future work.

On the GPU, the picture changes drastically. The most space efficient method barely
profits from using more CPU threads for kernel submission because the GPU is busy anyway.
For the less space efficient variants, using 4–6 CPU threads can be beneficial, with a speedup
of about 2. The decrease in performance when using more threads for the less space efficient
configurations shows that the approach of starting many small kernels is not profitable.
Optimizations for these less space efficient configurations are left for future work.

Overall Speedup. Our rotation fitting technique leads to a speedup of up to 3 (see Figure 3),
with the same space usage. SIMD parallelism improves the construction speed by up to a
factor of 4.5 (see Figure 4). Finally, multi-threading for highly space-efficient configurations
shows a speedup of close to 5 (see Figure 5). Table 1 shows the overall improvement
of our implementation when compared to the original RecSplit implementation [13] The
original RecSplit paper says that MPHF construction at 1.56 bits per object is possible.
This configuration with N = 1 Million objects takes about 19 minutes using the original
implementation. Our implementation achieves the same space usage in just 28 seconds
on the CPU and 1.5 seconds on the GPU. Investing about 10 minutes of GPU time, our
implementation achieves a space usage of only 1.52 bits per object. This is about 30%
closer to the lower bound [2] of 1.44 bits, and simultaneously twice as fast as the original
implementation.



Bez, Kurpicz, Lehmann, Sanders 15

Table 1 Overall construction times compared to the original RecSplit implementation. N = 1
Million objects (weak scaling). Construction times are given in µs/object.

` b Method Threads B/Object Construction Speedup

16 2000 RecSplit [13] 1 1.561 1152.6
16 2000 SIMD 1 1.561 139.2 8
16 2000 SIMD 16 1.562 28.1 40
16 2000 GPU 4 1.562 1.5 763

18 50 RecSplit [13] 1 1.711 2919.5
18 50 SIMD 1 1.707 58.0 50
18 50 SIMD 16 1.709 12.1 241
18 50 GPU 4 1.708 1.4 2072

24 2000 GPU 4 1.524 633.9

Table 2 Energy consumption of different configurations with ` = 18, b = 50. Construction
duration and energy usage are given for N = 1 Million objects. Energy consumption is both given
as difference to the idle power of 78 W, as well as total energy consumption of the whole system.
For the total consumption of CPU-only measurements, we subtract the 16 W GPU idle power.

Total system Difference to idle

Method Threads Duration Power Energy Power Energy

RecSplit [13] 1 19 min 99 W 112 860 J 37 W 42 180 J
SIMDRecSplit 1 58 sec 108 W 6264 J 46 W 2668 J
SIMDRecSplit 16 12 sec 124 W 1488 J 62 W 744 J
GPURecSplit 4 1.4 sec 408 W 571 J 330 W 462 J

Energy Consumption. Of course, directly comparing CPU and GPU implementations is
unfair. A sensible metric to compare them is the energy consumption, which can be a major
cost factor. Additionally, the energy consumption is not influenced by market prices. We
therefore measure the energy consumption of our system, specifically, the difference to the idle
power. Table 2 gives measurements for different configurations and hardware architectures.
The energy consumption is homogeneous throughout most of the execution time, except for
a short ramp-up in the beginning. We do not count the ramp-up to the energy consumption.
Measurements are performed using a Voltcraft 870 Multimeter with USB interface and power
adapter.

Even though SIMD instructions need slightly more power, the total energy consumption of
constructing one MPHF is about 18 times lower. The GPU, even though it needs significantly
more power, is so much faster that the resulting energy usage of constructing one MPHF is
close to 200 times lower than the original single-threaded CPU implementation.

6.2 Comparison with Competitors
In our evaluation, we compare our parallelization of RecSplit to SicHash [26], PTHash [33],
BBHash [27], CHD [2], and the original RecSplit [13]. For the scaling plots, we include
the partitioning-based parallelization PTHash-HEM [34] and a simple partitioning-based
parallelization of SicHash and SIMDRecSplit. The methods then first hash input objects to
different partitions, which can then be constructed independently in parallel. The partitioning
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Figure 6 Competitor trade-off of construction time vs space usage. Weak scaling, N/p = 10
Million objects. The methods labeled with “Partd.” do not provide a native parallelization of the
construction algorithm itself, but partition the input objects to independent perfect hash functions.
This approach can be used for all PHF construction algorithms but increases the query time. For
SicHash and PTHash, we plot all Pareto optimal data points but only show markers for every fourth
point to increase readability. Therefore, the lines might bend on positions without markers.

idea can universally be applied to all perfect hashing methods to reduce sequential bottle-
necks, but it introduces some query overhead. Note that our focus is still on parallelizing the
native methods because it is transparent to the queries.

Space usage trade-off. Figure 6 plots a space versus construction time Pareto front for
each approach. Looking at a single thread first, we make the surprising observation that
SIMDRecSplit not only wins for the most space efficient configurations for which we designed
it but, by far, dominates all the other methods also for less space-efficient cases. For
parallel construction, SIMDRecSplit scales well for the space-efficient cases but less so for
the remaining ones, resulting in a steeper Pareto front. Nevertheless, SIMDRecSplit still
dominates the other methods although by a lesser margin. It seems that all the current
methods run into scalability bottlenecks unrelated to the particular approach used.

Table 3 lists construction and query time of a selection of competitor configurations.
When looking at the query time, PTHash is a clear winner. While BBHash can achieve
the same query speed and good construction speed, its space usage is large. SicHash has a
query time close to PTHash’s most compact representation, but is faster to construct and
more space efficient. All RecSplit variants can achieve significantly lower space than other
competitors but require considerably more query time. However, our single-threaded SIMD
implementation dominates most competitors with respect to both space and construction
time. The use of rotations makes the queries about 10% slower than the original RecSplit
implementation. The main goal of RecSplit is to achieve extremely small representation, and
queries are not very fast to begin with, so this seems acceptable.

Construction Scaling. You can find strong scaling and weak scaling experiments in Figure 7.
As described in Section 6.1, the scaling behavior of SIMDRecSplit depends on the parameters
selected. Because our main focus is on space efficient configurations, the scaling of configu-
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Table 3 Query and construction measurements of different competitor configurations, using
N = 10 Million objects. Query time is given in ns per query, construction time in ns per object.

Method B/Object Construction Query

BBHash [27], γ = 1.0 3.059 208 ns 51 ns
BBHash [27], γ = 5.0 6.871 50 ns 36 ns
PTHash [33], c = 7.0, α = 0.99, C-C 3.313 199 ns 20 ns
PTHash [33], c = 11.0, α = 0.88, D-D 4.379 138 ns 25 ns
PTHash [33], c = 6.0, α = 0.99, EF 2.345 248 ns 35 ns
SicHash [26], α = 0.97, p1 = 44, p2 = 30 2.081 172 ns 40 ns
SicHash [26], α = 0.9, p1 = 20, p2 = 77 2.412 119 ns 41 ns
RecSplit [13], ` = 5, b = 5 2.928 145 ns 65 ns
RecSplit [13], ` = 8, b = 100 1.793 709 ns 75 ns
RecSplit [13], ` = 14, b = 2000 1.584 126534 ns 96 ns
SIMDRecSplit, ` = 5, b = 5 2.96 49 ns 71 ns
SIMDRecSplit, ` = 8, b = 100 1.806 107 ns 80 ns
SIMDRecSplit, ` = 14, b = 2000 1.585 11742 ns 110 ns

rations with small ` and b is not as good. For large `, the speedups of our SIMDRecSplit
implementation are close to speedups that competitors only achieve through partitioning.

7 Conclusion and Future Work

We have shown that by harnessing parallelism at all available levels – bits, vectors, cores, and
GPUs – one can dramatically accelerate the construction of highly space efficient minimal
perfect hash functions (MPHFs) using the brute-force RecSplit approach [13]. This leads
to speedups of up to 241 on SIMD and 2072 on the GPU and also dramatically reduces
energy consumption. Surprisingly, this even turns out to be the fastest available approach for
constructing less space-efficient MPHFs. This is not what we expected. Our initial hypothesis
was that there would be trade-off with asymptotically faster approaches winning for less
requirements on space consumption. We therefore also explored further approaches to “fast”
search like ShockHash. Only a small step in this direction was successful – rotation fitting is
still brute force but reduces the work needed per tried hash function while adding a tiny little
bit of space requirement. But even the asymptotically “obvious” improvement of replacing
` rotations/checks by two table lookups are not productive on current architectures. So,
brute-force, simplicity (in the inner loops), and parallelism currently wins against any attempt
at sophistication. We believe that this will be further amplified by further engineering the
parallelization of RecSplit (e.g., hashing, sorting, and data structure assembly).

If we accept this conclusion, the main open problem is to improve query time. Traversing
an aggressively compressed tree for each hash function evaluation is inherently more expensive
than the simple constant time operations needed in PTHash [33] or SicHash [26] but there
should be more efficient ways to break down MPHF construction into small subproblems
that can be solved with brute-force. We believe that the techniques developed here will turn
out to be useful in that respect.

There may also be a renaissance of clever search. Perhaps the approach from rotation
fitting to use a lookup table for normalizing bit patterns could be generalized to a richer
set of mappings than just rotations. Also, rotation fitting could be generalized by splitting
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Figure 7 Construction time speedups when using multiple threads, on a machine with 8 cores
and 16 hardware threads (HT). Speedups are given relative to each method’s single threaded
performance. The methods labeled with “Partd.” do not provide a native parallelization of the
construction algorithm itself, but partition the input objects to independent perfect hash functions.
This approach can be used for all PHF construction algorithms but increases the query time. Note
that the suboptimal weak scaling behavior of PTHash can be explained with the fact that on
PTHash, different N leads to significantly different space efficiency.

into more than two parts. The resulting search for several rotations gives more room for
sophistications like search space pruning.

Finally, we can look for generalizations of RecSplit for computing non-minimal PHFs
which allows us to further reduce space consumption of the hash function itself.
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