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Abstract

Using the histogram procedure, this work studies performance determining factors
in computing in parallel on SIMD and SIMT devices. Modern graphics pro-
cessing units (GPUs) support SIMT, multiple threads running the same instruction,
whereas central processing units (CPUs) use SIMD, in which one instruction op-
erates on multiple operands. As part of this work, a cross-technology framework
is developed that allows testing a single-source histogram implementation on mul-
tiple devices, providing insight into the performance of various API — hardware
configurations. It is shown that in the presence of high contention, the implement-
ation of atomic operations becomes of great influence on performance. This work
provides guidelines for the choice between devices based on image features and
hardware specifications.
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Chapter 1

Introduction

In image processing and computer vision, the need of determining the occurrence
frequency of color values is very common. The histogram operation sums the oc-
currence of values in the input data to produce a (graphical) representation of their
frequency distribution. In real-time analysis of video feeds, for instance for on-the-
fly color corrections, huge amounts of data may need to be processed quickly. This
calls for processing these data in parallel.

In the work, we focus on two common ways of parallelization of execution code.
The oldest, single instruction, multiple data (SIMD), was introduced on the CPU
and basically entails wide instructions that perform the same operation on mul-
tiple operants simultaneously. Graphics processing units (GPUs) are affordable
instances of massively parallel processors. The rise of the programmable GPU
has helped bring affordable parallel compute capabilities to the masses. Originally
starting off with SIMD, GPUs have introduced a new approach to parallelization
called single instruction, multiple threads (SIMT), in which multiple processing
elements execute the same instruction on different data in parallel.

This thesis uses the relatively simple histogram operation to gain a better un-
derstanding of the performance determining factors when computing in parallel on
SIMD and SIMT devices. When confronted with an instance of the histogram prob-
lem, we want to know what combination of hardware architecture and algorithm
implementation provides the best performance. As GPUs and CPUs differ funda-
mentally, in a given scenario, the question is when is it beneficial to chose a GPU
over a traditional CPU based approach.

1.1 Problem Statement

We formulate the following research question: What are the performance determin-
ing factors that impact the design and deployment of parallel histogram calculation
on multi- and many-core hardware?

In answering the research question, this thesis offers the following contributions:

1. A parallel histogram procedure is implemented in which
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e the image is distributed, and each thread typically services multiple
pixels;

e the histogram bins are replicated per block of threads, followed by a
reduction step that merges these instances into a single histogram;

. A cross-technology framework is developed that enables writing a single-

source implementation that is compilable and runnable using,

e on the CPU, either OpenCL or C++ (with C++11 threads);
e on the GPU, either OpenCL or CUDA;

. A study of contention in images from the point of view of the parallel histo-

gram procedure;

. Insight into the platform impact on histogram performance in presence of

contention;

. A study into the efficiency of atomics as implemented on the different plat-

forms.

Thesis Organization

This work is structured as follows: In chapter 2 we provide some background and
present related work. The overview of the parallel architectures we discus is given
in Chapter 3. An overview of the Histogram procedure is given in Chapter 4. Our
cross-technology framework for writing a single-source histogram implementation
targeted at multiple platforms is described in Chapter 5. Chapter 6 discusses atomic
operations and write collisions. Our experiments and their results are discussed in
Chapter 7. Finally the conclusions and an outlook on future work are given in
Chapter 8.



Chapter 2

Related Work

In this section we will discuss Histograms, their algorithms and origins, Multi-
Device frameworks and Atomics and their performance analysis. We will also see
how this work fits in those contexts and how it is different.

2.1 Histograms

The concept of a histogram was formally introduced by Karl Pearson in 1895 [28].
The basic algorithm is trivial and even the parallelization options are limited. Due
to its prevalence and usefulness not only in statistics but also in video editing,
image manipulation, machine vision and learning, the histogram operation is im-
plemented countless times on computer systems. There is previous work on effi-
ciently implementing histograms on GPUs [17] [33]. Histogram implementations
have also been described in hardware (FPGA) [19] [31] and for SIMD architec-
tures [38] [3] [32] Our work also uses the histogram operation to empirically show
performance characteristics, yet it is different from these works as we use this op-
eration across a range of different processors instead of focusing on a single class.

2.2  Multi Device Frameworks

Using a framework or additional libraries on top of the vendor supplied API is very
common. Heterogeneous computing presents the programmer with more work to
unlock the full potential of the hardware. There is a lot of work on using libraries
and frameworks to overcome this issue. Particularity noteworthy in the context of
this work are: BlockLib [2], a macro based library for the IBM Cell/BE processor
[5], and the so-called skeleton library based approach as presented in SkePU: a
multi-back-end skeleton programming library for multi-GPU systems [15] that sup-
ports CUDA, OpenCL, OpenMP from c++.

The OpenCL standard targets multiple devices [21] can be classified as a frame-
work and does indeed support all hardware devices used in this work. However,



as we will show, the performance offered by vendor implementations is not always
the same as can be obtained through other means of programming the hardware.

SkeCL [39] is an example of extending OpenCL to support multiple devices
connected over a network. In this work, we use the device model brought forth in
the OpenCL specification [21]. Our framework is novel as it is single source and
does not use external source to source translation tools to meet the targets platform
requirements. This core idea is inspired by work done by the Blender open source
project to support multiple back-ends for its ray-tracing engine [42].

2.3 Performance analysis of atomics

Performance in shared memory processors has been researched since the 1960’s
[26]. With modern GPUs effectively being programmable multiprocessor com-
puters, a lot of older multiprocessor work applies to them. In a lot of cases they suf-
fer from the same synchronization challenges as shared memory multiprocessors[1].
There are a lot of ways to program these devices which have been compared ex-
tensively, for example in work by Jianbin Fang, Ana Lucia Varbanescu and Henk
Sips on comparing CUDA and OpenCL. OpenCL and openMP have been com-
pared in work by Jie Shen, Jianbin Fang, Henk Sips and Ana Lucia Varbanescu
[36]. OpenCL performance on CPUs has also been done [37]. All of these com-
pare the performance of two different ways of programming, mostly on a narrow
set of hardware. Our work differs because it compares CUDA, OpenCL and C++
on different devices by multiple vendors, spanning multiple hardware generations.
Apart from that, and maybe most importantly, we are the first work to focus entirely
on atomics within this context.



Chapter 3

Parallel Computer Architectures

This thesis deals with performance characteristics of multi-core and many-core
processors. As such, this chapter provides an overview of parallel architectures.
From the historical context of parallel computer architectures, we outline important
aspects of these architectures, focusing particularly on their execution models as
well as their memory models. We further discuss programming languages for these
architectures.

3.1 From a Serial to a Parallel Compute Model

The increase of the number of transistors on integrated circuits has followed the
trend predicted by Moore’s Law for more then 40 years, providing increasing
speed-ups for processors. Packing the transistors closer together or effectively
shrinking the design, measured in nanometers, allows the signals on the chip to
travel farther within one clock tick which in turn allows for higher clock frequen-
cies or more complex designs. Each successive generation of micro-processors
has been increasingly complex and featured increases in clock speeds. Running at
higher speeds implies that the transistors switch at a higher rate, emitting heat at
each switch. At switching speeds somewhere between 4 GHz and 5 GHz, this heat
production becomes such a problem that since the early 2000’s, CPU operation
frequencies have seen little or no increase. However, Moore’s Law is still in effect,
and during that same period the production process went from 0.13 um (130 nm)
to 14nm. As we can no longer increase the clock frequency, we compensate with
more cores which are also more complex. Even then, there is enough silicon real
estate available to integrate heterogeneous cores, like specialist graphics processing
cores, to the same die.

3.1.1 SIMD and SIMT

Two common ways of parallelizing code execution exist, denoted as single instruc-
tion, multiple data (SIMD) [6] and single instruction, multiple threads (SIMT) [9].



While similar in name, these approaches are only remotely related and not mu-
tually exclusive; in theory both can be used together. SIMD relies on dedicated
hardware that supports operations on multiple scalar memory elements together,
so-called SIMD vectors (e.g., 4-float vectors in SSE, 8-float vectors in AVX, 16-
float (512-bit) vectors in AVX3 [6]).

SIMD was introduced on CPUs. Modern GPUs are based on the SIMT model,
abandoning native SIMD support in hardware and using multiple processing ele-
ments instead that use scalar operations in blocks of processing elements. Never-
theless, some GPUs still support 4-float SIMD vectors. On CPUs, SIMD continues
to play a central role, e.g., in multimedia operations such as video encoding.

Composing program code that uses SIMD hardware, by programming in as-
sembly language or using assembly-derived intrinsics in high-level languages such
as C, is time consuming and error prone [25] [41]. While it provides the pro-
grammer with complete control of the low-level details, this goes at the expense
of productivity. Alternatively, fixed-size vector data types are supported by spe-
cialized compilers such as Intel’s SIMD compiler for C/C++ [7], but this sacrifices
cross-compiler portability.

The process of vectorization can be automated through employing auto-vectorizing
compilers (e.g., GCC, Intel C compiler (ICC), and the IBM XLC compiler) that
automatically translate sequences of scalar operations, typically represented in the
form of loops, into vector instructions [25]. However, it was shown that the impact
of implicit vectorization introduced by these compilers is limited, despite auto-
vectorizing 45-71% of the loops in a synthetic benchmark, in real-world applica-
tions auto-vectorization works in far fewer cases [25].

3.2 GPU Architectures

Specialized circuits designed towards the manipulation and creation of bits within
a computer frame-buffer, i.e., for display purposes, have existed since the early
1980’s [14]. By the end of that era, through developments adhering to Moore’s
Law, more advanced pixel processing became feasible [18, 29].

GPUs continued to advance in terms of speed and programmability, enabling
them to be used for general-purpose computation other than graphics [4]. In Novem-
ber 2006, Nvidia released the GeForce 8800 GTX (equipped with the Nvidia G80
chip), a GPU that unified all the shader stages into a common floating-point core[8].
It also marked the introduction of the SIMT execution model. This brought with
it a massive increase in programmability and, for the first time, proper general-
purpose computational capabilities were available [24]. In January 2007, Nvidia
released the Compute Unified Device Architecture (CUDA) language and SDK to
program their GPUs. Around the same time, the notion General-Purpose comput-
ing on Graphics Processing Units (GPGPU) comes into play and starts to develop
into a hot research area [27], as other vendors (such as AMD, ARM and Intel ) are
also attempting to bring hardware with many processing elements to the market



[30].

3.2.1 Nvidia

Looking back on the launch of the G80 chip in 2006, it is clear that its release
ushered in a new era for GPU hardware. Combined with the introduction of the
CUDA programming model and language, it really brought GPGPU forward. After
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Figure 3.1: Nvidia Tesla Architecture
featuring 8 blocks of 16 processors from: [8]

the release of the G80 chip, the first incarnation of the Tesla architecture [8] (see
Figure 3.1), Nvidia released Fermi [9], Kepler [10], and Maxwell [11] architec-
tures. Unlike x86 processors, each hardware architecture has different compute
units (CUs) (called streaming multiprocessors (SMs) in Nvidia terminology) and
a different instruction set architecture (ISA). GPUs released with a certain chip
then have features turned on and off and different sizes of RAM and memory bus-
width, making different Nvidia GPUs much more different from each other than
CPUs ever are. The G80 chip, with its Tesla architecture being the first designed for
SIMT, also set off the move from 4-float wide SIMD to 16-float SIMT for GPUs,
later increased to 32-float wide (1024-bit).

3.2.2 AMD

While Nvidia released its G80 chip with unified shader model and scalar processors
to the market, ATI, acquired by AMD in 2006, was still investing strongly in its
SIMD-based very long instruction word architecture VLWWS5. This hardware was



designed and is very well suited for performing DirectX-9-era graphics operations
but less well suited for GPGPU. It took AMD until January 2012 to release hard-
ware that was designed from the start with GPGPU in mind. AMD calls this design
Graphics Core Next (GCN), see Figure 3.2
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Figure 3.2: AMD Graphics Core Next. In (a), the GCN GPU architecture is displayed. In
(b) is zoomed in on a GCN compute unit.

3.3 Parallel Programming Model

Programming for multi-core systems is in a lot of ways different and typically
harder than writing serial code aimed at traditional PC-like systems. Data de-



pendencies and synchronization cost play a mayor role in the design of efficiently
running algorithms for multi-processor machines. In programming GPUs, there
is an explicit memory hierarchy to be taken into account, whereas it is implicit
(i.e., hidden) in CPU programming. In SIMT, threads run in groups termed thread
blocks or work-groups. Each thread runs on a SIMD or scalar unit, depending on
the GPU architecture. Many different GPU architectures exist, typically not en-
tirely compatable with each other, which makes the implementation very sensitive
to the exact architecture used.

3.3.1 CUDA

Nvidia’s CUDA progamming platform is leading in GPGPU programming. Re-
leased in June 2007, it is mature in the sense of robustness and relatively easy to
use. CUDA represented great steps in making programming GPUs much easier
and more accessible.

CUDA comes with two APIs: The higher-level runtime API and the lower-level
driver API. In using the runtime API, CUDA code is mixed in C++ code. The nvce
compiler splits the CUDA code out and compiles it into PTX code, a low-level
parallel thread execution virtual machine. The virtual instruction set architecture
(ISA) enables using GPU-like devices as parallel computing machines [12]. The
tool ptxas then converts the code for the actual ISA of the targeted device.

CUDA is now moving towards what is termed unified memory, which means
implicit memory management in which the explicit division in global, per-block,
and per thread memory is hidden from the programmer.

3.3.2 OpenCL

Open Compute Language (OpenCL) 1.0 was published in December 2008. In
many regards, OpenCL is highly similar to CUDA, when targeting GPUs. How-
ever, OpenCL is also supported by vendors of CPUs and field-programmable gate
arrays (FPGAs) for targeting those computing platforms. This is achieved by ab-
stracting away some of the specifics of each platform.

The OpenCL platform model consists of a host to which one or multiple OpenCL
devices are connected. Each device consists of one or more compute units (CUs)
that contain processing elements (PEs), see Figure 3.3. OpenCL defines a memory
model that consists of four different types of memory: Global memory is accessible
from work-items in all work-groups and is writable. Constant memory is constant
for the duration of the execution of a kernel. Local memory is local to the CU and
private memory is local to an individual PE (also see Table 5.2). When program-
ming an OpenCL device, there is also host (i.e., system) memory to consider.

In a lot of scenarios, one wants to do as little global memory operations as pos-
sible, as well as host-to-device operations as these are slow. This fact combined
with the scarcity of the other types of memory on a lot of implementations leads to
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Figure 3.3: OpenCL Compute Unit. Prototypical OpenCL compute unit, showing a group
of processing elements sharing memory and an instruction pointer.

an awkward situation where the OpenCL code is portable but decent performance
with this portable code is not in a lot of situations [13, 23, 16].

3.4 General Remarks and Outlook

GPU architectures are changing significantly with each new hardware generation.
New software and hardware features make programming them easier but at the
same time abstract away more. The current logical model as expressed in the
OpenCL and CUDA device models seems to continue to fit this class of hardware
well, but even at the logical level, there is a trend towards more abstraction layers.
GPUs are both powerful and highly complex. Reasoning about the performance
of these systems is very different compared to that of single-core, single-threaded
software, making comparative performance evaluation challenging.

While GPGPU is a relatively recent field that seems to have come into exist-
ence by accident, it can turn the average PC and mobile device into very powerful
parallel computation machines. Getting good performance from such machines,
however, is not easy. Massively parallel processors are not suited for all types
problems, often requiring reformulating a task at hand to be able to efficiently
make use of GPGPU. Nevertheless, as they provide great amounts of processing
per Watt, they are there to stay and will most likely become increasingly prevalent.

CPU development is likely to continue to aim at bringing greater performance
through including more smart logic such as branch prediction caches. This is the
exact opposite strategy followed for GPUs, packing increasing amounts of relat-
ively “dumb” logic on devices. However, GPUs will most likely become a bit
smarter as the thread management hardware continues to evolve. In future archi-
tectures, we will see support for running multiple independent tasks on a single
device. Unified memory will bring hardware assisted host—-device data transfers.
Dynamic parallelism will offer support for kernels launching other kernels, and
there will be task priority support while running multiple kernels. Last but not
least, faster atomic operations (see Chapter 6) will be unveiled.

10



Chapter 4

Histograms

Histograms are extremely common operations in the field of statistics, with ap-
plications in biology, applied sciences, and video processing. The concept of a
histogram was formally introduced by Karl Pearson in 1895 [28]. Pearson, math-
ematician and biometrician, is seen as one of the fathers of modern statistics. His-
tograms are best known in their graphical representation, commonly drawn as a
bar diagram. They are well-suited for representing complex statistical properties
of a dataset such as the probability density of the occurrence of values. Figure 4.1
displays histograms over the color values of pixels in three channels.

150 200 250

Figure 4.1: Color Histograms. Distribution of color values of pixels in a photo depicting
apples, determined over three color channels.

Image processing and computer vision rely on histograms in a variety of opera-
tions. In analyzing high-resolution video feeds in real-time, excessive amounts of
data are to be processed: It calls for the capability of running histogram operations
on billions of data points, multiple times per second. These circumstances call for
exploiting the strict absence of data interdependencies in the histogram operation,
which allows to properly employ parallel computing resources.

In this chapter, we give a description of the histogram operation and present

11



two ways in which the parallelization of this algorithm can be achieved, explaining
which strategy is recommended for what class of hardware and problem type.

4.1 Generic Histogram Procedure

Given a set of data points, the histogram operation defines a set of disjoint ranges
called bins. Each data point is assigned to a bin based on a characterizing value,
increasing the count of data points associated with this bin. The histogram of the
entire data set is defined by these sums [28]. The basic procedure is laid out in
Algorithm 1.

foreach data point do
determine characterizing value

calculate associated bin

increment bin’s counter
end
Algorithm 1: Generic Histogram Procedure

The proper number of bins depends on the phenomenon one aims to examine and
on expectations concerning the input data. Even with this information available,
choosing the optimal number of bins is a hard problem [40].

For the general case, bins are not required to have equally sized ranges. For the
case of analyzing digital images, it is typical to use a single bin per 8-bit color. This
leads to having 256 bins per color channel, a resolution that is also adequate when
analyzing images of 10 of 12 bits per channel per pixel. In this thesis, separate
histograms will be used for the channels red, green, and blue, with 256 bins per
color channel.

4.2 Histogram Parallelization

For the histogram problem, there are roughly two main ways in which paralleliza-
tion can be achieved: Each parallel process can evaluate a full histogram for a part
of the input data, see Algorithm 2, or a partial histogram over the whole input data,
see Algorithm 3. A partial histogram consists of a subset of the bins, i.e., registers
associated to an interval in the input space, counting occurrences only for values
falling within this subset.

For the case where the input data is split into multiple ranges, the maximal paral-
lelism achieved is equal to the number of input elements. The maximal parallelism
achieved for the partial histogram method is equal to the number of bins.
Algorithm 2 consists of two parts: First, each parallel process is given a part of
the input data only, over which a full histogram is calculated. These histograms
are then reduced to a single histogram in parallel, using maximally one parallel
process per bin.

12



divide input data into segments
for segments do in parallel

foreach data point do
determine characterizing value

calculate associated bin

increment bin’s counter
end

end
divide bins into sets
for sets do in parallel

foreach bin do
| calculate sum over corresponding bin in all histograms

end

end
Algorithm 2: Full Histogram — Partial Input Space

divide bins into sets
for sets do in parallel

foreach data point do
determine characterizing value

calculate associated bin

if bin in set then
| increment bin’s counter

end
end

end
concatenate the partial histograms

Algorithm 3: Partial Histogram — Full Input Space

Algorithm 3 consists of two parts as well. First, each parallel process reads all
input data, but increments only the count of those bins assigned to it, after which
the partial histograms are concatenated into a single full histogram.

In both methods, a reduction step is required in order to create the final histo-
gram. In Algorithm 2, the runtime of the reduction step depends on the amount of
parallelization (i.e., the number of histograms to sum over), and at a certain point,
the additional slowdown introduced by the reduction step may surpass the speedup
provided by additional parallelization. Algorithm 3’s reduction step is negligible,
but this approach requires all parallel processes to read all input data.

13



14



Chapter 5

Cross-Technology Framework

For facilitating the performance analysis of computing a histogram on different
platforms, a cross-technology framework is designed, allowing for the use of a
single code base. The main goal is the ability to run a single source implementation
of an algorithm unmodified on the three types of platforms considered: OpenCL-
based, CUDA-based and C++-based. This allows for faster development and pre-
vents distorted results caused by errors present in certain platform implementations
only. Furthermore, a platform implementation obtained through the framework has
to achieve the same performance as directly coding it for the target platform.

The effort of composing the cross-technology framework is justifiable through
providing an efficient, fast, and elegant way of identifying and characterizing the
determining factors in platform performance. These range from processing-element
topology, memory topology, availability and implementation of atomic operations,
other hardware parameters and software settings like execution topology. The
framework enables quick iteration over, and offers a handle for evaluation of,
sample points in this search space of different hardware and software combina-
tions.

5.1 Framework Requirements and Assumptions

In order to be able to determine the performance profile over multiple architectures,
for a broad range of problem instances, we need a unifying model implemented in
the form of a cross-technology framework. The framework allows us to use a single
code base and single implementation of the algorithm. This provides for a better
focus on the algorithm implementation as it needs be implemented only once and
eliminates errors arising from multiple implementations.

In order to avoid inefficiencies, the framework needs to minimal, both in the
sense of functionality included in the language abstraction, i.e., the level of the
logic supported, as in the actual framework implementation. The dialect that we
derive still needs to be sufficiently expressive and allow for the use of platform-
specific methods in a general way. The use of platform-specific fast-paths is not

15



to be precluded for the sake of achieving an abstraction, and the actual algorithm
implementation coded in the provided language abstraction should not be riddled
with special platform-specific hacks.

Multiple logical cores (i.e., processing units) are assumed, thus the program
to be written should be specifiable over multiple logical elements. Furthermore,
an OpenCL-like memory hierarchy is adopted. The programmer should annotate
memory in an OpenCL-like fashion.

5.2 Framework Definition

We are faced with a set of varying hardware (see Table 7.1) that supports partially
overlapping subsets out of a set of three programming languages (see Table 5.1). A
minimal language abstraction is created to be able to run a single algorithm imple-
mentation on all supported combinations of hardware and programming language.
The framework exploits the fact that both OpenCL and CUDA are based on the
C programming language, and that C++ can be seen as a superset of C. Thus, the
three languages already have a large overlap, and through defining functionality
required by one language in those where it is missing, the overlap is extended into
a language dialect that fits our requirements. This yields a dialect that is both ex-
pressive and sufficiently close to the three target languages that using it is not a
source of inefficiency for their compilers. We design the language dialect that the
framework entails to be usable for generic problems (e.g., other than histogram)
that can be written for execution by two-dimensional fields of threads with a two-
tier abstraction of those threads.

Table 5.1: The Availability of Languages per Hardware Platform. OpenCL C runs on
GPUs, as well as directly on the CPU through OpenCL runtimes such as PoCL and those
provided by Intel and AMD. Performance differences arising from operating OpenCL C
on different hardware types and differences inherent to the languages are examined in this
work.

Hardware Platform Languages Available

CPU OpenCL C, C++
AMD GPU OpenCL C
Nvidia GPU OpenCL C, CUDA C

5.2.1 A Common Execution Hierarchy

GPUs define a different execution hierarchy than CPUs do. For supporting a cross-
technology framework, the CPU model is mapped onto a model suitable for de-
scribing GPUs. CPU cores are taken as equivalent to compute units (CUs) with
a single processing element (PE), see Mapping II in Figure 5.1. This choice is

16



motivated by their independence when compared to PEs. Different CUs operate
independently, whereas PEs are highly dependent due to shared resources such as
cache and the fact that they share their instruction pointer, i.e., within a single CU,
all PEs always execute the same instruction. The CUDA process model is largely
equivalent to its OpenCL counterpart and with the chosen mapping for CPUs, we
have one consistent model that is applicable to all three platforms.

Table 5.2 provides the mapping between terminology of the different architec-
tures used in defining the common execution hierarchy. In the remainder of this
report, we will primarily use the terminology of OpenCL when referring to aspects
of this model.

Mapping |

GPU CPU .
o -
e

Mapping Il

cu cu cu cu

Figure 5.1: Mapping CPU to GPU-like Architecture. In mapping a multi-core CPU to
a GPU-like architecture, it can be regarded as a single compute unit (CU) with multiple
process elements (PEs) (see Mapping I), or multiple CUs with a single PE (Mapping II).
We interpret a CPU using Mapping II, motivated by the relative independence of CPU
cores.

Table 5.2: Terminology Mapping between Technologies

OpenCL CUDA CPU

Device GPU CPU

Compute unit Multiprocessor (SM) “

Processing element Scalar core “

Global memory Global memory Main memory
Local memory Shared (per-block) memory “

Private memory Local memory Registers / cache®
Program Kernel Function
Work-group Block “

Work-item Thread “

“No such concept present.
®No user control.
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5.2.2 Unified Language Dialect

The language dialect needs to be interpretable by compilers implementing OpenCL
C, CUDA C, and C++ with allowed preprocessing limited to that provided by their
built-in C-preprocessors. In general, writing a C++ program that compiles well on
different compilers and operating systems is already non-trivial. In practice, cross-
platform C++ code is achieved by limiting the language to a subset of features
supported by all C++ compilers. In cases where this subset is too restrictive, pre-
processor and build-system handles are employed to obtain code compatible with
the actual compilers aimed to be used. Finding such a supported subset and mak-
ing things operate under different conditions is usually done in an iterative way,
porting code cumulatively through trial-and-error.

The unified language dialect that we envision is created in a similar fashion. An
important difference is the narrow overlap between all three languages: Unaug-
mented, the bare overlap does not even allow for the definition of a common empty
program without any actual instructions.

Composing the Unified Dialect

As their names imply, OpenCL’s and CUDA’s programming languages are based
on the C programming language. Pure C++ functionality such as classes, tem-
plates, and namespaces are therefore not available. C++ can be considered a su-
perset of C, while not in the strict sense (i.e., not all C language constructs are
allowed). The unified language dialect is composed through piecewise implement-
ing the histogram operation, starting from the common language subset, that is,
language elements that are literally present in all three languages, e.g., basic types,
inline functions.

The majority of the necessary augmentation to this subset is obtained through
function-like preprocessor macros. This is done from the perspective of OpenCL
C, adding calls and elements to other languages through wrapping their language
counterparts in macros (essentially renaming them) or adding new operations in
line with the architecture mapping (see Figure 5.1). For instance, thread identific-
ation is available in OpenCL C through methods as get_global_id(), while CUDA
C defines variables blockIdx, whereas C++ misses the notion of such work-groups
altogether. It can also occur that mapping contructs to OpenCL C is not practical,
in which case a new unifying element is introduced in all three languages.

Importantly, as stated, all differences to overcome are bridged without any kind
of source-to-source compiler. We rely fully on the destination language’s C-preprocessor
and includes to make a program written in the unified dialect “appear valid” in the
destination language. In order to achieve a minimal-size framework, the iterat-
ive method of compiling an increasingly complex program on all three language’s
compilers was chosen, iteratively expanding on a single-code implementation.

Continued compiling, testing, and adapting was used to keep the code work-
ing across these languages and various compilers for those languages. Language
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elements that required notable implementation decisions to be taken are listed next.

SIMT Support

In the single instruction, multiple threads (SIMT [9]) model, multiple threads are
bound to the same instruction pointer, requiring a means of identifying threads to
diversify in instruction effect, e.g., to indicate the input data that the thread should
execute the instruction on.

To this end, OpenCL C offers built-in functions (get_global_id(), get_local_id()),
whereas CUDA C has built-in variables threadldx, blockldx, blockDim, grid-
Dim, and warpSize. The latter can easily be wrapped, as well as adding the API
to C++ by setting the local_work size in all dimensions to 1 and local id to O.

SIMD Support

OpenCL and CUDA support single-instruction multi-element vector manipulation
(single instruction, multiple data, SIMD [6]) by swiveling, i.e., the direct access and
manipulation of components of fixed-size vector data-types, typically via letters
like z, y, z, w. C++ does not have vectors allowing this type of access built-in. An
example of swiveling is accessing elements of an OpenCL-C float4 via vecl.wzyx,
which has the same outcome as floatd(vecl[3], vecl[2], vec1[1], vec1[0]), gener-
ating a new vector with elements reversed, in a single operation.

CPUs support SIMD operations via instruction sets such as SSE and AVX [6],
but employing these in C++ in a cross-compiler compatible and performance non-
impacting manner is not possible. Introducing swiveling in C++ essentially entails
emulating the vector data-types through classes such as float4 introducing the letter
component addressing.

For swiveling operations, however, the float4 instances have to be kept aligned
on the 128-bit boundary. Standard C++ compilers do not have handles to safeguard
this, thereby requiring properly aligned copies of float4 instances to be generated
prior to performing the SIMD operations. Swiveling could be introduced through
employing Intel’s SIMD compiler for C/C++ [7], albeit not cross-compiler com-
patible. It was therefore chosen not to include swiveling operations in the unified
language dialect.

Textures

GPUs provide special containers for image data, texture objects that store pixels,
i.e., multi-dimensional image data points providing color information. These tex-
ture objects are essentially arrays, two-dimensional in our use case, of 32-bit val-
ues. On GPUs, there is explicit support for sampling 2D textures. They provide
hardware-assisted interpolation of pixels and efficient access through predicting
the location of data points that are to be retrieved next.

CUDA and OpenCL allow for two distinctive ways of providing access to texture
objects and samplers, fixed (set prior to execution) and bindless (allocatable during
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execution) texture slots. It was chosen to implement the simpler fixed allocation
scheme as it offers sufficient flexibility for our needs.

C++ does not include the concept of textures. Our C++ textures are implemented
as plain two-dimensional arrays, lacking the intelligence of their GPU counterparts,
but without decreasing performance compared to using arrays on the CPU.

Due to its hardware oriented nature, the texture API could not be unified from
the OpenCL-C perspective. Therefore, a new unifying API was introduced with
wrapper methods in all three languages.

Annotations

On the GPU, a hierarchy of three types of memory exists: Per thread (local, fastest
type), per work-group (shared), and per device, accessible from all threads (global,
slowest type). On the CPU, all addressable memory is accessible from all threads.

OpenCL and CUDA require the annotation of functions and objects to instruct
the compiler where to place them in memory. The CUDA API is wrapped in the
OpenCL notation, and for C++ statements are added that are nullified by the pre-
processor.

5.2.3 Towards a Common Execution Model

Conceptually, the steps required in getting an OpenCL or CUDA-device to execute
program code are highly similar. For the purpose of obtaining a single execution
model, we will consider them equal and focus on bridging the divide between their
execution model and that of CPUs. Effectively, this common execution model
implements the common execution hierarchy as defined in Section 5.2.1.

Program / Kernel / Function

OpenCL and CUDA have the concept of a program (kernel) that needs to be com-
piled prior to execution. Both define an explicit memory hierarchy and require
allocating and copying data to separate device memory in preparation of execu-
tion. Next, the program is loaded through API calls.

Conversely, there is no preparation for executing a CPU function from within
the context of its containing CPU-based C++ program, other then passing it argu-
ments. In support of the single execution model, a GPU-mimicing API has been
implemented in C++, mostly through inert (i.e., empty) function implementations.

Thread Control

The GPU supports a two-level thread hierarchy and three dimensions per level.
Specifying on how many threads per work-group and in how many work-groups
code should run is an important performance aspect in executing a GPU pro-
gram/kernel. Furthermore, one specifies the layout of the work-groups and the
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threads within the work-groups conveniently for the task at hand, e.g., governed by
the two-dimensional layout of the image data to be processed.

The CPU on the other hand has a flat, single level hierarchy with singular dimen-
sionality. Threads need to be explicitly managed, unlike the implicit thread syn-
chronization in the GPU. On GPUs, threading is inherent to the execution model,
one only specifies the number of threads that are to be run in what topology. On
CPUs, there is a cost associated with forking new threads and the joining of threads.

There exist solutions for implicit management of threads for C++ (e.g., OpenMP)
but their offered execution model is unreconcilable with that of the GPU. As such,
standard C++11 threading is used within the framework.

Memory

GPUs are often layed out as (PCI Express) expansion cards, so-called discrete
GPUs. These boards come with their own memory modules and memory con-
troller. To execute a GPU program, API calls need to be made to allocate GPU
memory, copy data from the host memory to the device and copy the program’s res-
ults back to the host. The operating system has no direct control over this memory
space.

There exist GPUs that are part of the same die as the host’s processor and that
effectively share the main memory space with the CPU. For this case, memory
needs to be reserved in the main pool and made available to the device. Such GPU
memory is physically shared but logically separated.

In both OpenCL and CUDA, there is a feature called unified memory that hides
the device/host separation, but such unified memory, especially in the discrete-
GPU case, continues to exhibit the reduced performance of a separated layout.
Within the common execution model, we have chosen to expose the separated lay-
out and require the programmer to perform the explicit copying between memories,
although the implementation in the CPU case consists of inert methods.

5.3 Practical Technical Challenges

This section lists the notable practical issues that arise when working to reconcile
OpenCL, CUDA, and C++ in a cross-technology framework. There are differ-
ences to overcome in compilation workflow, linking, and precision (next to hand-
ling platform-specific bugs and oddities).

Compilation Workflow

C++ uses ahead-of-time (AOT) compilation for the CPU source and embedding of
the GPU program into the application. CUDA uses AOT compilation as well (see
below), whereas OpenCL uses compilation at runtime. Prior to executing code im-
plemented using the cross-technology framework, there is a required compilation
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step, regardless of the target language that was selected. This step handles AOT
compilation where necessary.

When developing in CUDA, the choice is to be made between using the low-
level CUDA Driver API or higher-level CUDA Runtime API (see [12]). The CUDA
Runtime API is not fit for our purposes as it hides device access and handling in an
attempt to decrease the effort of programming on the GPU: CUDA C statements
are to be mixed with CPU code in the C/C++ source files, and at compile time the
main() function is modified and all kinds of support functions added in a developer-
opaque way. Instead, we employ the CUDA Driver API with separate .cu source
files, compiled to .cubin files and accessed from the CPU source. From CUDA
version 7 on, it is possible to use runtime compilation instead of AOT.

Runtime Linking

Both OpenCL and CUDA require the compiled application to be dynamically
linked to a library that implements the API. In a lot of cases, this yields a bin-
ary that cannot be used with other versions of the same library and or cannot be
used on other systems.

In employing OpenGL, it is common to use a library called glew (OpenGL Ex-
tension Wrangler) that finds and links to the correct API-implementing library at
runtime. It happens that there are clew [34] and cuew [35] variants that offer this
functionality for OpenCL and CUDA. These were used in order to facilitate easy
switching between API-implementing libraries and systems, one of the goals of
developing the cross-technology framework.

Numerical Precision

Not all hardware guarantees the same level of numerical precision. This can lead
to differing outcome in running equivalent code on multiple hardware platforms.

The IEEFE Standard for Binary Floating-Point Arithmetic (IEEE 754) standard-
izes how results of floating-point arithmetic should be approximated [43]. CPUs
perform floating point operations using either the x87 or SSE instruction set [6],
where the latter follows IEEE 754 more strictly [43]. GPUs typically do not follow
IEEE 754 in all modes of operation, allowing for optional less precise and faster
computation [20, 22].

To make sure that results are equal, independent of the target language and hard-
ware platform chosen, we adopt 32-bit floating point numbers and operations, us-
ing SSE on the CPU and not employing fast-math routines on the GPU.

5.4 Employing the Framework Illustrated
We illustrate the usage of the cross-technology framework by implementing a

simple function and creating entry points for calling it from OpenCL C, CUDA
C, and C++.
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#ifdef __KERNEL_CPU
#include “cpu_kernel.h”
3| #endif

DEVICE_NAMESPACE_BEGIN

n

71 dev_inl void sum_partial_results_uint8 (

dev_global uint xpartial_histogram ,
9 int num-_groups,

dev_global uint xhistogram)

int tid = (int)get_global_id(0);
13 int group.indx;

int n = num-_groups;

5 uint tmp_histogram;

7 tmp_histogram = partial_histogram/[tid ];

19 group_-indx = NUMBINS%3;
while (——n > 0)

21 {

tmp_histogram += partial_histogram/[group-indx + tid];
23 group_indx += NUMBINS*3;
}

histogram[tid] = tmp_histogram;

71}

29| DEVICE_.NAMESPACE_END

Figure 5.2: Implementation. Function that sums results over partial histograms, im-
plemented in the cross-technology framework. num_groups is the number of work-
groups that was used to compute partial histograms, partial _histogram is an array of
num_groups - 256 x 3 x 32-bits entries; 256 bins for values of red, followed by 256
bins for values of green, and 256 bins for values of blue.

dev_inl void sum_partial_results_uint8 (
dev_global uint xpartial_histogram ,
int num_groups,
dev_global uint xhistogram);

Figure 5.3: Header File. Header of function that sums results over partial histograms,
implemented in the cross-technology framework.

After implementing the function, see Figure 5.2, a header file is to be created
for it, see Figure 5.3. Through including this header file, entry points are obtained
for the target languages that have the following layout (see Figure 5.4, 5.5, and 5.6):

include compat_myplatform.h
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include algorithm.h
address_space qualifier void kernel name(kernel args) {

real _algorithm(kernel _args);

After compiling it for at least one back-end per target language, the function can
be run.

#ifdef OCL_.USE_ATOMICS
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
#endif

#include “compat/compat_opencl.h”
#include “sum_partial_results_uint8 .h”

kernel void histogram_sum_partial_results_uint8 (dev_global uint =*
partial_histogram , int num_groups, dev_global uint xhistogram)
{
sum_partial_results_uint8 (partial_histogram , num-_groups,
histogram) ;

Figure 5.4: OpenCL Entry Point

#include “compat/compat_cuda.h”
#include “sum _partial_results_uint8 .h”

__global__ void histogram_sum_partial_results_uint8 (uint =*
partial _histogram , int num_groups, unsigned int xhistogram) {
sum_partial_results_uint8 (partial_histogram , num-_groups,
histogram);

Figure 5.5: CUDA Entry Point
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#include “compat/compat_cpu.h”
#include “sum_partial_results_uint8 .h”

void histogram_sum_partial_results (uint xpartial_histogram ,
histogram , uint num_threads){
for(int i = 0; i < num-_threads; ++i){
for(int j = 0; j < 256%3; ++j ){
histogram[j] += partial_histogram/[i * 256 % 3 + j];
}

}
}

uint *

Figure 5.6: C++ Entry Point
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Chapter 6

Atomics

Implementing a program that has to run concurrently on multiple processing ele-
ments (PEs, see Section 5.2.1) adds challenges when compared to a single-threaded
program. A very important class of these challenges arises from utilizing shared
resources (e.g., OpenCL’s work-group shared local memory, see Section 5.2.1).
Data race conditions can and will occur unless special care is taken to avoid them.

A lot of computer hardware and programming languages have special support for
making sure that data races cannot happen, but enforcing this decreases perform-
ance. A common approach of mitigating this is to have the programmer indicate
which calls are to be protected. One way used to convey the intent that an oper-
ation should not be susceptible to a data race is through the concept of an atomic
operation.

Atomic operations, like their name implies, are always executed as a whole;
other operations competing for the same resources are prevented access until the
atomic operation has finished. In reality, most operations are not inherently atomic
but they can be made to appear so through both software and hardware. When
supporting these kinds of operations with hardware, the performance is usually
impacted positively as compared to using for example mutual exclusion in software
to achieve the same effect.

The parallel calculation of (partial) histograms relies heavily on these atomic
operations, particularity where we lookup the appropriate bin in the intermediary
result and then increment its counter (see Algorithm 2 and 3 in Chapter 4). With
these steps performed for each pixel in the image under analysis, the performance
of this operation is essential to the total runtime of the histogram procedure.

In this chapter, we will first illustrate the impact of write collisions, then lay out a
common way of implementing hardware-assisted atomics, after which we present
a model that simulates the impact of software locking.
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6.1 Write Collisions

To get an indication of the chance of write collisions to occur within the histogram
procedure, we turn to the well-known Birthday Paradox. In a group of 21 people,
there is an approximately 50% chance of a collision in birthdays to occur. The
Birthday Paradox is defined as follows, for b bins and a group size of n,

ho1 (2 (%), -
n

Reducing the number of bins to 256 (color values), and increasing the group size
to, e.g., 32 (number of processing elements within a compute unit), the chance of
a collision to occur goes up,

32! 256
P =1—-| =" ~ 0.87. 2
256,32 <25632 < 39 >> 0.87 (6.2)

Furthermore, as the color values within a block of data are obviously unevenly
distributed, we can expect collisions to occur in determining histograms.

6.1.1 Latency Hiding

GPUs can mitigate stalling resulting from write collisions through latency hiding.
This works through over-allocation and efficient context switching. It is possible
to allocate more threads on a compute unit (CU) (see Table 5.2) than it has pro-
cessing elements (PEs) available, in the form of more threads per block or multiple
blocks. When certain threads stall, the CU switches to different threads, allow-
ing the stalled threads to get unblocked in the meantime. Latency hiding is less
effective in a situation where locking is not achieved through hardware-assisted
atomics but relies on an software scheme, inherently less efficient. This is the case
on Nvidia Fermi and Kepler cards.

6.1.2 Compare and Swap

As atomics play an important role getting performance out of multi-processor sys-
tems, hardware vendors have started to add support for atomics quickly after the
first multi-processor machines became available. For GPUs, atomic support has
to be implemented per non-private memory type. The Nvidia Fermi architecture
does not include atomic support for global and per-block shared memory. Nvidia
Kepler has global atomic support, whereas Maxwell introduced atomics for per-
block shared memory.

One of the most common ways to implement atomics is the so called compare-
and-swap operation. The basic idea is that one updates the target value if and
only if the current value equals the expected value, hence, the value at the start
of the operation. In case the check fails, the operation is repeated. This leaves a
vulnerability, however, for the so-called ABA pattern.

28



The ABA pattern entails that we aim to do an update that is valid in the context
of the state being A, while in the meantime, other operations change the state to B
and successively back to A. In this case, it is not guaranteed that, semantically, our
update is still valid.

A means of effectively preventing this problem from occurring is extending the
compare operation to check for a counter of the number times that the value was up-
dated as well. At some point, this counter will overflow and wrap around, but with
increasing bit width, it becomes exceedingly unlikely of both value and counter
being what is expected after ABA-like patterns occurring. This type of augmented
compare-and-swap operation is used in modern Intel processors.

6.2 Absence of Hardware Atomics Simulated

In general, for GPU-like cases, it is advised to have a high ratio of computation
versus memory access. This is based on a relatively high cost of doing memory
operations, especially on global memory, in which on some cards the per-block
shared memory is implemented as well.

We use a mathematical model to simulate the absence of hardware atomics.
The histogram procedure is assumed to operate on per-block shared memory. All
memory write operations, whether successful or not, are assumed equally expens-
ive and reads are free. Without hardware-assisted atomics, threads need to obtain
a software lock. With hardware atomics, locking is done so efficiently that it is no
longer a dominant factor on performance. Of each compute unit (CU), only one
processing element (PE) can have a lock for a memory location at the same time.
The actual number of PEs per CU is used, that is, over-allocation is not included
in the model. Furthermore, as in the histogram procedure the number of compute
operations is highly limited, the compute time is omitted in the simulation model
altogether to better visualize the impact of the lock operations.

Figure 6.1 displays the minimum amount of expected collisions per block of
pixels in a two-dimensional image (the example image analyzed in Figure 4.1 is
revisited). Most 4 x 8-sized blocks of pixels have expected number write collisions
in the range 6-8.

6.2.1 Simulated Impact on Performance

We can easily compare expected CU performance for the average and worst case
in the absence of hardware atomics. Assuming a perfectly random image, statistics
practically guarantees (see Section 6.1) the occurrence of blocks with two pixels
sharing the same value, whereas blocks with three pixels with the same value would
be relative rare. In the worst case, all color values in a block for a certain channel
are equal.

We can calculate the impact on performance, for example, for the Nvidia Fermi
CU, which is 32 PEs wide. In the worst case, all operations would happen as if the
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Figure 6.1: Occurrence of Write Collisions lllustrated. Of a two-dimensional image, per
4 x 8-sized block of pixels, the number of occurrences of the most-occurring color value
in the red channel is reported. This serves as a minimum for the expected amount of write
collisions that will happen in this block in generating a histogram using a CU containing
32 PEs. In (a), the minimum number of expected write collisions is plotted per block of
pixels (displayed as a single pixel), in (b), the occurrence count of blocks with a certain
minimum number of expected write collisions is displayed.

CU only consists of a single PE, thus 32 times slower than the best case. Compared
to the average case, the performance penalty would be 3% = 16 times slower.

The model used to simulate performance of a CU with certain size is given in
Figure 6.6. The function create_threshold_image() provides control to test per-
formance from the average case (perfectly random image) to the worst case (all
color values per channel are equal) through setting all color values smaller than or
equal to a threshold value to 0. Increasing the threshold leads to a larger number
of expected write collisions per block of data. Blocks of pixels with random color
values are generated, with increasing portion of the value 0, thereby increasing the
expected number of write collisions. The count of the most-occurring color value
is used to express the minimum number of tries required to enable all simulated
threads to complete their write operation. Performance is expressed as the inverse
of the number of tries needed to finish all the work, a higher performance score
thus indicating better performance. 1000 runs are used to smoothen the results per
threshold setting.

Through determining the expected number of data collisions, gradually moving
from average case to worst case, we can determine device-specific performance
curves governed by the number of PEs per CU, see Figure 6.2. As can be seen, the
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Figure 6.2: Simulated Impact of Collisions on Performance. For increasingly homogen-
eous random images, the performance resulting from expected write collisions is simulated
for differently sized CUs, in absence of hardware atomics. The noise theshold indicates
which part of the color values are set to 0. Performance is reported as the inverse of the
number of rounds needed to allow all threads to finish their write operation. A smaller
CU’s performance is impacted less by increasing homogeneity of the input image.

simulated performance drop in running the histogram procedure is most present
in wide SIMT architectures and is data dependent. Uniformly distributed data or
non-posterized photos should not pose a problem. Wide SIMT architectures benefit
most from hardware-assisted atomics.

This would advocate the use of wider SIMT architectures over narrower ones.
However, in these results, compute times required for the reduction step (see Chapter
4) are omitted. These are greater for narrower CUs, as the input data is divided into
more blocks. Furthermore, using smaller CUs in hardware is less economic with
respect to the total amount of control logic required.

def create_threshold_image (width, height, threshold):
>?7 Threshold determines the values that are set to 0O
threshold_.img = numpy. vectorize (lambda x: x if x > threshold
else 0)
return threshold_img(randint(0,256,(width, height ,3)))

L)

Figure 6.3: Model Simulating the Absence of Hardware Atomics 1.The creation an image
where each pixel is either zero or some random value depending on the input threshold
value.
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def process_pixel_block (block):
>77 Create r,g,b histograms from the block of pixels
r_hist = defaultdict(int) # Initializes to O for all values
g_hist = defaultdict(int)
b_hist = defaultdict(int)
for i in range(block.shape[0]):
for j in range(block.shape[1]):
r,g,b = block[i,j,:] # Obtain rgb values (see line 4)
r_hist[r] += 1 # Increase counter of bin ’r’ (256 bins
g_hist[g] += 1 # per channel)
b_hist[b] += 1
return r_hist, g_hist, b_hist

LR

Figure 6.4: Model Simulating the Absence of Hardware Atomics II.Function that processes
3 channels in a block of pixels returning 3 histograms

S}

10

def hist_to_tries (hist):

>77 Tries required = count of the most—occurring value 7~
return max( hist.values (), default=1) # Minimum of 1 as
# performance = 1 / tries

Figure 6.5: Model Simulating the Absence of Hardware Atomics I11.We take the frequency
of the most occurring value as our model predicts this will be the dominating performance
indicator.

def simulate_CU_performance (width=4, height=8, runs=1000):
>?7 Performance of CU with n PEs, n = width % height,
modeled using blocks of pixels of width x height 7’

performance = []
for threshold in range(256): # Gradually increase portion of
tries = [] # value O

for i in range(runs):
block = create_threshold_image (width,height,threshold)
r_hist , g_hist, b_hist = process_pixel_block(block)
tries .append(hist_to_tries (r_hist) +
hist_to_tries (g_-hist) +
hist_to_tries (b_hist))
performance.append (1.0 / average(tries))
return r

Figure 6.6: Model Simulating the Absence of Hardware Atomics IV. Python code for sim-
ulating the performance of a CU with a certain number of PEs.
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Chapter 7

Empirical Study

The aim of this empirical study is to determine the performance factors that impact
the histogram operation, providing insight in what execution configuration to use
for a certain input. In order to achieve this, we run our histogram repeatedly on
different configurations of hardware and software, and with a diverse set of input
images.

The testing corpus is made up of both synthetic and real-life images. The non-
synthetic images have primarily been sourced from the image sharing website
Flickr. The synthetic images have been constructed to study certain corner cases,
as well as the influence of varying spatial distributions of equal values.

First, we lay out the setup for the study, then we explain the experiments per-
formed, after which we analyze the performance determining factors in the results.

7.1 Testing Setup and Preliminaries

Experiments are carried out on implementations of Algorithm 2 (Full Histogram
— Partial Input Space), described in Chapter 4. When run single-threaded, this
algorithm is equal to Algorithm 1. The histogram kernel is implemented in C++,
OpenCL C, and CUDA C using the cross-technology framework (Chapter 5). The
implementations are bound to Python for easy access and analysis of results, as
shown in Figure 7.1. The main testing loop is run in Python on the CPU, while all
the actual work happens on the device being tested.

For each experiment, we make sure that the GPU is not drawing to the display
or is loaded with other tasks. Prior to each test, a full tear-down and reconstruction
of the device and API under investigation is performed, including context creation,
device initialization, and kernel compilation, to make sure that the device’s state is
fully reset. The test is then run for a number of times, typically 1000.

Table 7.1 lists the tested API and hardware combinations. In testing GPU per-
formance, the choice of system CPU is of negligible influence. Therefore, we used
three different machines for the tests:

e Intel Core i7-2600K (Sandy Bridge) and an AMD R9 290X (GCN 1.1);
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import histogram

2| import numpy as np

# Pick the first device, can be a CPU, OpenCL or CUDA device
dev = histogram.device_list()[0]

# Create a 1024 x 1024 x 4 ‘image’
img = np.zeros((1024,1024,4))

# Run histogram kernel for uint8 input 100 times over our ‘image’
res_time = dev.test_histogram_uint8 (img, runs=100)

Figure 7.1: Test Execution Illustrated. The test suite is accessed through bindings for
Python, importable as the histogram module. The available devices are probed and made
available through histogram.device list(). In the example, the histogram kernel for uint8
input images is executed a 100 times on the first device from the list.

Table 7.1: Tested API — Hardware Configurations

API Driver Hardware Architecture
C++ Intel Core 17-2600K Sandy Bridge
Intel Core i7-4770K Sandy Bridge
OpenCL Intel 2014 SDK  Intel Core 17-2600K Sandy Bridge
Intel 2014 SDK  Intel Core i7-4770K Sandy Bridge
Nvidia 352 Nvidia GeForce GTX 750 Maxwell [11]
Nvidia 352 Nvidia GeForce GTX 660 Kepler [10]
Nvidia 352 Nvidia GeForce GTX 570 Fermi [9]
AMD 15.04 AMD R9 290X GCN 1.1
CUDA Nvidia 352 Nvidia GeForce GTX 750 Maxwell [11]
Nvidia 352 Nvidia GeForce GTX 660 Kepler [10]
Nvidia 352 Nvidia GeForce GTX 570 Fermi [9]

o Intel Core 17-2600K (Sandy Bridge) and a Nvidia Geforce GTX 660 (Kepler);

e Intel Core i17-4770K (Haswell) and a Nvidia Geforce GTX 570 (Fermi) and
a Nvidia Geforce GTX 750 (Maxwell).

All machines ran Ubuntu 14.04, and five compilers were used:
o C++: GCC 4.8 with glibc 2.19;
e OpenCL C: Intel 2014 SDK compiler;
e OpenCL C: Nvidia CUDA SDK 6.5.19;
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e OpenCL C: AMD OpenCL 2.0 compiler;

e CUDA C: Nvidia CUDA SDK 6.5.19.

7.1.1 Execution Stages

Depending on the hardware — API platform that the test suite is executed on, we
execute a (sub)set of the following steps. The steps required on discrete GPUs
running OpenCL or CUDA are (almost) identical.

Compile, Link, Load

First, the kernel needs to be compiled and linked for the device. OpenCL allows for
both runtime compilation and loading from a pre-compiled binary. CUDA allows
for runtime compilation starting from version 7. We used runtime compilation with
OpenCL and pre-compilation with CUDA version 6.5.19.

Transfer Input Data

Once the device-specific binary code has been loaded into the driver, we need to
transfer the input data to the device. For discrete GPUs, this involves copying
memory contents from the host memory over to the device, such that these are
stored in a physically separated DRAM that is located on the device.

Invoke the Kernel

Then, the kernel can be called with the launch parameters. Via the API, any shared
memory, read-only ranges, and other things required are set up so that the kernel
can begin its execution. Given that this is done for potentially tens of thousands of
threads and is a non-trivial operation, this might take anywhere from a few micro-
up to milliseconds, depending on the actual device and the launch parameters.

Run the Kernel

Then the kernel runs. Once all threads are done (note that they might not all finish
at the same time), the device hardware has to notify the host that it has completed
the kernel.

Transfer Output Data

Lastly, the output data has to be retrieved from the device’s DRAM to the main
system DRAM.

When executing the same kernel on different data in rapid succession, these steps
are usually pipelined in order to achieve a better throughput: Transfer of data and
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actual computation are performed overlapping so that either the computation or the
transfer can be the bottleneck, but not the serial result of both.

For integrated GPUs that share memory with the host CPU, the overhead of
copying data back and forth might be reduced to passing ownership of a few pages
of RAM plus any associated overheads in the OS or driver. This way, the data
transfer is then no longer linear in cost to the size of the data. This is known as
zero-copy.

For a CPU, the execution flow is radically simpler. All stages up to starting the
actual kernel are non-existent, and compilation has already been done, at compile
time of the host application. The actual execution is just a function call and the
completion is the return of that call.

7.1.2 Kernel Time vs. Application Time

In order to better reason about time required for executing the kernels, we introduce
two notions of execution time, see Figure 7.2:

~— KERNEL TIME ———

GPU

APPLICATION TIME

Figure 7.2: Notions of Execution Time. Kernel time is the duration of executing the his-
togram kernel, where K1 generates the histograms over the divided input data and K2
combines these histograms into one (see Algorithm 2, Chapter 4). Application time is the
kernel time plus the duration of the input data transfer T1 and the output data transfer T2.

o Kernel time: The ‘naked’ kernel execution time. This is the time it takes
to run the actual kernel, not accounting for data copy overheads. The ker-
nel time encompasses the time needed to generate full histograms over the
divided input data and the following reduction step that combines these full
histograms into a single histogram for the whole input data (see Algorithm
2, Chapter 4). Under normal conditions, the first kernel’s execution time is
linear to the input data size. The second kernel is also linear in its execution
time, but requires no locking mechanism (i.e., hardware atomics or software
mutexing) and the input data size is two orders of magnitude smaller.

e Application time: Total execution time of the kernel call. This includes
only the kernel time and the time required for data transfer. We are able to
measure this by pre-running the kernel once prior to doing measurements.

36



This way, it is already compiled and loaded, image data has been read from
disk, and the time required for this does not show up in the results.

7.1.3 Fast High-Resolution Time Measurement

Multiple calls to the application (i.e., kernel execution and data transfers) are star-
ted simultaneously, essentially queuing them as they are forced to wait on each
other due to data dependencies. These multiple calls are timed as a whole. This
approach makes sure that time introduced by possible notifications and interrupts
from the operating system is omitted. For measuring kernel time, the same ap-
proach is used: Multiple kernel calls, omitting the data transfers, are executed and
timed together.

The expected kernel runtimes are between a few microseconds and a few seconds.
Accurately measuring elapsed time less than a millisecond is not trivial. We utilize
a timer based on the RDTSC instruction that reads out a high-precision counter re-
gister in a single CPU clock tick, available on modern Intel processors (see Section
17.13.1 3b of [6]). This timer gives us 3x 10? increments in one second on a 3 GHz
machine and a resolution greater than one nanosecond, which is more than enough
to accurately measure phenomena in the microsecond range. An amount of 1000
calls was chosen for measuring kernel time and application time, as this yields a
high enough total runtime for accurate measuring while keeping the runtime sort
of reasonable. The whole suite of tests completes within a few hours on most
hardware.

Next to image characteristics, execution time is likely to be influenced by the
image size, i.e., the number of pixels contained in it. Performance is therefore
reported in pixels per second. The kernel time will be used to determine these
performance numbers over.

7.2 Experiments

We list the experiments performed in this study in the order in which they were
performed. As a first comparison, the histogram procedure (Algorithm 2, Chapter
4) is performed on six real-world images, shown in Figure 7.3. The GPU config-
urations show clearly superior performance compared to their CPU counterparts,
with, strikingly, the best performance being reached by an Nvidia GeForce GTX
750 Ti card operating under OpenCL instead of Nvidia’s ‘native’ CUDA. On the
higher performing devices, it is shown that images A and B are special cases, be-
cause they lead to collisions in processing. The effect of contention is most visible
on the Nvidia GeForce GTX 570 and 660, and less so on the AMD R9 290X and
Nvidia GeForce 750 Ti.
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Figure 7.3: Comparison on Real-life Image Set. Three GPU — CUDA, four GPU -
OpenCL, two CPU — C++ (C++11 threads), and two three CPU — OpenCL configura-
tions are compared on a real-life set of six images. The GPU configurations clearly show
better performance than the CPU configurations. Results are normalized for image size,
showing that images A en B are special input cases that hinder performance.
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7.2.1 Cost of Employing Atomics

In the follow-up experiment performed, we examine the computational overhead
induced by employing atomic operations versus their non-thread-safe counterparts;
only on GPU configurations, as these cannot be omitted on CPUs. Note that using
non-thread-safe operations generates invalid outcome in case of write collisions,
but here we are interested in comparing speed of operation only.

The results are shown in Figure 7.4. Atomic operations introduce overhead in
the form of checking and setting the mutex, and in requiring threads to wait for
other threads to complete their operation on the same memory address.

Atomic operations are either hardware-assisted (on Nvidia Maxwell architec-
ture: GeForce GTX 750 Ti, and on AMD’s GCN architecture: R9 290X) or imple-
mented through software mutexing (on Nvidia’s Fermi and Kepler architectures,
GeForce GTX 570 and 660). This is visible as R9 290X does not show perform-
ance decrease and GTX 750 Ti only shows performance drops on contention-heavy
images A en B, whereas GTX 570 and GTX 660 show overall better performance
in not employing atomics.

GTX 660 is impacted more by enabling atomics than GTX 570. As GTX 570
comes with more CUs, this possibly allows for more effective latency hiding (see
Section 6.1.1) as less data needs to be processed per CU.

7.2.2 Performance under Increasing Contention

Next, we examine the performance under increasing number of collisions in gen-
erating valid histograms, that is, using atomic operations. We run the histogram
procedure on images consisting of pixels with uniform randomly picked color val-
ues, i.e., white noise, all color values are equally likely. The idea is that if we
generate unbiased white noise, we will get really low pressure on the atomics (but
not zero collisions, in a block of 32 pixels, likeliness of a collision to occur is 87%,
see Section 6.1).

Thresholded Random

In generating an image containing white noise, we set a threshold value below
which all color values will be set to 0. As such, a threshold value of 3 means that
no pixel will have color values in the range [1, 3] and that the value O is four times
as likely to occur as the remaining color values. This is the method of controlling
the expected number of collisions described in Section 6.2.1. All added write
collisions occur in a single bin.

The results in running all platform configurations on images of 2048 pixels are
plotted in Figure 7.5. GeForce GTX 570 and GTX 660 show exponentially de-
creasing performance, while it kicks in later on the GTX 570, probably due to the
larger number of CUs. On GeForce GTX 750 Ti, the decrease is less than expo-
nential and smaller percentage-wise. The R9 290X shows little impact of increased
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contention, and on the CPUs, Intel’s OpenCL driver shows best performance, fol-
lowed by C++ and AMD’s OpenCL driver coming in last. The jitter shown in the
performance curves can be due to the cards getting overheated or another tempor-
ary suboptimal system state.

Device
CUDA: GeForce GTX 570, compute: 2.0
CUDA: GeForce GTX 660, compute: 3.0
CUDA: GeForce GTX 750 Ti, compute: 5.0
OpenCL: GeForce GTX 570
OpenCL: GeForce GTX 660
OpenCL: GeForce GTX 750 Ti

50 100 150 200 250

Device
CPU Intel Core i7-2600K
CPU Intel Core i7-4770K
OpenCL: AMD R9 290X OpenCL 2.0 AMD-APP (1729.3)
OpenCL: Intel Core i7-2600K (Build 43)
OpenCL: Intel Core i7-2600K AMD-APP (1729.3)
OpenCL: Intel Core i7-4770K (Build 83073)

50 100 150 200 250

Figure 7.5: Performance under Increasing Contention. On random images of 2048 pixels,
the noise threshold below which all values are set to 0 is gradually increased, increasing
contention. There is exponentially decreasing performance on GeForce GTX 570 and
GTX 660, whereas GeForce GTX 750 Ti shows less decrease and R9 290X appears almost
unhindered by increasing contention.
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7.2.3 Inherent Cost of Employing Atomics

In the fourth experiment, we assure zero collisions through pre-processing input
images, blockwise eliminating the possibility of collisions to occur by iteratively
changing pixel values. As stated, this is required as random images still give rise to
a minimal number of collisions. Furthermore, it is difficult to concisely determine
which parts of an image are prone to generating collisions with the naked eye. In
ensuring zero collisions, the inherent cost of atomic operations can be measured,
that is, the time required for checking and setting the mutex only.

Depending on the work-group size and layout set for a device, we can execute
a routine that slightly modifies the input image to make sure there will occur no
collisions in processing each block of pixels. The procedure is as follows: In a first
pass, per block of pixels to be processed by a single work-group, a histogram is
generated. In the second pass, for each pixel is checked whether its color values
have a count of more than one in the histogram. If so, with increasing distance is
sought for a color value that is still unused, after which the histogram is adjusted.

Figure 7.6: Collision Elimination Compared. Different strategies of traversing a 16-by-
16 block of pixels and clearing it of collisions are compared. The legend describes how
16 pixels per step are cleared of collisions relatively. Strikingly, there is difference in
performance after traversing in, e.g., 16 x 1 and 1 x 16.
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devices show similar performance in employing atomic and non-atomic operations. Ge-

Inherent Cost of Employing Atomics.

Figure 7.7

Force GTX 570 and 660 show performance lag in employing atomics, while GeForce GTX

750 Ti seems to in non-atomic operations.
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On image B, see Figure 7.7, different ways of eliminating collisions are com-
pared, see Figure 7.6. There is difference in performance given rise to by the way
in which a block of 16-by-16 pixels is subdivided into 16 pixel blocks that are made
free of collisions. This gives insight in how the over-allocated CUs (see Section
6.1.1) divide the 16-by-16 block over the actual PEs. Again, we see that AMD’s R9
290X is unaffected by different levels of contention, but is greatly outperformed by
Nvidia’s GeForce GTX 750 Ti, both shipping with hardware atomics.

We return to the six real-life images and clear them of atomics using 1 x 16
traversal, after which devices should show equivalent performance in employing
atomic and non-atomic operations. The results are shown in Figure 7.7. Software
mutexing GeForce GTX 570 and 660 show less performance decrease in employ-
ing atomic operations. While this includes the inherent cost of running their atomic
operations, it should be noted that possibly the images are not entirely collision free
as this would require traversal in strides of size 32. Again, GeForce GTX 570 is
hindered less than 660 due to more CUs. R9 290X shows the expected equival-
ent performance, employing its hardware-assisted atomics has no inherent cost,
whereas GeForce GTX 750 Ti even seems to show better performance in employ-
ing its hardware-assisted atomic operations than in its non-atomic operations.

7.3 Results Analyzed: When to Use What?

Based on the outcome of the experiments, the tested devices can be divided in three
distinct classes:

o Immune: The first class shows consistent performance that is unaffected by
changes in the expected number of collisions. These devices are not im-
pacted by anything other than the image size. This class consists of the
non-SIMT hardware, only the CPUs in our case, both in running OpenCL
and C++ implementations of the histogram procedure;

e Weakly influenced: The second class is somewhat impacted in case of ex-
treme (i.e., artificially high) pressure on the atomic operations. The hard-
ware in this category is AMD’s GCN-based card and Nvidia’s Maxwell card.
These cards have hardware support for atomics and the tests show the use-
fulness of this feature;

o Strongly influenced: The third class is the hardware strongly influenced by
the performance of the atomic operations. The Nvidia Fermi and Kepler
cards are in this category, both in running OpenCL and CUDA. They show
orders of magnitude worse performance under extreme collisions than the
weakly influenced devices. There is a strong correlation between the expec-
ted number of collisions and the resulting runtime, due to relying on software
mutexing for handling atomics within a work-group.
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Next, we analyze the performance determining factors in more detail, from the
perspective of collisions, by comparing CUDA with OpenCL and OpenCL with
C++, and by comparing CPU and GPU.

7.3.1 The Impact of Contention

For two images of identical size, the amount of work a device needs to do to build
a histogram in terms of the number of executed statements is equal. There exist
cases, however, where two images of identical size give rise to wildly differing
runtimes on the same device.

The main reason lies in contention for the same memory location. Since the
algorithm needs atomic operations on shared memory, threads in a work-group
trying to update the same value end up in a sequential queue. The time needed to
service all colliding threads depends on the speed of the atomic operation. During
this time, the whole work-group of threads, also those finished already or those that
had different values to update, is stalled.

The tests with synthetic images allow us to control the expected number of col-
lisions, enabling us to visualize the relation between this pressure on the atomics
and the runtime. Based on the results, we can say that this relation is architecture
specific: Most affected are the Nvidia Fermi (GeForce GTX 570) and Kepler (Ge-
Force GTX 660) cards, Nvidia Maxwell (GeForce 750 Ti) and AMD GCN (R9
290X) cards are not so much affected. CPUs have a single PE per CU in our used
Mapping II, see Section 5.2.1, Figure 5.1, thus cannot have collisions occurring.

The results put Fermi and Kepler in their own subclass over all hardware tested.
The reason behind this is the absence of hardware atomics in these architectures,
therefore relying on slower software mutexing, which makes that the cost of the
atomic operations becomes the dominant factor in the results. On test case Theshol-
ded Random, see Section 7.2.2, both in employing OpenCL and CUDA, similar
exponentially descreasing behavior is shown. This is exactly the trend predicted in
our artificial model simulating performance in absence of hardware atomics, see
Section 6.2. Here was assumed that taking the inverse of the maximum number of
collisions occurring in a block of pixels assigned to a single work-group predicts
performance.

7.3.2 CUDA vs. OpenCL, OpenCL vs. C++

Given the fact that CUDA is only available on Nvidia hardware, any comparison
between CUDA and OpenCL is highly limited. Within Nvidia’s platform, both
OpenCL and CUDA are implemented on top of Nvidia’s pseudo-assembly lan-
guage Parallel Thread Execution (PTX). While typically new features are suppor-
ted in CUDA first, this does not influence our results, in which operating under
OpenCL typically shows better performance than under CUDA.

The same holds for comparing OpenCL to GCC-compiled C++, the comparison
can be done on the three used CPUs only. The framework maps each core in
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a CPU to a compute unit (CU) with a single processing element (PE). All tested
CPUs support 4 x 32 = 128 bit SIMD instructions, and while explicit vectorization
was not used in the framework (see Section 5.2.2), both OpenCL and GCC attempt
to auto-vectorize instructions (see Section 3.1.1), effectively giving rise to CUs
containing four PEs. Intel’s OpenCL CPU driver is able to execute more efficiently
than GCC-compiled C++, possibly due to the fact that vectorization is more native
to OpenCL and that more information on thread interdependency is provided via
the program code. AMD’s OpenCL driver, however, is outperformed by C++,
while it should be able to run on Intel CPUs without sacrificing performance, which
points at a less mature OpenCL implementation.

7.3.3 CPU vs. GPU

When run on the CPU, the runtime of the histogram kernels (K1: generation, K2:
reduction, see Figure 7.2) is unaffected by the image data itself and appears to be
linear with the input image size. This is inherent to the used mapping, while the
tested CPUs do come with hardware atomic support. As data transfers to and from
a discrete device are not applicable here, kernel time equals application time (see
Section 7.1.2).

When run on the GPU, the kernel time scales linear with the input image size for
images with comparable color value distributions. Furthermore, the kernel time is
impacted by the actual image data, severely on cards that come without hardware
support for atomics. Moreover, transfer time of the input data has to be taken into
account, as well as the transfer time of the output data but this is negligible in
comparison.

In general, operating on GPUs comes with a high startup cost, but afterwards,
calculations are done much faster than on CPUs. As such, only from a certain input
image size, it becomes beneficial doing processing on a GPU. As a rule of thumb,
input images with size less than 2 megapixels are best processed on the CPU. For
larger images, the image size divided by the average GPU performance plus the
time needed for transfers has to be smaller than the image size divided by the CPU
performance.
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Chapter 8

Conclusions

Using the relatively simple histogram procedure, this work studies performance
determining factors in computing in parallel on SIMD and SIMT devices. Mod-
ern GPUs support SIMT, multiple threads running the same instruction, whereas
CPUs use SIMD, in which one instruction manipulates multiple memory locations
at once.

Image Size

GPUs allow for a much greater scale of parallelization than CPUs. While GPUs
offer a lot of power, getting high performance even for simple algorithms is non-
trivial. Their application is limited due to certain fixed costs (e.g., transfer of data
to the device, kernel invocation) requiring a minimal problem size to be able to
offer an performance increase through increased parallelization.

Image Content

In processing typical real-life images, contention for the same memory address
is not occurring at such a scale that performance of atomic operations becomes a
factor of importance. For specific cases, however, they can dominate performance,
in which hardware-assisted atomic operations becomes a very useful feature, as
compared to relying on software mutexing. For the histogram problem, the best
way of dealing with the lack of shared-level hardware atomics is to keep the number
of threads per work-group sufficiently small in order to keep the maximal impact
of contention manageable.

Hardware-related Factors on Performance

The way in which per work-group shared memory is implemented on a device has
a great impact on performance. At the slow end of the spectrum, it is physically
part of the global memory, whereas on the fast side, it is implemented as per-CU
cache. Furthermore, the amount of parallelization that a device offers through
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the number of PEs per CU, the number of CUs available, and the (possibly over-
allocated) number of threads that can be scheduled are determining factors. The
availability of hardware atomics and their actual implementation specifics can also
greatly impact performance in high-contention corner cases.

Performance Prediction

Performance on different types of GPUs is difficult to predict. Optimal layout para-
meters for the kernel invocation are highly device and problem-instance specific.
As such, choosing an high-performing runtime parameters for a broad range of
problems on a large set of platforms is not feasible.

Images smaller than two megapixels should be processed on the CPU. After
determining average GPU performance and the time needed for data transfers, as
is done in this study for a number of devices, it can be determined whether it is
beneficial to perform processing for a certain image size on the GPU or CPU.
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