
©2013 Azul Systems, Inc.

How NOT to Measure

Latency

An attempt to share wisdom...

Matt Schuetze, Product Management Director, Azul Systems

©2013 Azul Systems, Inc.

High level agenda

Some latency behavior background

The pitfalls of using “statistics”

Latency “philosophy” questions

The Coordinated Omission Problem

Some useful tools

Use tools for bragging

©2013 Azul Systems, Inc.

About Gil Tene – Intended Speaker

co-founder, CTO @Azul

Systems

Have been working on “think

different” GC approaches

since 2002

Created Pauseless & C4 core

GC algorithms (Tene, Wolf)

A Long history building Virtual

& Physical Machines,

Operating Systems, Enterprise

apps, etc...

JCP EC Member...

Not Cloned Yet…

©2013 Azul Systems, Inc.

About me: Matt Schuetze

Product Manager @Azul

Systems

Stewardship of Azul’s product

roadmap.

Started career in radar

systems. Measured how

“stealthy” is an aircraft.

Moved to enterprise software

development in 2000

Built professional grade

monitoring and profiling tools.

More types of measurements.

Measure my clone: Ben

Affleck

©2013 Azul Systems, Inc.

About Azul

We make scalable Virtual

Machines

Have built “whatever it takes to

get job done” since 2002

3 generations of custom SMP

Multi-core HW (Vega)

Zing: Pure software for

commodity x86

Known for Low Latency,

Consistent execution, and Large

data set excellence

Vega

C4

©2013 Azul Systems, Inc.

Common fallacies

Computers run application code continuously

Response time can be measured as work units/time

Response time exhibits a normal (or Gaussian or

Poisson) distribution

“Glitches” or “Semi-random omissions” in

measurement don’t have a big effect.

Wrong!

Wrong!

Wrong!

Wrong!

©2012 Azul Systems, Inc.

A classic look at response time

behavior

Response time as a function of load

source: IBM CICS server documentation, “understanding response times”

Average?

Max?

Median?

90%?

99.9%

©2012 Azul Systems, Inc.

Response time over time

When we measure behavior over time, we often see:

source: ZOHO QEngine White Paper: performance testing report analysis

“Hiccups”

©2012 Azul Systems, Inc.

What happened here?

Source: Gil running an idle program and suspending it five times in the middle

“Hiccups”

©2012 Azul Systems, Inc.

The real world (a low latency example)

99%‘ile is ~60 usec
Max is ~30,000% higher

than “typical”

©2012 Azul Systems, Inc.

Hiccups are [typically]

strongly multi-modal

They don’t look anything like a normal distribution

They usually look like periodic freezes

A complete shift from one mode/behavior to another

Mode A: “good”.

Mode B: “Somewhat bad”

Mode C: “terrible”, ...

....

©2012 Azul Systems, Inc.

Common ways people deal with hiccups

©2012 Azul Systems, Inc.

Common ways people deal with hiccups

Averages and Standard Deviation

Always

Wrong!

©2012 Azul Systems, Inc.

Better ways people can deal with hiccups

Actually measuring percentiles

Requirements

Response

Time

Percentile

plot line

©2013 Azul Systems, Inc.

Requirements

Why we measure latency and response times
to begin with...

©2012 Azul Systems, Inc.

Latency tells us how long

something took

But what do we WANT the latency to be?

What do we want the latency to BEHAVE like?

Latency requirements are usually a PASS/FAIL test of some

predefined criteria

Different applications have different needs

Requirements should reflect application needs

Measurements should provide data to evaluate requirements

©2013 Azul Systems, Inc.

The Olympics
aka “ring the bell first”

Goal: Get gold medals

Need to be faster than everyone else at SOME races

Ok to be slower in some, as long as fastest at some

(the average speed doesn’t matter)

Ok to not even finish or compete (the worst case and

99%‘ile don’t matter)

Different strategies can apply. E.g. compete in only 3

races to not risk burning out, or compete in 8 races in

hope of winning two

©2013 Azul Systems, Inc.

Pacemakers
aka “hard” real time

Goal: Keep heart beating

Need to never be slower than X

“Your heart will keep beating 99.9% of the time” is not

reassuring

Having a good average and a nice standard deviation

don’t matter or help

The worst case is all that matters

©2013 Azul Systems, Inc.

“Low Latency” Trading
aka “soft” real time

Goal A: Be fast enough to make some good plays

Goal B: Contain risk and exposure while making plays

E.g. want to “typically” react within 200 usec.

But can’t afford to hold open position for 20 msec, or

react to 30 msec stale information

So we want a very good “typical” (median, 50%‘ile)

But we also need a reasonable Max, or 99.99%‘ile

©2013 Azul Systems, Inc.

Interactive applications
aka “squishy” real time

Goal: Keep users happy enough to not complain/leave

Need to have “typically snappy” behavior

Ok to have occasional longer times, but not too high, and

not too often

Example: 90% of responses should be below 0.2 sec, 99%

should be below 0.5 sec, 99.9 should be better than 2

seconds. And a >10 second response should never happen.

Remember: A single user may have 100s of interactions per

session...

©2013 Azul Systems, Inc.

Establishing Requirements
an interactive interview (or thought) process

Q: What are your latency requirements?

A: We need an avg. response of 20 msec

Q: Ok. Typical/average of 20 msec... So what is the worst case requirement?

A: We don’t have one

Q: So it’s ok for some things to take more than 5 hours?

A: No way in H%%&!

Q: So I’ll write down “5 hours worst case...”

A: No. That’s not what I said. Make that “nothing worse than 100 msec”

Q: Are you sure? Even if it’s only two times a day?

A: Ok... Make it “nothing worse than 2 seconds...”

©2013 Azul Systems, Inc.

Establishing Requirements
an interactive interview (or thought) process

Ok. So we need a typical of 20msec, and a worst case of 2 seconds. How often is it ok to
have a 1 second response?

A: (Annoyed) I thought you said only a few times a day

Q: That was for the worst case. But if half the results are better than 20 msec, is it ok for the
other half to be just short of 2 seconds? What % of the time are you willing to take a 1
second, or a half second hiccup? Or some other level?

A: Oh. Let’s see. We have to better than 50 msec 90% of the time, or we’ll be losing money
even when we are fast the rest of the time. We need to be better than 500 msec 99.9% of
the time, or our customers will complain and go elsewhere

Now we have a service level expectation:

 50% better than 20 msec

 90% better than 50 msec

99.9% better than 500 msec

 100% better than 2 seconds

©2013 Azul Systems, Inc.

Latency does not live in a vacuum

©2013 Azul Systems, Inc.

Remember this?

How much load can this system handle?

Where the

sysadmin

is willing

to go

What the

marketing

benchmarks

will say

Where users

complain

Sustainable

Throughput

Level

©2013 Azul Systems, Inc.

Sustainable Throughput: The
throughput achieved while safely
maintaining service levels

Unsustainable

Throughout

©2013 Azul Systems, Inc.

Comparing behavior under different throughputs

and/or configurations

©2013 Azul Systems, Inc.

Comparing latency behavior under different throughputs, configurations

latency sensitive messaging distribution application

©2013 Azul Systems, Inc.

Instance capacity test: “Fat Portal”

HotSpot CMS: Peaks at ~3GB / 45 concurrent users

* LifeRay portal on JBoss @ 99.9% SLA of 5 second response times

©2013 Azul Systems, Inc.

Instance capacity test: “Fat Portal”

C4: still smooth @ 800 concurrent users

* LifeRay portal on JBoss @ 99.9% SLA of 5 second response times

©2013 Azul Systems, Inc.

The coordinated omission problem

An accidental conspiracy...

©2013 Azul Systems, Inc.

The coordinated omission problem

Common Example A (load testing):

build/buy load tester to measure system behavior

each “client” issues requests one by one at a certain rate

measure and log response time for each request

results log used to produce histograms, percentiles, etc.

So what’s wrong with that?

works well only when all responses fit within rate interval

technique includes implicit “automatic backoff” and coordination

But requirements interested in random, uncoordinated requests

©2013 Azul Systems, Inc.

The coordinated omission problem

Common Example B (monitoring):

System monitors and records each transaction latency

Latency measured between start and end of each operation

keeps observed latency stats of some sort (log, histogram, etc.)

So what’s wrong with that?

works correctly well only when no queuing occurs

Long operations only get measured once

delays outside of timing window do not get measured at all

queued operations are measured wrong

©2013 Azul Systems, Inc.

Common Example B:

Coordinated Omission in Monitoring Code

Long operations only get measured once

delays outside of timing window do not get measured at all

How bad can this get?

Avg. is 1 msec

over 1st 100

sec

System

Stalled

for 100 Sec

Elapsed

Time

System easily

handles

100 requests/sec

Responds to each

in 1msec

How would you characterize this system?

~50%‘ile is 1 msec ~75%‘ile is 50 sec 99.99%‘ile is ~100sec

Avg. is 50 sec.

over next 100

sec

Overall Average response time is ~25 sec.

Measurement in practice

System

Stalled

for 100 Sec

Elapsed

Time

System easily

handles

100 requests/sec

Responds to each

in 1msec

Naïve

Characterization
10,000 @ 1msec 1 @ 100 second

99.99%‘ile is 1 msec! Average. is 10.9msec! Std. Dev. is 0.99sec!

(should be ~100sec) (should be ~25 sec)

Proper measurement

System

Stalled

for 100 Sec

Elapsed

Time

System easily

handles

100 requests/sec

Responds to each

in 1msec

10,000 results

Varying

linearly

from 100 sec

to 10 msec

10,000 results

@ 1 msec

each

~50%‘ile is 1 msec ~75%‘ile is 50 sec 99.99%‘ile is ~100sec

Proper measurement

System

Stalled

for 100 Sec

Elapsed

Time

System easily

handles

100 requests/sec

Responds to each

in 1msec

10,000 results

Varying

linearly

from 100 sec

to 10 msec

10,000 results

@ 1 msec

each

~50%‘ile is 1 msec ~75%‘ile is 50 sec 99.99%‘ile is ~100sec

Coordinated

Omission

©2013 Azul Systems, Inc.

The coordinated omission problem

It is MUCH more common than you may
think...

©2012 Azul Systems, Inc.

JMeter makes this mistake... (so do others)

Before

Correction

After

Correcting

for

Omission

©2012 Azul Systems, Inc.

The “real” world

99%‘ile MUST be at least 0.29%

of total time (1.29% - 1%)

which would be 5.9 seconds

26.182 seconds

represents 1.29%

of the total time

wrong by a factor

of 1,000x

Results were

collected by a

single client

thread

©2012 Azul Systems, Inc.

The “real” world

The max is 762 (!!!)

standard deviations

away from the mean

305.197 seconds

represents 8.4% of

the timing run

A world record SPECjEnterprise2010 result

©2012 Azul Systems, Inc.

Real World Coordinated Omission effects

Before
Correction

After
Correction

Wrong

by 7x

©2013 Azul Systems, Inc.

Real World Coordinated Omission effects

Uncorrected

Data

©2013 Azul Systems, Inc.

Real World Coordinated Omission effects

Uncorrected

Data

Corrected for

Coordinated

Omission

©2013 Azul Systems, Inc.

Real World Coordinated Omission effects

(Why I care)

A ~2500x

difference in

reported

percentile levels

for the problem

that Zing

eliminates
Zing

“other”

JVM

©2013 Azul Systems, Inc.

Suggestions

Whatever your measurement technique is, TEST IT.

Run your measurement method against an artificial system

that creates hypothetical pauses scenarios. See if your

reported results agree with how you would describe that

system behavior

Don’t waste time analyzing until you establish sanity

Don’t EVER use or derive from std. deviation

ALWAYS measure Max time. Consider what it means... Be

suspicious.

Measure %‘iles. Lots of them.

©2013 Azul Systems, Inc.

Some Tools

©2013 Azul Systems, Inc.

HdrHistogram

©2012 Azul Systems, Inc.

HdrHistogram
If you want to be able to produce graphs like this...

You need both good dynamic range

and good resolution

©2013 Azul Systems, Inc.

HdrHistogram background

Goal: Collect data for good latency characterization...

Including acceptable precision at and between varying percentile levels

Existing alternatives

Record all data, analyze later (e.g. sort and get 99.9%‘ile).

Record in traditional histograms

Traditional Histograms: Linear bins, Logarithmic bins, or

Arbitrary bins

Linear requires lots of storage to cover range with good resolution

Logarithmic covers wide range but has terrible precisions

Arbitrary is.... arbitrary. Works only when you have a good feel for the

interesting parts of the value range

©2013 Azul Systems, Inc.

HdrHistogram

A High Dynamic Range Histogram

Covers a configurable dynamic value range

At configurable precision (expressed as number of significant digits)

For Example:

Track values between 1 microsecond and 1 hour

With 3 decimal points of resolution

Built-in [optional] compensation for Coordinated

Omission

Open Source

On github, released to the public domain, creative commons CC0

©2013 Azul Systems, Inc.

HdrHistogram

Fixed cost in both space and time

Built with “latency sensitive” applications in mind

Recording values does not allocate or grow any data structures

Recording values uses a fixed computation to determine location (no

searches, no variability in recording cost, FAST)

Even iterating through histogram can be done with no allocation

Internals work like a “floating point” data structure

“Exponent” and “Mantissa”

Exponent determines “Mantissa bucket” to use

“Mantissa buckets” provide linear value range for a given exponent. Each

have enough linear entries to support required precision

©2012 Azul Systems, Inc.

HdrHistogram

Provides tools for iteration

Linear, Logarithmic, Percentile

Supports percentile iterators

Practical due to high dynamic range

Convenient percentile output

10% intervals between 0 and 50% 5%

intervals between 50% and 75% 2.5%

intervals between 75% and 87.5%...

Very useful for feeding percentile distribution

graphs...

©2012 Azul Systems, Inc.

HdrHistogram

©2013 Azul Systems, Inc.

jHiccup

©2012 Azul Systems, Inc.

©2013 Azul Systems, Inc.

jHiccup

A tool for capturing and displaying platform hiccups

Records any observed non-continuity of the underlying platform

Plots results in simple, consistent format

Simple, non-intrusive

As simple as adding jHiccup.jar as a java agent:

% java -javaagent=jHiccup.jar myApp myflags

or attaching jHiccup to a running process:

% jHiccup -p <pid>

Adds a background thread that samples time @ 1000/sec into an

HdrHistogram

Open Source. Released to the public domain

©2012 Azul Systems, Inc.

Optional SLA

plotting

Max Time per

interval

Hiccup

duration at

percentile

levels

©2012 Azul Systems, Inc.

Fun with jHiccup

©2012 Azul Systems, Inc.

©2012 Azul Systems, Inc.

Drawn to scale

©2012 Azul Systems, Inc.

Good for both

“squishy” real time
(human response times)

and

“soft” real time

(low latency software systems)

©2012 Azul Systems, Inc.

Oracle HotSpot (pure newgen) Zing

Low latency trading application

©2012 Azul Systems, Inc.

Low latency - Drawn to scale

Oracle HotSpot (pure newgen) Zing

©2013 Azul Systems, Inc.

Shameless bragging

©2013 Azul Systems, Inc.

Zing

A JVM for Linux/x86 servers

ELIMINATES Garbage Collection as a concern for enterprise

applications

Very wide operating range: Used in both low latency and

large scale enterprise application spaces

Decouples scale metrics from response time concerns

Transaction rate, data set size, concurrent users, heap

size, allocation rate, mutation rate, etc.

Leverages elastic memory for resilient operation

©2013 Azul Systems, Inc.

What is Zing good for?

If you have a server-based Java application

And you are running on Linux

And you use using more than ~300MB of memory

Then Zing will likely deliver superior behavior metrics

©2013 Azul Systems, Inc.

Where Zing shines

Low latency

Eliminate behavior blips down to the sub-millisecond-units level

Machine-to-machine “stuff”

Support higher *sustainable* throughput (the one that meets SLAs)

Human response times

Eliminate user-annoying response time blips. Multi-second and even

fraction-of-a-second blips will be completely gone.

Support larger memory JVMs *if needed* (e.g. larger virtual user counts, or

larger cache, in-memory state, or consolidating multiple instances)

“Large” data and in-memory analytics

Make batch stuff “business real time”. Gain super-efficiencies.

©2013 Azul Systems, Inc.

Takeaways

Standard Deviation and application latency should never

show up on the same page...

If you haven’t stated percentiles and a Max, you haven’t

specified your requirements

Measuring throughput without latency behavior is [usually]

meaningless

Mistakes in measurement/analysis can cause orders-of-

magnitude errors and lead to bad business decisions

jHiccup and HdrHistogram are pretty useful

The Zing JVM is cool...

©2013 Azul Systems, Inc.

Q & A

http://www.azulsystems.com

http://www.jhiccup.com

http://giltene.github.com/HdrHistogram

http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

