High Throughput Heavy Hitter Aggregation
for Modern SIMD Processors

Orestis Polychroniou
Columbia University

orestis@cs.columbia.edu

ABSTRACT

Heavy hitters are data items that occur at high frequency in
a data set. They are among the most important items for an
organization to summarize and understand during analytical
processing. In data sets with sufficient skew, the number of
heavy hitters can be relatively small. We take advantage of
this small footprint to compute aggregate functions for the
heavy hitters in fast cache memory in a single pass.

We design cache-resident, shared-nothing structures that
hold only the most frequent elements. Our algorithm works
in three phases. It first samples and picks heavy hitter can-
didates. It then builds a hash table and computes the exact
aggregates of these elements. Finally, a validation step iden-
tifies the true heavy hitters from among the candidates.

We identify trade-offs between the hash table configura-
tion and performance. Configurations consist of the probing
algorithm and the table capacity that determines how many
candidates can be aggregated. The probing algorithm can
be perfect hashing, cuckoo hashing and bucketized hashing
to explore trade-offs between size and speed.

‘We optimize performance by the use of SIMD instructions,
utilized in novel ways beyond single vectorized operations,
to minimize cache accesses and the instruction footprint.

1. INTRODUCTION

Databases allow users to process vast amounts of data.
Nevertheless, due to the limitations of human perception,
the conclusions we draw from this volume of information
are often summarized in a few words or charts. One way to
narrow down the volume of information presented is to focus
on the most important items among those being analyzed.

One measure of importance is the total contribution an
item makes to the whole. Items that contribute the most are
called heavy hitters. Heavy hitters can be defined in absolute
terms (e.g., items occuring more than 1% of the time) or in
relative terms (e.g., the top 100 items). In the scope of this

*This work was supported by NSF grants 11S-0915956 and
11S-1049898.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DaMoN’13, June 24 2013, New York, NY, USA

Copyright 2013 ACM 978-1-4503-2196-9/13/06... $15.00.

Kenneth A. Ross*
Columbia University
kar@cs.columbia.edu

paper we use the top-K definition, but our approach can
easily be modified to account for other definitions. In many
real-world datasets, skew in the data means that aggregate
data about a small number of heavy hitters convey a lot of
information. Our goal is to identify the heavy hitters and
calculate exact aggregates (count, sum, etc.) for those items.

Now that systems with very large main memories are
available, the performance bottleneck has shifted from I/0O
to CPU and memory [11]. Modern commodity processors
are multi-core systems. Parallelism and the ability to scale
to many execution units have become primary performance
considerations. Many database algorithms have been re-
designed in the context of in-memory multicore platforms.
With such issues in mind, we focus on parallel computation
of heavy hitters from a memory-resident dataset.

Recent work on in-memory aggregation has shown that
sharing a common aggregation data structure among many
cores is a bad idea when there are heavy hitters [4]. Con-
tention for popular data items causes significant delays, se-
rializing execution and preventing the full utilization of the
parallel hardware. A solution to this problem is to keep
a private running aggregate for each heavy hitter on each
core, to avoid coordination overheads. The final totals can
be combined at the end of the pass.

When the number of grouping keys for an aggregate com-
putation is limited, aggregation can be very fast. Under such
conditions, Ye et al. was able to aggregate over one billion
records per second on a commodity machine [19]. However,
when the grouping cardinality increased beyond the CPU L1
cache capacity, performance dropped by an order of magni-
tude, even for distributions with heavy hitters that are likely
to remain cache-resident. The latency of accesses to memory
for non-heavy hitters dominated the performance.

In this work, instead of computing the aggregates for the
whole table, we will only compute the aggregates of a few
heavy hitter elements. By ignoring the non-heavy hitters,
the entire aggregation is done in-cache, and the through-
put is an order of magnitude higher. Further, by using
branch-free SIMD implementations of various aggregation
data structures, we are able to get additional speed im-
provements, significantly beyond the performance of Ye et
al. [19] even for cache-resident aggregates. We utilize the
same SIMD registers to hold multiple items (e.g.: counts &
sums) and minimize the instruction footprint.

To identify the heavy hitters, we use a sampling step prior
to aggregating the full data. In a billion-element data set,
the cost of sampling even a million elements in advance is
small relative to the cost of scanning the base data. The

basic idea is to count both matches and nonmatches for keys
in the aggregation table. The biggest nonmatch count gives
us an upper bound on the contribution of an item whose key
was not explicitly inserted into the table. We can tune the
number of keys and nonmatch counts to explore trade-offs
between the number of heavy hitters explicitly counted, the
bound on heavy hitters that might have been missed, and
the overall performance of the algorithm.

Another trade-off that we explore is the design of the hash
table used to perform the aggregation. A simple hash table
without overflows or chaining is very efficient. However, the
birthday paradox ensures that only a limited number of en-
tries can be inserted before a collision is encountered. This
collision bound can be extended by iterating through many
random hash functions (using a fixed time budget for this
process) and choosing the function with the highest occu-
pancy before a collision. The bound can also be extended
by having a smaller number of hash buckets that can each
hold more than one element. Alternatively, schemes based
on cuckoo hashing [16] offer higher occupancy guarantees,
at the cost of using multiple hash functions and looking up
more than one hash cell per key. We show how one might
choose between the various alternatives.

Whichever method is used, our heavy hitter capacity will
be limited by the size of the L2 cache memory. Even in
a typical L1 cache with size of 32KB, we are able to store
a few thousand keys along with counts and other data. A
few thousand keys may be a small fraction of the keys in
a dataset. Nevertheless, for data with Zipfian skew, the
top thousand heavy hitters capture a large (and presumably
interesting) fraction of the data. In the event that the user
needs even more heavy hitters, we can fall back on standard
aggregation methods. If the top thousand or so items satisfy
the user most of the time, then it is a net win to use our
specialized heavy-hitter methods because they are so much
faster than standard aggregation.

In some cases, such as for uniformly distributed data, we
may not identify any heavy hitters. Even in such cases,
the nonmatch counts will allow us to bound the maximum
frequency possible for all items. This behavior should not be
considered a failure of the algorithm. The absence of heavy
hitters beyond a certain threshold may be all that the user
needs, such as when the task involves looking for outliers.
In such cases, a fast heavy-hitter algorithm is better than a
slower complete aggregate computation for all keys.

Much prior work on heavy hitters (discussed in Section 1.1)
has focused on streaming applications, where memory is lim-
ited and one typically uses just one pass through the data.
We emphasize that our target application is not streaming,
but rather data analytics and decision support.

We present a novel approach that computes aggregates
for the heavy hitter elements of a dataset. We design cache
resident structures, copied between cores, based on perfect
hashing and a novel hash probing method using SIMD. We
show that this combination allows the algorithm to run at
extremely high throughput rates. Using sampling and a
number of different configurations for the hash table, we
can exploit all tradeoffs between performance and the cardi-
nality of the output (and quality of the extracted summary).

In the remainder of this section we present related work.
In Section 2 we describe our approach in more detail, illu-
minating some key implementation details. In Section 3 we
show our experimental evaluation and conclude in Section 4.

1.1 Related Work

Heavy hitters have been extensively studied in data stream
analysis. For some data stream scenarios, such as those mo-
tivated by network traffic analysis within a router, memory
is limited and data is available only within a narrow time
window. Under such conditions, many algorithms approxi-
mate heavy hitter counts because there is not sufficient space
to maintain complete count information. As previously men-
tioned, our work does not assume limited memory or a sin-
gle pass through the data. We also aim to compute exact
counts and other aggregates, rather than an approximation,
for items that are heavy hitters.

Counter based algorithms for heavy hitter identification in
streams include Frequent [10, 14], Lossy Counting [12], and
Space Saving [13]. Challenges include determining which
elements to count, and how to approximate the counts par-
ticularly when new elements become frequent in the stream.
Sketch based algorithms include Count Sketches [2] and Count-
Min Sketches [5]. Such algorithms compute summaries of
the distribution that allow the approximate inference of heavy
hitters and other queries. See [6] for an extensive analysis
and experimental evaluation of these methods.

Aggregation on modern multi-core CPUs has been studied
in [3, 4, 19]. A small local table stores frequent keys to
avoid contention between threads in shared data structures.
While these methods work well for a small number of keys
that stay cache resident, the throughput deteriorates rapidly
in the presence of more distinct keys, even for heavy hitter
distributions. By focusing on heavy hitter aggregates alone,
our method runs more than an order of magnitude faster
and retains the same performance for more distinct keys.

Single Instruction Multiple Data (SIMD) instructions have
been used to speed up database algorithms [20, 21], in-
cluding hash probing in bucketized cuckoo hash tables [17].
SIMD execution has a secondary benefit of being able to
avoid branches for many inner-loop computations [17, 20,
21], an important benefit since branch mispredictions can
be an important performance overhead.

Database algorithms sensitive to modern hardware have
been studied in several contexts. MonetDB/X100 [1] is de-
signed to operate primarily in the CPU cache. Recent work
maximizes the time column values remain in registers based
on compiled code for query execution [15]. Other recent
work that focused on frequent item counting in streams [18],
discusses filtering frequent data before applying Space Sav-
ing [13]. The approach is augmented by the use of SIMD for
batch item comparisons and count increments.

Overall, most past work on SIMD uses arrays of elements
of the same type, performing many instances of the same
operation using one SIMD instruction. We go beyond this
uniform processing, handling different kinds of work in each
SIMD cell and reducing the total number of instructions.

1.2 Example Query

We show an example of a heavy hitter aggregation query.

select product_id, count(*) from sales
group by product_id order by count(*) desc
limit 1000;

Other variants, such as heavy hitters defined by a lower
bound on frequency, are similar to our approach, but are not
discussed in the scope of this paper. One can easily adjust
our techniques to other heavy hitter definitions.

2. DESIGN & IMPLEMENTATION

2.1 Sampling

The first step of the process is sampling the data to ex-
tract heavy hitter candidates. Since the cost of sampling is
known in advance, we can explicitly decide on the sample
size so that it does not take more than a small fraction of
the total time. In our target scenarios with billions of input
records, we will be able to construct relatively large samples
containing millions of elements. Such large samples will help
us obtain good statistical bounds on the likelihood that we
have sampled all true heavy hitters.

As described, we use sampling to identify the most likely
heavy hitter candidates for the aggregation phase. We clearly
need to include the top K items from the sample. We actu-
ally include more items (subject to capacity constraints) for
two reasons. First, it could well be that items outside the
top K in the sample are actually in the top K of the full
data set, so all items with counts close to that of the Kth
item in the sample should be included. Second, by counting
additional items with high counts (even if not sufficiently
high to be in the top K), we will be able to improve the
accuracy of the validation step, described below.

2.2 Validation

In addition to aggregating a set of candidate heavy hit-
ters, we can also simultaneously compute aggregates for non-
candidates. Rather than aggregating non-candidates indi-
vidually, we group them into hash buckets and compute an
aggregate for each bucket. Similarly to the sketch-based
techniques described in Section 1.1, the largest aggregate
A among all hash buckets provides a conservative empirical
bound on the heaviest hitter that is not among the candi-
dates. We need K candidates to have aggregate above A.

The quality of the bounds derived by aggregating the non-
candidates will depend on the heavy hitter distribution, as
well as the number of buckets. The sample itself can pro-
vide an estimate of the fraction of the data set that is con-
centrated in the non-candidates, which will be useful when
choosing the number of hash buckets for the non-candidates.
Using more buckets gives a better accuracy bound, but may
slow down computation because the hash table may need to
reside in the L2 cache rather than the L1 cache.

Even with good choices for the parameters the validation
step may fail. Failure may happen for one of several reasons:

e The user is too ambitious, the specified K is too big.

e The user is not especially ambitious when specifying
K. Nevertheless, the distribution is such that the Kth
element reaches sufficiently far into a range where there
are many items with similar counts.

e There is sufficient skew in the non-candidate counts
that the maximum count among the non-candidate
buckets is high. We can expand the number of candi-
dates (subject to capacity constraints) to reduce both
the mean and variance of non-candidate counts.

If a user truly wants information about many items, then a
complete aggregation of the dataset may be necessary. For
experimental guidance about what constitutes “too many,”
see Section 2.2. In general, for datasets with sufficient skew,
we will be able to successfully and efficiently identify from
hundreds up to thousands of heavy hitters.

2.3 Hashing

The basic structure we will build upon is the regular hash
table, which we will heavily optimize for throughput. As
our hash function, we will use multiplicative hashing. Mul-
tiplicative hashing is a very fast hashing method, and the
class of multiplicative hash functions is universal [7]. For
any given key size and table size, a hash function is deter-
mined by a single randomly chosen odd multiplier of size
matching the key size. Once we have identified the candi-
date keys to aggregate from the sample, we decide on the
hash multiplier. The goal is to map those candidate keys
into the table perfectly, i.e., without collisions. A collision-
free table will allow a simpler implementation and improve
performance by eliminating branching and chaining.

While a random hash function may exhibit a few colli-
sions (due to the birthday paradox), we have sufficient time
to try a fairly large number of multipliers to find one that is
collision-free on the candidates. On our experimental plat-
form, we were able to try 10° multipliers in 50-60ms and
were able to find a perfect function for roughly 250 keys out
of 2048 slots. If we need to fit more keys, we will shift the
design to a bucketized hash table. A 4-wide bucketized hash
table would fit roughly 820 keys under the same conditions.
We can compute the probability of overflowing any bucket
of an m-wide n-sized table, using an O(nm) algorithm [9]
and then compute the expected fill rate after a number of
tries. In order to further increase the fill rate up to 99%, we
will use cuckoo hashing [16]. Cuckoo hashing uses two hash
functions and perfectly hashes keys by moving colliding el-
ements to their alternative hashed position. A flat cuckoo
hash table will further increase the occupancy to 60-65%.
Merging the two techniques results in the bucketized cuckoo
table, which allows 90-92% occupancy in the 2-wide version,
and 98-99% in the 4-wide version [17].

Multiplicative hashing can perform poorly in cuckoo hash-
ing schemes [8], although the poor behavior is less noticeable
in bucketized cuckoo hashing [17]. We overcome this prob-
lem, by repeating the process a few thousand times to get as
many keys as possible in the table. Insertion time, normally
a weaker point of cuckoo hashing for bigger tables (since we
move items around multiple times), is not an issue here.

2.4 Updating with SIMD

A straightforward hash probe inner loop implementation
for computing a count and sum for each group might be (in
the C programming language):

if (key == table[hash].key) {
table [hash] . count++;
table[hash] .sum += value; }

The if test typically leads to a conditional branch in the
inner loop. To avoid conditional branches, when we probe
a key we have to execute an update to the aggregate of the
table whether or not there was a match.

We start with two ideas previously used for branch and
SIMD optimization. First, control dependencies can be con-
verted into data dependencies by treating the result of the
comparison as a variable. Second, comparison results can
be used as masks for subsequent operations [20, 21]. We use
the term nullification to describe this and rewrite the above:

equal = -(key == tablelhash] .key 7 1 : 0);
table [hash] .count -= equal;
table[hash] .sum += value & equal;

The binary representation of —1 is a word containing all
1 bits, making it suitable for masking. When there is no
match, the mask is zero and the sum and count are un-
changed. The compiler generated predicated CMOV instruc-
tions to do the updates. The improvement is 8%-10%.

The next step is to transform this implementation into
one that uses SIMD. For the discussion below we assume a
128-bit SIMD register type as in x86 SSE instruction set, but
the principles used also apply to other SIMD sizes. Figure 1
shows how data flows during probe/aggregation.

Key| 0 0 0 Key | Cnt Sum
Equallty
(32 bit)

1|0

Add]
X | X X ‘ 1|o‘»1|0‘ X ‘ (64-it

0 | 10 | Value | O

Figure 1: SIMD method for count, sum(value).

Value—» 0 | 1 \alue| 0 = Logical
And

Cells labeled “X” are unimportant; we don’t care what val-
ues they hold. Note that the value goes into the low-order
(leftmost) bits of the 64-bit vector; the data representation
is little-endian. The 1|0 goes into the high-order bits, so
that it will increment the count but not the key. The hash
table entry is loaded only once, and stored only once, unlike
the scalar code. The speedup achieved using this method
(which will be described in more detail in Section 3) is 76%.

SIMD techniques become even more useful for bucketized
hash tables. Figure 2 shows SIMD probe implementation
for buckets of size 2 for the same count and sum query.

key| 0| 0o Key‘ Cnt Key‘ Cnt
Key
* Key Cnt Key‘Cnt
Key| 0 |Key| 0 Sub 1 112]2
(32 -bits)
‘ Equality Sum 1 Sum 2
(32-bits) ‘
\Value| *
-110 -110
‘ Value| 0 * 0 0 K1) 0 (K2)
Add
Value| 0 |Value| 0 > LoAgr:§a| (64-bits)
Value | 0 | Value | 0 Sum 1 Sum 2

(K1) (K2)

Figure 2: 2-wide table for count, sum(value).

To compute min and max values, we use specific max and
min SIMD instructions that avoid branching. If the numbers
are unsigned, we nullify the max update by turning the value
to 0 by “and”-ing with the key comparison mask. For min
update we turn the value to -1 by “or”’-ing with the mask’s
inverse. In case we need signed numbers, the fastest way to
do it is to store them in unsigned format and add or subtract
the difference before displaying them. For simple sums (i.e.,
sum(value)), we subtract the count x23!, offline at the end
instead of doing conversions with each update.

When the aggregation operations required from the query
are more complicated, the payloads are longer and flat tables
become significantly faster than a wider bucketized table.
They have less data to update and need fewer loads and
stores. We use query 3 presented in Section 3, as our all-in-

one case. In that query, the size of the candidate entry is 32
bytes and the bucket of the 4-wide hash table is 128 bytes.
Thus, we need to load and store (most times with the same
value) at least 8 times, with 128-bit SIMD registers.

To alleviate this problem, we divide payloads per key and
access only the ones in the same offset as the matched key.
For query 4, ideally we would like to access 16 bytes to
read the 4 keys and 28 bytes for a single payload. We would
have to compare with the keys, extract the offset (0-3) of the
matched key, then load and update a single payload. In case
no key actually matched, we must generate a mask to nullify
it. In practice, we use a combination of selective payload
update and partial nullification (i.e., when you rewrite 2 or
4 words but only one changes value). To extract the key
offset, we invert the equality mask and get the minimum
value and offset inside it (using phminpusuw from SSE4.1).

2.5 Non-Candidate Counters

As discussed in Section 2.2, we use non-candidate counts
to validate our heavy hitter candidates. The most generic
implementation is to maintain a table of counts that is sep-
arate from the table containing the candidates. We can fine
tune the size of the candidate and non-candidate tables to
match the dataset distribution. Since smaller tables will
fit in faster memory, we aim to limit the size of the tables
subject to our accuracy requirements.

Suppose that we have assembled our heavy hitter candi-
dates and we know (or estimate) that they have a cumula-
tive frequency of A. If 1 — A is much larger than A, then
an equal number of non-candidate counters would not help
at all. We need more non-candidate counters to dilute the
1 — A to below the desired threshold.

Let m denote the number of non-candidate counters, and
n the total count among all non-candidates as estimated
from the sample. It is overly optimistic to simply divide n
by m to derive a threshold, since the true threshold will be
the count in the largest hash bucket, not the average bucket
count. We would like to obtain an estimate b(m,n) of the
total count in the largest bucket. We can use the algorithm
of [9], which is somewhat optimistic because it assumes n
independent choices; in our case duplicate keys map to the
same slot. Nevertheless, it is likely to be a reasonable es-
timate if the individual item frequencies are small among
the non-candidates. Alternatively, one could try several dif-
ferent m values on the sample to get an empirical estimate
for b(n,m). The inclusion of additional keys in the candi-
dates table can reduce individual item frequencies among
the non-candidates, and thus the b(n,m) estimate.

If Ck is the relative frequency of the Kth item in the
sample, we need b(n,m) < CxN. Larger values of m will
help the accuracy thresholds, and will only hurt performance
once a cache size threshold is crossed. One will therefore
typically make one of a small number of choices for m based
on the maximum capacity of each cache level.

Ideally, we would like to update only one of the two tables
each time. Branching code could achieve that. However, it
would make the throughput dependent on the dataset distri-
bution, because of mispredictions that will occur. Instead,
we always update both tables, nullifying only the update to
the candidates table. The non-candidates table is updated
every time. At the end of the probing loop, we subtract each
candidate’s count from its respective non-candidate table lo-
cation to obtain the true non-candidate counts.

count-L1/L2

count, sum(value) - L1/L2

count, min(value), max(value), sum(value), sum(value*value) - L1/L2

capacity (# keys)

capacity (# keys)

o

g 4 T T 4 T T 4 T T T T

g 35 XSMIOn 5 wide Reguiar | 35 XSMIOn 5 wide Regular | 35| XSMION 5 wide Regular |
o 3 4-wide Regular 3 4-wide Regular 3L 4-wide Regular |
g 1-wide Cuckoo 1-wide Cuckoo 1-wide Cuckoo

3 25 25 25 - R
5 2 X _2< . 2 2+ R
= X L 4
3 1.5 x 1.5 % Xy 1.5 iy

5 1 + 1 + 117% 7
g &+

5 05 0.5 0.5

[1 L I L 0 L L L 0 L 1 ! L

= 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

capacity (# keys)

Figure 3: Throughput vs. capacity skyline for hybrid L1/L2 table (all queries).

3. EXPERIMENTAL EVALUATION

The platform we used for our experiments has 2 Intel
E5620 processors (Nehalem) @ 2.4GHz with 4 cores each.
The size of L1 cache is 32KB for data and 32KB for instruc-
tions, L2 is 256KB and both are private per core. The L3
is 12MB and shared throughout each chip. The processors
include all SSE instructions and support simultaneous mul-
tithreading of 2 threads per core. The total RAM capacity
is 48GB. We use 3 queries that reflect increasing complexity:

Q1: select count(*) from table group by key ...
Q2: select count(*), sum(value)

from table group by key ...
Q3: select count(*), min(value), max(value),

sum(value), sum(value * value)
from table group by key ...

Figure 3 shows the throughput (in billions of records per
second) of various configurations. The candidate table is
32KB (L1) and the non-candidate table is 192KB (3/4 L2).
The number of slots depends on the size of the aggregates.
When SMT is enabled, table sizes are halved. We used 10°
distinct keys and a randomly generated Zipf with 6 = 1.

Not all methods are suitable for all queries. We are in-
terested in the configurations that are on the skyline, i.e.,
there is no other configuration greater in both throughput
and capacity. The capacity of methods decreases with the
complexity of the query, since we use space for aggregate
calculation. For example, Q2 needs double the space of Q1,
so it fits almost half as many elements. Q3 needs double the
space of Q2. The non-candidate counters are unaffected.

For simple aggregation workloads, such as count, the 4-
wide table is slightly faster than the flat table: The data is
already vectorized, so fewer instructions are needed in the
inner loop. The number of instructions becomes less impor-
tant when we access more than one column or use cuckoo
hash tables, as there is more overlap with cache accesses.

L1-resident hybrid table (L1 split 1:1)

L2-resident hybrid table (L2 split 1:1)

Bucketized tables increase capacity by allowing more keys
to be perfectly hashed. For the 2-wide table, we can hash
twice as many candidates as the basic table, and for the 4-
wide table we almost quadruple the number of candidates.
Since the probability of fewer collisions does not scale lin-
early, these ratios drop as we go from Ll-resident to L2.

As the select clause of the query becomes more compli-
cated, hash tables need to hold and update a longer pay-
load. The performance impact is more noticeable in buck-
etized hash tables. We mentioned in Section 2.4 a way to
bypass long re-writes, by extracting the offset of the matched
key to work on a single payload. This technique is not fast
enough to always be our best choice; computing few aggre-
gate functions on 2-wide tables, it may be faster to process
both payloads, even if at most one may be updated.

For most queries, the 4-wide cuckoo configurations are
the slowest. For Q2 they run 20% slower than 2-wide cuckoo
tables. Since the capacity gap between these two methods is
less than 10%, the trade-off favors the 2-wide cuckoo table,
unless the query really needs that extra 10% capacity.

The most important attribute of configurations with non-
candidate counters is the accuracy they can achieve, i.e.,
how many heavy hitters can be validated based on the max-
imum non-candidate count. In Figure 4 we show the num-
ber of heavy hitters achieved under Zipf for different 6 using
100,000 distinct keys. Skew decreases as one moves to the
right in Figure 4; 6§ = 0 is uniform. As expected, from near-
uniform distributions we cannot extract any heavy hitters.
For very high 6 values, the distribution has relatively few
distinct keys and we can extract all of them.

The cuckoo tables validate many more candidates than
the regular tables, and bigger buckets also help, even when
the methods use the same number of miss counters. The
L2-resident tables allow us to validate 3—8X more heavy hit-
ters than the Ll-resident tables, because the non-candidate
distribution is spread over many more counters. Admitting

L2-resident hybrid table (L2 split 1:3)

T T T T 3000 T T T T 3000 T T T
700 - 1-wide Regular b 1-wide Regular 1-wide Regular
600 2-wide Regular 2500 |- 2-wide Regular - 2500 2-wide Regular
4-wide Regular 4-wide Regular 4-wide Regular
2 500 1-wide Cuckoo - 2000 1-wide Cuckoo 2000 1-wide Cuckoo
F] 2-wide Cuckoo 2-wide Cuckoo 2-wide Cuckoo
400 4-wide Cuckoo 1500 |- 4-wide Cuckoo - 1500 - 4-wide Cuckoo
£ 300 R
8 1000 |- + 1000

200
100

500

500

0

I
08 0. 04 02
theta

Figure 4: Correct keys under

TS L
08 06 04 02 O
theta

theta

08 06 04 02

Zipf distribution for L1 & L2 tables (Q2, SMT off).

. 1-wide 2-wide 4-wide
Candidates | Non-Cand. | Scheme | e o~ Time | IH. | Freq. | Time | IH. | Freq.
Regular | 2.32 9 362| 307| 10| 362| 347| 10| 3.62
L1 x1/2 L1 x1/2 Cuckoo 341 12| 362| 393| 12| 339| 478| 12| 345
Regular | 215 | 14| 339 | 255| 14| 295| 328 16| 272
L1 x1/4 L1 x3/4 Cuckoo 3.47 15| 278 | 3.73 16| 278 | 4.59 16 | 2.70
Regular | 359 | 92| 1.00| 3.67| 145 0.75| 411 | 187 | 0.69
L2 x1/2 L2 x1/2 Cuckoo 449 | 217 | 063 | 467| 260]| 061| 572| 23| 057
Regular | 277 | 103 | 095 | 208 | 146 | 0.78 | 368 | 187 | 067
L2 x1/4 L2 x3/4 Cuckoo 3.92| 215| 062 428| 20| 059| 538| 268 | 057
. L2 x3/4 Regular | 259 | 84| 089 | 283 | 121 088 | 355 | 141| 080
Cuckoo 374 162 073| 411] 179| o072| 524| 179 | o071

Figure 5: Time (sec), # correct HH, min freq (x10™*) on wikipedia with separate tables (Q2, SMT off).

more candidates is lessening the cumulative frequency of the
rest of the dataset, dispersing a smaller load across non-
candidate counters and decreasing the validation threshold.
Similarly, it pays to use a 1:1 split rather than a 1:3 split.
Thus, on Zipf distributions the space is better utilized for
extra candidates rather than extra non-candidate counters.

In our final experiment, we test our method on a realistic
dataset. We used Wikipedia access data, provided freely
in aggregated form. We assembed files storing URLs and
access counts for the period from the 1st to the 14th of
January 2012 for English URLs. We generate two columns,
the URL coded as a 32-bit unique id, and the time of each
access at hourly granularity. A row is generated for each
visit, and the rows are randomly shuffled. The total number
of rows is 3,463,321,585 and there are 102,216,378 distinct
keys (URLs). In the dataset, the three heaviest hitters have
a frequency of about 1.6%. The first 100 keys have a total
frequency of 6.65% while the first 10,000 account for 25.3%.
We use a sample size of 10,000,000, which requires 100ms.

We are interested in three results per case: the number
of heavy hitters validated, the execution time and the fre-
quency of the minimum-frequency element we extracted. We
summarize these results in Figure 5. We report an average of
100 runs. The “Hit” and “Miss” column describe the location
of the candidate and non-candidate table respectively.

We studied the sample-based estimations for how many
heavy hitters we will extract in each case. The estimations
are never more than 10-15% from the final result. Thus, to
choose the best fitting method, adding a 15% “fudge factor”
to the sample-based estimate seems empirically justified.

To extract the most heavy hitters, the best configurations
were the L2-resident ones, as expected. We extract more
than 250 heavy hitters using the bucketized cuckoo methods,
on average. If fewer heavy hitters are needed, alternative
methods could do the job in less time. The ideal minimum
frequency is the cumulative frequency of non-candidates (=
0.85 here) divided by 49, 152 (3/4 of the L2), i.e., 1.7 x 1075,
We differ from it by a small factor, reaching < 6 x 107°.

4. CONCLUSIONS

We presented a method to quickly aggregate the heavy
hitters of a table, by first sampling them, computing their
exact aggregates and then validating. By not aggregating
all distinct groups, we can focus on a small working set
composed of the most important elements. We build cache-
resident structures to hold them and rapidly compute their
aggregates. Through careful use of SIMD operations, we

can boost performance and be faster than prior aggregation
methods when the number of groups is small. Finally, we
created a menu of options to exploit tradeoffs, and described
a way to pick the most appropriate.

S. REFERENCES

[1] P. Boncz, M. Zukowski, and N. Nes. Monetdb/x100:
Hyper-pipelining query execution. In CIDR, 2005.

[2] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In ICALP, 2002.

[3] J. Cieslewicz and K. A. Ross. Adaptive aggregation on chip
multiprocessors. In VLDB, 2007.

[4] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye.
Automatic contention detection and amelioration for
data-intensive operations. In SIGMOD, 2010.

[5] G. Cormode et al. An improved data stream summary: the
count-min sketch and its applications. J. Algo., 55(1), 2005.

6] G. Cormode and M. Hadjieleftheriou. Finding frequent
items in data streams. In VLDB, 2008.

(7] M. Dietzfelbinger et al. A reliable randomized algorithm for
the closest-pair problem. J. Algorithms, 25(1), 1997.

(8] M. Dietzfelbinger and U. Schellbach. Weaknesses of cuckoo
hashing with a simple universal hash class: The case of
large universes. In SOFSEM, 2009.

[9] W. J. Ewens and H. S. Wilf. Computing the distribution of
the maximum in balls-and-boxes problems with application
to clusters of disease cases. PNAS, 104(27), 2007.

[10] R. M. Karp et al. A simple algorithm for finding frequent
elements in streams and bags. ACM T. Dat. S., 28(1), 2003.

[11] S. Manegold et al. Optimizing database architecture for the
new bottleneck: memory access. VLDB J., 9(3), 2000.

[12] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In VLDB, 2002.

[13] A. Metwally, D. Agrawal, and A. E. Abbadi. An integrated
efficient solution for computing frequent and top-k elements
in data streams. ACM Trans. Database Syst., 31(3), 2006.

[14] J. Misra and D. Gries. Finding repeating elements.
Technical report, Cornell University, 1982.

[15] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. VLDB, 4(9), 2011.

[16] R. Pagh et al. Cuckoo hashing. J. Algorithms, 51(2), 2004.

[17] K. A. Ross. Efficient hash probes on modern processors. In
ICDE, 2007.

[18] P. Roy, J. Teubner, and G. Alonso. Efficient frequent item
counting in multi-core hardware. In KDD, 2012.

[19] Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable aggregation
on multicore processors. In DaMoN, 2011.

[20] J. Zhou and K. A. Ross. Implementing database operations
using simd instructions. In SIGMOD, 2002.

[21] M. Zukowski, S. Héman, and P. Boncz.
Architecture-conscious hashing. In DaMoN, 2006.

