How to Partition a Billion-Node Graph

ABSTRACT

Billion-node graphs pose significant challenges at all levels from
storage infrastructures to programming models. It is critical to de-
velop a general purpose platform for graph processing. A distribut-
ed memory system is considered a feasible platform supporting on-
line query processing as well as offline graph analytics. In this
paper, we study the problem of partitioning a billion-node graph on
such a platform, an important consideration because it has direct
impact on load balancing and communication overhead. It is chal-
lenging not just because the graph is large, but because we can no
longer assume that the data can be organized in arbitrary ways to
maximize the performance of the partitioning algorithm. Instead,
the algorithm must adopt the same data and programming model
adopted by the system and other applications. In this paper, we
propose a multi-level label propagation (MLP) method for graph
partitioning. Experimental results show that our solution can parti-
tion billion-node graphs within several hours on a distributed mem-
ory system consisting of merely several machines, and the quality
of the partitions produced by our approach is comparable to state-
of-the-art approaches applied on toy-size graphs.

1. INTRODUCTION

Many large graphs have emerged in recent years. The most well
known graph is the WWW, which now contains more than 50 bil-
lion web pages and more than one trillion unique URLs [1]. A re-
cent snapshot of the friendship network of Facebook contains 8§00
million nodes and over 100 billion links [2]. LinkedData is also
going through exponential growth, and it now consists of 31 bil-
lion RDF triples and 504 million RDF links [3]. In biology, the
genome assembly problem has been converted into a problem of
constructing, simplifying, and traversing the de Brujin graph of the
read sequence [4]. Each vertex in the de Brujin graph represents a
k-mer, and the entire graph in the worst can contain as many as 4%
vertices, where k generally is at least 20.

We are facing challenges at all levels from system infrastructures
to programming models for managing and analyzing large graph-
s. We argue that a distributed memory system has the potential
to meet both the memory and computation requirements for large
graph processing. One of the biggest challenges is how to parti-
tion a graph so that it can be deployed on a distributed system. In
this paper, we propose a general-purpose, scalable, and semantic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

(community-aware) approach to partition web-scale graphs.

1.1 Distributed Graphs

A distributed memory system is a suitable infrastructure for on-
line query processing over billion node graphs [17]. The reason
is twofold. First, as we explore a graph, we often invoke random,
instead of sequential, data accesses, no matter how the graph is s-
tored. To address this problem, a simple solution is to put the graph
in the main memory. Second, although the topology of a billion
node graph may not be prohibitively large, it is still unlikely that it
can be stored in the memory of a single machine. Thus, a distribut-
ed system is necessary. A distributed system is also beneficial as
graph analytics is often computation intensive. Using the memory
and the computation power of all the machines, we may be able to
operate on graphs of any size.

ose oz
DO O (€

(a) A graph

e
o 9

(b) Coarsened by (c) Coarsened
maximal match by LP

Figure 1: An example graph and its coarse-grained graph

To deploy a graph on a distributed memory system, we need to
divide the graph into multiple partitions, and store each partition in
one machine'. Network communication is required for accessing
non-local partitions of the graph. Thus, how the graph is parti-
tioned may cause significant impact on load balancing and com-
munication. Consider performing a BFS on a graph, which need-
s to access each edge of the graph. Whenever an edge crosses
machine boundaries, we need to send and receive a network mes-
sage. The cost of the BFS largely depends on how many network
messages are needed. As an example, Figure 1(a) shows that d-
ifferent partitionings may lead to different communication over-
heads in distributed systems. Assuming we have 3 machines, and

'Tn this work, we assume no overlap between any two partitions.

each can hold at most 4 vertices and if we partition the graph as
{a,b,¢,d},{e, f,g,h},{h,1,j,k}, we need 3 network communi-
cations for a BFS. However, we end up requiring 17 remote access-

es for a BFS if we partition itinto {c, d, %, f}, {a, e, j, k}, {b, g, h, [}.

1.2 Existing Graph Partitioning Methods

The graph partitioning problem has been studied extensively in
many application areas (e.g., VLSI design). The problem of find-
ing an optimal partition is NP-Complete [23]. As a result, many
approximate solutions have been proposed [5, 6]. However, as we
show below, none of the existing solutions are capable of partition-
ing web-scale graphs on distributed memory systems.

Scalability. Most current graph partitioning algorithms are for
small, memory-based graphs. A class of local refinement algo-
rithms, most of which originated from the Kerninghan-Lin (KL)
algorithm [5], bisect a graph into even size partitions. The KL
algorithm incrementally swaps vertices among partitions of a bi-
section to reduce the edge-cut of the partitioning, until the parti-
tioning reaches a local minimum. There are many variations based
on the KL algorithm, including the FM algorithm [6]. The local re-
finement algorithms are costly, and are designed for memory-based
graphs only.

Recently, several multi-level partitioning algorithms have been
proposed [7, 8, 10]. The idea is to “coarsen” a large graph into
a small graph and apply algorithms such as KL. and FM on the
small graph. However, as we will discuss in more detail in Sec-
tion 2.2, the assumption that (near) optimal partitions on coarsened
graphs implies a good partitioning in the original graph may not be
valid for real life, scale-free graphs. Furthermore, the coarsening
algorithm (maximal matching) is very costly, and does not scale on
billion-node graphs.

To improve the scalability, some parallel partitioning solutions
have been proposed, including ParMetis [11] and PT-Scotch [12].
Still, they cannot scale to billion-node graphs without significan-
t improvement. For example, ParMetis uses maximal match to
coarsen a large graph. To find the maximal match, it needs to per-
form random accesses. This aspect limits its extension on disk res-
ident large graphs with billions of nodes. In fact, the largest graph
reported by these approaches only has 23M nodes [12].

Generality. 1t is important to develop a general purpose infras-
tructure where graphs can be stored, served, and analyzed, espe-
cially for web-scale graphs. Current partitioning methods are not
built on top of a general-purpose graph infrastructure. Instead, they
are designed exclusively for the purpose of partitioning. Hence,
they assume that the data can be organized or manipulated in ways
that maximize the performance of the partitioning algorithm. To
partition an existing billion-node graph stored in a general-purpose
graph system, we must take the data out of the system, convert it in-
to a partition friendly format, and after partitioning convert it back
to the format on the system. In general, previous solutions are not
conducive to a general-purpose graph infrastructure. For example,
before ParMetis [11] can work, it requires that the graph is parti-
tioned two-dimensionally, that is, the adjacency list of a single ver-
tex is divided and stored in multiple machines. This helps reduce
the communication overhead when coarsening a graph. However,
such a design may be disruptive to other graph algorithms. Even if
we adopt this approach, the cost of converting data back and forth
is often prohibitive for web-scale graphs.

Then, the question is, is any infrastructure currently available ap-
propriate for web-scale graphs? MapReduce is an effective paradig-
m for large-scale data processing. However, MapReduce is not the
best choice for graph applications [13, 14]. Besides the fact that
it does not support online graph query processing, many graph al-
gorithms for offline analytics cannot be expressed naturally and in-
tuitively. Instead, they need a total rethinking in the “MapReduce

language.” For example, graph exploration, i.e., following links
from one vertex to its neighbors, is implemented by MapReduce
iterations. Each iteration requires large amount of disk space and
network I/0, which is exacerbated by the random access pattern of
graph algorithms. Furthermore, the irregular structures of the graph
often lead to varying degrees of parallelism over the course of ex-
ecution, and overall, parallelism is poorly exploited [13, 14]. Only
algorithms such as PageRank, shortest path discovery that can be
implemented in vertex-centric processing and run in a fixed number
of iterations can achieve good efficiency. The Pregel system [15]
introduced a vertex-centric framework to support such algorithm-
s. However, graph partitioning is still a big challenge. We are not
aware of any effective graph partitioning algorithms in MapReduce
or even in the vertex-centric framework.

Semantics. Real life graphs are not random or regular. Social
networks and WWW are well-known for their irregularity and com-
plex structures. Most partitioning algorithms ignore the complex
structures. Many of them are designed for relatively regular graphs
(such as meshes) that have generally uniform degree distribution.
Some recent approaches take into consideration the power-law de-
gree distribution exhibited by many real life networks [16]. Howev-
er, many other features in complex networks such as small-world,
community structure are not given enough considerations. Thus,
whether existing state-of-the-art approaches work well on real life,
complex, and web-scale networks remains an open problem. In our
approach, we take the community structure of real networks into
consideration when we partition the graphs.

1.3 New Challenges

Motivated by the above facts, we have developed a scalable and
semantic-aware graph partitioning solution on a general-purpose
distributed memory system. Our goal is to partition web-scale real
graphs. To do so, we must address challenges introduced by real-
life large graphs:

e The irregular structure of real graphs leads to poor paral-
lelism. In general, the logic of a partitioning algorithm is
complex and many computation steps may depend heavily
on each other, leading to poor parallelism.

e The skewed degree distribution (such as power-law) of real
graphs generates unbalanced load distribution over different
processors.

e The data access pattern on real graphs exhibits poor locality.
In general, computation involved in partitioning a real com-
plex graph, such as social network, shows poor locality. As a
result, the data access pattern is hard to predict, which means
message passing is hard to optimize.

To meet the above challenges, we introduce an efficient (both
in time and space), highly parallelized graph partitioning solution
with small communication overhead. We present a multilevel label
propagation (MLP) framework and its optimized implementation
on a typical distributed memory system. Experimental results show
that our solution is efficient and effective. For example, our solu-
tion can partition a graph with 512M nodes and 6.5G edges within
4 hours on a distributed memory system consisting of merely 8 ma-
chines. The quality of the resulting partitions is comparable to that
of the current best approach, METIS [8].

1.4 Paper Organization

The rest of the paper is organized as follows. Section 2 introduces
the graph infrastructure, as well as some background information
about graph coarsening and label propagation. In Section 3, we
discuss measures for graph partitioning and give the estimation of
random partitioning on synthetic graphs. In Section 4, we present

the MLP algorithm. Section 5 presents a disk-based implementa-
tion of MLP. Section 6 presents experiment results, and Section 7
reviews related works. We conclude in Section 8.

2. BACKGROUND

In this section, we first introduce the Trinity infrastructure, which
is used as a general-purpose computation platform for web scale
graphs. Then, we introduce two techniques related to our approach
for graph partitioning: graph coarsening and label propagation.

2.1 The Trinity Graph System

We use Trinity [17] as the infrastructure for handling web-scale
graphs. Trinity is essentially a memory cloud created out of the
RAM of multiple machines, and it offers a unified memory space
for user programs. Most graph applications need efficient random
data accesses on graphs, and Trinity’s efficient in-memory graph
exploration and bulk message passing mechanisms answered this
need and enable it to handle large graphs.

Trinity supports very efficient memory-based graph exploration.
In one experiment, we deployed a synthetic, power-law graph in a
15-machine cluster managed by Trinity. The graph has Facebook-
like size and distribution (800 millions nodes, 100 billion edges,
with each node having on average 130 edges). We found that ex-
ploring the entire 3-hop neighborhood of any node in the graph
takes less than 100 milliseconds on average. In other words, Trin-
ity is able to explore 130 + 1302 4+ 130° ~ 2.2 million edges in
one tenth of a second.

Making the graph topology memory resident makes fast random
graph access possible. On the other hand, some computation al-
lows us to predict the access pattern on the graph. In this case,
we can store the entire graph on the disk and schedule parts of the
graph to be memory resident when they are needed for computa-
tion. This enables Trinity to handle extremely large graphs using
a small number of machines, and enables small organizations that
cannot afford a large memory cloud to perform large-scale compu-
tations on graphs. In this paper, we propose a graph partitioning
algorithm that allows us to predict the access pattern. Thus, we can
partition billion-node graphs even if the memory cloud is not big
enough to hold the entire graph. Our experiments show that we
can partition billion-node graphs with eight machines that each has
48G memory.

Trinity also provides an efficient bulk message passing mecha-
nism. Using this mechanism, we can build an offline computation
platform for web-scale graph analytics on Trinity. For instance, we
can implement the Pregel-like [15] Bulk Synchronous Parallel (B-
SP) computation model. In this model, the programmer writes a
vertex-based algorithm, and the system takes care of its parallel ex-
ecution on all vertices. Trinity’s bulk message passing mechanism
allows for a high performance by BSP. In one experiment, using
just 8 machines, one BSP iteration on a synthetic, power-law graph
of 1 billion nodes and 13 billion edges takes less than 60 seconds.

The efficient graph exploration and bulk message passing mech-
anism of Trinity lays the foundation for developing our graph par-
titioning algorithm. Still, there are many challenges to devising
graph partitioning algorithms for vertex-based computation. In this
paper, we introduce a novel label propagation based algorithm for
graph partitioning.

2.2 Graph Coarsening

Graph partitioning algorithms such as KL [5] and FM [6] are ef-
fective for small graphs. For a large graph, a widely adopted ap-
proach is to “coarsen” the graph until its size is small enough for
KL or FM. The idea is known as multi-level graph partitioning, and
a representative approach is METIS [8].

METIS works in three steps: (1) coarsening the graph; (2) par-
titioning the coarsened graph; (3) uncoarsening. In the 1st step,
METIS coarsens a graph by finding the maximal match. A maxi-

mal match is a maximal set of edges where no two edges share a
common vertex. After it finds a maximal match, it collapses the
two ends of each edge into one node, and as a result, the graph is
“coarsened.” The coarsening step repeats until the graph is small
enough. Then, in the 2nd step, it applies KL or FM directly on the
small graph. In the third step, the partitions on the small graph are
projected back to the finer graphs.

Before we discuss potential problems of coarsening for real life
graphs, we first look at an example:

EXAMPLE 1 (MAXIMAL MATCH). For the graph shown in Fig-
ure 1(a), the following edge set is a maximal match:

{(c, /), (e, 9), (h,), (K, 1), (4,0), (a, d) }

Figure 1(b) is the result of coarsening (obtained after collapsing
the two ends of each edge in the maximal match).

The correctness of METIS is based on the following assumption:
A (near) optimal partitioning on a coarser graph implies a good
partitioning in the finer graph. However, in general, the assumption
only holds true when the degree of nodes in the graph is bounded
by a constant [9]. For example, 2D or 3D meshes are graphs where
node degrees are bounded. However, for today’s real life graphs,
the assumption does not hold any more. It is well established that
the degree distribution of real life networks are right-skewed, and
there are many hub vertices with very large degrees. In other word-
s, the degree is not bounded by a small constant, but is related to the
size of the graph. As a result, a maximal match may fail to serve as
a good coarsening scheme in graph partitioning. For example, the
coarsened graph in Figure 1(b) no longer contains the clear struc-
ture of the original graph. Thus, partitions on the coarsened graph
cannot be optimal for the original graph.

Furthermore, the process of coarsening by maximal match is inef-
ficient for billion-node graphs. Two maximal match strategies are
used in various versions of METIS: Random matching (RM) and
Heavy Edge Matching (HEM). In RM, the vertices are visited in
a random order. If a vertex u has not been matched yet, then one
of its unmatched neighbors will be randomly selected and matched
with u. HEM is similar to RM, except that it selects the unmatched
neighbor v if edge (u,v) has the largest weight. As we can see, in
the above mentioned approaches, vertices are matched in a random
order. For disk resident graphs, random access leads to bad perfor-
mance. In a multi-level framework, graphs generated at each level
and the mappings between them are stored in memory. These inter-
mediate results can be very large. For example, for LiveJournal?,
a real social network that contains more than four million vertices,
METIS (using either RM or HEM) will consume more than 10G of
memory. The heavy usage of memory makes the approach unfea-
sible for billion-node graphs.

2.3 Label Propagation

We propose a method for large scale graph partitioning based on
the idea of label propagation (LP), which was originally proposed
for community detection in social networks. A naive LP runs as
follows. We first assign a unique label id to each vertex. Then,
we update the vertex label iteratively. In each iteration, a vertex
takes the label that is prevalent in its neighborhood as its own label.
The process terminates when labels no longer change. Vertices that
have the same label belong to the same partition.

There are two reasons we adopt label propagation for partition-
ing. First, the label propagation mechanism is lightweight. It does
not generate big intermediary results, and it does not require sort-
ing or indexing the data as in many current graph partitioning algo-
rithms. This makes label propagation feasible for web scale graphs
deployed on Trinity. With Trinity’s efficient graph exploration and

Zhttp://snap.stanford.edu/data/soc-LiveJournal 1 .html

message passing mechanism, label propagation can be implement-
ed with ease. Indeed, pure label propagation can be implement-
ed using the vertex-centric computation model in 2 lines of code.
More specifically, label propagation has low complexity, as long
as the number of iterations is bounded: Let G(V, E) be a graph,
where V' is the set of vertices, and E is the set of edges. In each
iteration, labels need to be propagated along all edges, which takes
O(|E|) time. Thus, the time complexity is O(t|E|), where ¢ is
the number of iterations. On real-life networks, label propagation
tends to converge in a constant number of iterations. Thus, it runs
in almost linear time.

Second, label propagation is “semantic-aware” as it is able to dis-
cover inherent community structures in real networks: Given the
existence of local closely connected substructures, a label tends
to propagate within such structures. Since most real-life network-
s demonstrate clear community structures, a partitioning algorith-
m based on label propagation may divide the graph into meaning-
ful partitions. Compared to maximal match, LP is more semantic-
aware and is a better coarsening scheme. We illustrate this in Ex-
ample 2.

EXAMPLE 2 (COARSENING BY LP). Using LP, we obtain a
coarser graph shown in Figure 1(c) for the original graph shown
in Figure 1(a). In Figure 1(c), C1 = {a,b,c,d}, C2 = {e, f,g,h}
and Cs = {i,j,k,l}. In this coarsened graph, the community
structure of the original graph is completely preserved.

However, although label propagation is lightweight and can be
implemented on web-scale graphs, there are many obstacles to us-
ing pure label propagation for graph partitioning:

e [mbalance. Label propagation is fundamentally a clustering
approach instead of a partitioning approach. One critical re-
quirement for graph partitioning is to produce balanced par-
titions. This is important for load distribution, and commu-
nication overhead minimization. The results of label propa-
gation are determined by the network structure. For real life
graphs, it often results in skewed distribution of the commu-
nity size: It is very likely that we end up with a few very
extremely large partitions and many tiny ones. This goes a-
gainst the purpose of graph partitioning.

e Lfficiency. Previous approaches using label propagation for
community detection focused on the quality of the solution
and had little consideration of efficiency. Processing web-
scale graphs calls for efficient algorithms. How to accelerate
label propagation without sacrificing partitioning quality is
a challenging problem. For instance, if we can reduce the
number of iterations, we can improve performance dramati-
cally.

e Parallelization. Although the label propagation mechanis-
m can be easily parallelized, how to design and implement
an efficient message-passing framework in a distributed en-
vironment is still a challenging problem. Problems such as
how to reduce the total number of communications and how
to avoid the generation of space-costly intermediate results
need to be carefully addressed.

e Convergence. Label propagation does not have a theoretic
guarantee for convergence. It may get trapped in an oscilla-
tion state. Consider a complete bipartite graph G = Vi U V3,
once all vertices in V; have the same label a and all vertices
in V5 have the same label b, in the following iterations, each
vertex in V7 will change its label to b and each vertex in V52
will change its label to a. As a result, the iterative process
will oscillate between the two labeling states. Another kind
of oscillation occurs when a vertex has the same number of
connections to more than one communities. Then, in each
iteration, the vertex will randomly select a label.

3. PROBLEM AND BASELINE

We formalize the problem of graph partitioning. Then, we study
the quality of random partitioning, which serves as a baseline for
other partitioning algorithms.

3.1 Problem Definitions

First, we need to decide how to measure the goodness of a par-
titioning. A natural goodness measure is the size of edge cut, that
is, edges whose two end points are in two different partitions. In
general, we want to minimize the size of edge cut. Particularly, in
a distributed memory system, navigating along such edges mean-
s performing remote accesses. Too many remote accesses bring
costly communication overheads.

DEFINITION 1 (SIZE OF EDGE CUT?). For a partitioning P
on graph G(V, E), the size of edge cut is ec(P) = Y, o ec(v),
where ec(v) is the number of v’s neighbors that do not belong to
v’s partition.

Minimizing the total number of cross-partition edges may not al-
ways be the goal we want to optimize for. For example, in BSP, in
each iteration, we assemble individual messages between two ma-
chines into a single message, which incurs a single network com-
munication. This makes sense because the cost mostly comes from
the number of network communications rather than the size of the
message (given that the size of each message is often very smal-
1). Thus, instead of minimizing the total number of cross-partition
edges, we need to minimize the total communication volume.

DEFINITION 2 (COMMUNICATION VOLUME OF P). Fora par-
titioning P on graph G(V, E), the communication volume of P is
given by cv(P) = > o cv(v), where cv(v) is the number of
partitions (except v’s partition) that contain the neighbors of v.

Besides edge cut or communication volume, we measure the good-
ness of a partitioning by its balance. A partitioning is balanced if
each partition has more or less the same amount of nodes. This
is desired in a distributed environment for load balance. Given k
machines, we expect the graph equally distributed over machines,
i.e., each machine has approximately L%j vertices. In general, re-
laxation is allowed so that the exact number of vertices in a single

machine is (1 £ ¢€) L‘%J with 0 < e < 1.

Based on the goodness measures given above, the graph parti-
tioning problem is: how to divide a graph into k parts with approx-
imately identical size so that the edge cut size or the total commu-
nication volume is minimized in a distributed memory system? We
state it in a more formal manner in Definition 1.

PROBLEM DEFINITION 1 (GRAPH PARTITIONING). Givena
graph G(V, E) and a positive integer k, we divide V into a set of
non-overlapping partitions P = {C1,Ca,...,Cy} such that (1)
|Ci| = |V|/k for each C;; (2) ec(P) (or cv(P)) is minimized.

3.2 The Random Partitioning Baseline

We evaluate the quality of random partitioning on two typical
classes of graphs: ER graphs [18] and scale free graphs [19]. By
doing so, we build the baseline for more advanced partitioning
mechanisms.

First, we define the random partitioning on a graph. One widely
used random partitioning mechanism is that each vertex chooses a
machine uniformly at random from all k possible ones. After all the
vertices finish their selection, the number of vertices on each ma-
chine (|V;]) will follow the Binomial distribution B (n, 1), where
n is the vertex number of G. Under this random partitioning, an
edge’s two end nodes have the probability 1 — % to be on different
machines. The edge cut therefore will follow the Binomial distri-
bution B (|E|,1 — §).

Given aset V of n vertices, we generate an ER graph G by linking
each vertex pair with probability p. We denote a graph G generated
in this way as G € G, . Without a loss of generality, in the fol-
lowing analysis, we assume that n and k& (number of machines) are
the power of 2, and k, p are constants.

LEMMA 1. If G € Gn,p and P is a random partitioning over
G on k machines, then we have

1. Elec(P)] = %;
2. Elco(P)]=n(k—1) (1= (L —p/k)"");

where Elec(P)] and E[cv(P)] are the expected value of ec(P)
and cv(P), respectively.

PROOF. The first equation can be directly derived from the dis-
tribution of edge cuts of the random partitioning. We just note that
the number of total degrees in an ER random graph is pn?.

To prove the second equation, consider any vertex u. The proba-
bility that has at least one link to another machine is (1 — (1 — p/k)"
Thus, the expected number of machines that u is linked to is (k —
1) (1 = (1 —p/k)™""). This is because, for each vertex v except
u (overall n — 1 these vertices), it has a probability 1/k to be res-
ident in a certain machine and a probability p/k to be additionally
linked to u. Sum up all vertices and we have the second equa-
tion. [

For scale free graphs, the degree of a vertex follows the power-
law distribution: p(d) = ¢ x d~? where 8 > 1. That is, the
probability that a vertex has degree d is proportional to d~° for
some constant 8. A variety of real networks observe the power-
law degree distribution. The constant ¢ = ¢(8) ™! is a normalized
constant and () = >, ., o n~?, which in fact is the Riemann
Zeta Function. [specifies a class of scale free graphs. If G has
power-law degree distribution with exponent 3, we say G € Gg.
Similarly, 5 and k are given as constants in the following analysis.

LEMMA 2. Let P be a random partitioning on a graph G € Gg
on k machines, then we have:

Blec(P)] = k1t €020

E;
2. Elev(P)] = n¢(B) " (k —

DYy L= (1= 7)1

PROOF. The expected degree of a vertex is

Z dxp(d) = cx Z d~PD = C(’B 1)
1<d<oo 1<d<oo ¢(B)
Then, due to the linearity of expectation, we have:

(P)] = Elz(v)

veG

Eldeg(v

% Bldeg(v))

where z(v) is the number of v’s neighbors on other machines and
Elz(v)] 1s its expectation value.

The proof of the second equation is similar to that of Lemma 1.
We just need to highlight that the probability that a vertex u of
degree ¢ has at least one link to a certain machine is 1 — (1 —

1y 0

4. MULTI-LEVEL LABEL PROPAGATION

We present the Multi-level Label Propagation (MLP) algorithm
for partitioning billion-node graphs in a distributed memory sys-
tem. The algorithm can be easily parallelized, which enables it to
take advantage of a distributed system.

4.1 Overview

We outline the major steps of MLP in Figure 2 as well as in Algo-
rithm 1. Given a graph G, the algorithm divides G into k balanced
partitions stored in k£ machines. Initially, each vertex is assigned a
unique label, which indicates the partition it belongs to. In the end,
the entire graph will have k labels, and each label has the same
number of vertices.

The algorithm has three steps. The first step is iterative coars-
ening. In each iteration, we find densely connected substructures
through label propagation (LP). We collapse each connected struc-
ture into a single vertex to produce a “coarsened” graph. Then we
repeat the process until the graph is small enough. The rationale for
iterative coarsening is that a single round is not enough to reduce
the number of labels to an acceptable level. The coarsening step is
controlled by 3 user specified parameters: We keep coarsening the
graph until there are no more than « labels (partitions); The label
propagation takes at most 3 iterations to avoid wasteful iterations;
The size of each label (partition) is controlled by v > 1 — each
label (partition) has an upper-limit size of ‘ . In the second step,
)Ne partition the coarsened graph using an off the-shelf algorithm,
such as KL or METIS. In the last step we project the partitioning
on the coarsened graph to the original graph. As we will see, this

step is trivial, and it is not elaborated in Algorithm 1.

K\Coarsening phase by multi-level LP
@ Mapping back

Refinement phase

Figure 2: The multilevel label propagation framework

Algorithm 1 Multi-level LP

Input: G(V,E), k

Output: A balanced partitioning on V'
{1. Coarsening phase}

G' + G,

’

DN —

: while #labels is larger than o do

w

Run weighted LP under size constraint ‘ L for B iterations; // the

result is P;
Construct the coarse-grained graph G’ from P; //
: end while
{2. Refinement phase}
. Refine(G’ k);
{3. Projecting back}

MLP distinguishes itself from previous graph partitioning meth-
ods in two aspects: 1) Coarsening by LP instead of maximal match-
ing (as in METIS) keeps the semantics or the structures of the
graph. It is also more efficient than maximal matching. ii) In MLP,
once two vertices are assigned the same label in a coarsened graph,
they will always share the same label in coarser graphs in later it-
erations. METIS, on the other hand, needs to relabel the vertices in
the refinement step.

4.2 The Coarsening Step

Let Go = G(V, E) be the input graph, and let G1, ..., G, ..., G¢
be the intermediate graphs generated during the coarsening step.
Let P; = {C4,C4,...,Cy} be the partitioning derived by running
LP on G;. Each P; is defined on GG;. We define a coarsened graph
as follows:

DEFINITION 3 (COARSENED GRAPH). Fora graph G;(V;, E;)
and a partitioning on the graph P; = {C1, Cs, ..., Cy, }, the coars-
ened graph G i1 is a graph with vertex set V11 and edge set F; 4 1,
where Viy1 = Pi, and (C;, Cj) € Eit1 iff Ju € Cy,v € Cj such
that (u,v) € E;.

As an example, consider the coarsened graph in Figure 1(c). It is
produced from the partitions {{a, b, ¢, d},{e, f,g,h}, {3, 5, k, 1} }
of the graph in Figure 1(a).

4.2.1 Label updating

The original label updating mechanism of LP works like this:
each vertex is assigned a label which is the most frequent label
of its neighbors. If multiple labels have the same top frequency, we
pick one randomly. In MLP, we make two extensions to the original
label updating mechanism.

Structure-preserving label updating

A good labeling procedure should be ‘semantic-aware,” i.e., ver-
tices sharing a lot of common neighbors should be assigned the
same label, i.e., grouped together. Instead of using the common
practice of randomly choosing among the most frequent labels, we
select the minimal label to better support semantic awareness.

To illustrate, consider the first iteration of LP. In the first iteration,
each vertex has a unique label. Hence, all of the labels have the
same frequency. We compare two strategies. First, we randomly
select a label of its neighbors. Second, we select the minimal label
of its neighbors (assuming labels can be linearly ordered). Assume
both nodes u and v have 10 neighbors. If half of the neighbors are
the same, the probability that v and v are assigned the same label
is less than 1/10 under the first strategy, while under the second
strategy the probability becomes 1/3. If all of the neighbors are the
same, the probability is 1/10 under the first strategy, while under
the second strategy the probability becomes 1.

We formally show this in Lemma 3. The first statement shows
that even if when two vertices share a significant number of neigh-
bors, the probability that they are clustered together is less than
m In contrast, the second statement shows a de-
sired property of the second strategy: The more neighbor sharing,
the more likely the two vertices are clustered together. Lemma 3
further ensures that the second strategy is better than the first strat-
egy. The upper bounds of the two probabilities also implies that
p’ (u, v) may be significantly larger than p(u, v).

LEMMA 3 (RANDOM VS. MINIMAL LABEL). Let u,v € V
be two vertices and N (u) be the neighbors of u. Suppose each
vertex is assigned a unique label and there is a linear order on all
labels. The following statements hold:

1. The probability that a randomly selected label from N (u) is
identical to a randomly selected label from N (v) is

_ IN(w) N N()| 1
INGWIIN()| = max{IN(u)], N[}

p(u,v)

2. The probability that the minimal labels of N (u) and N (v)
are identical is
_ V@ NI,
UN(v)]

3. p'(u,v) > p(u,v)

PROOF. We first prove statement 1. There are | N (u)| X | N (v)|
choices. Among them, |[N(u) N N(v)| lead to the same label.

Hence, we have p(u, v) = NON®IL gince N (u) N [N (v)] <

T IN@)[IN ()]
min{|N (u)|, |N(v)|}, we have p(u, v) <

1
max{|N(u)[,|N(v)[}

To prove statement 2, we just need to highlight that p’(u, v) is e-
quivalent to the probability that the unique minimal label of N (u)U

N(v) belongs to N(u) N N(v). Hence, p’(u,v) = %

For statement 3, we distinguish two cases: (1) N(u) N N(v) is
empty and (2) not empty. In the first case, p(u,v) = p'(u,v) = 0.
In the second case, we just need to show that |N(u)||N(v)| >
|N(u) U N(v)|. Since N(u) N N(v) is not empty, it contains at
least one element. Hence, | N (u) UN (v)| < |N(u)|+ |N(v)| —1.
It is trivial to show that | N (u)|+|N(v)| -1 < |[N(u)||N(v)|. O

As adirect consequence of the new label updating rule, vertices in
the same community tend to share the same labels. This enables the
coarsened graph to preserve the structure of the original graph. The
labeling rule also leads to faster convergence. If we randomly pick
a label when more than one label has the top frequency, even when
two vertices lie in the same community, they are quite possibly
assigned different labels. Our labeling rule can avoid such wasteful
labeling.

Weighted label updating

In order to perform multi-level graph coarsening, we extend LP for
weighted graphs. We model each intermediate graph as a weighted
graph. For Gy, we assign a unit weight to its vertices and edges.
For GG;41, which is constructed from G; and P;, the weights are
assigned as follows:

DEFINITION 4 (WEIGHT FUNCTION). Let G;+1 be the coars-
ened graph derived from G;. We have Viy1 = {C1,Cs,...,Cr},
where each node C; is weighted as:

w(Ci) =Y wlu) (1)

ueC;
and each edge e = (C;, C;) is weighted as:

w(Cy, Cj) = >

e(u,v)E€E;,ucC;,vel;

w(e(u,v)) 2

With weights, we can further improve the quality of label updat-
ing. For node u, assume its neighbor v has label c. Previously,
neighbor v contributes a unit weight to c. If ¢ has the highest con-
tributed weights, it becomes the label of u. In our new approach,
instead of contributing a unit weight to ¢, node v contributes weight

wie(u,v)) 5

w(v)

The rationale is as follows. In the coarsened graph, each node v
represents a set of nodes in the original graph. Let V' (v) denote
the set of nodes v represents. For a pair of nodes v and v, node
u is more likely to take v’s label if the subgraph induced by V' (u)
and V' (v) in the original graph has a higher density. Based on the
definition of node and edge weights in Eq 1 and Eq 2, we know that

the density of the induced graph Gy (uyuv (v) 18 % When

we update u’s label, w(u) in the denominator is the same for all of

u’s neighbors. Hence, w(u) can be omitted, which leads to Eq 3.
With the weight defined, we update the label for a node u as fol-

lows. For each label ¢, we define its score as

S(C) _ Z w(e(um)) (4)

vEN(u),L(v)=c U}(’U)

where the summarization runs over all of u’s neighbors whose label
is c¢. Then, u will select the label ¢ that has the maximum score. In
general, it is unlikely that two labels will have the exact same score.
When two or more labels have the same maximal score, we apply
the strategy of selecting the minimal label as described above. In
the real implementation, to allow more potential labels to join the
completion, we select the minimum label whose score is larger than
a threshold.

#Label/#Vertex —+—
0.9 X, Normalized Entropy -

.

0 |
01234567 8 9101112131415
Iterations

Figure 3: Convergence of LP on LiveJournal network

4.2.2 ~-size Partitions

Our goal is to partition a graph so that each partition is stored in
a distributed machine. The partitions produced by the naive LP ap-
proach may be extremely imbalanced: It may generate many small
partitions, and a few very large ones. The size of these large ones
is often larger than the capacity of a single machine.

To avoid generating a cluster with too many vertices, we adopt
a size threshold. Specifically, when the size of a label (partition)
reaches an upper limit, we “freeze” the label, which means the
membership of the partition can no longer change. To ensure a
balanced partition, each machine should hold around % vertices,
where k is the number of machines. We use a smaller value %
as the upper limit, where v > 1 is a parameter to control the upper
limit. The rationale is as follows.

A larger v leads to a smaller upper limit, which in turn leads to
more labels (partitions) to be produced. Note that in the second
step of Algorithm 1, we will merge small labels using high-quality
partitioning algorithms such KL [5] or METIS [8]. Large labels
whose size is close to a machine’s capacity will be excluded from
the merge step. In contrast, by setting v > 1, we can ensure that
all labels (partitions) will join the second step to produce a high-
quality final partitioning.

On the other hand, when + is too large, a closely connected sub-
structure is often fragmented into pieces, which in turn will hurt the
overall partitioning quality. Additionally, a larger v may also pro-
duce a large number of labels at the end of the coarsening step. As
a result, the coarsened graph may be still too large to be processed
by the refinement step. Hence, we need a good trade-off. Through
experimental study, we find that for most real networks, setting ~y
as (k) produces the best partitioning quality.

4.2.3 pB-depth LP

In general, we hope the coarsening process shrinks the graph as
fast as possible without losing any structure information. Intuitive-
ly, the two goals — fast shrinking and information preservation —
conflict with each other.

To address this problem, we first reveal an observation we made
in the shrinking process. In LP, the number of labels tends to de-
crease fast in the early iterations and then remain relatively stable.
As shown in Figure 3, in a typical real network, after 5 or 6 it-
erations, the number of labels and the normalized entropy will no
longer change. Here, we define the entropy as follows. For a par-
titioning P defined on n vertices, the entropy of P is defined as
— " pi log p;, where each p; is the probability that a vertex be-
longs to C;. We normalize the entropy by dividing the maximal
entropy value logn over n vertices. When the entropy remain-
s stable, the distribution of vertices in different labels (partitions)
changes marginally. In other words, the labeling changes little.

To act on this observation, we use a parameter 3 to control the
shrinking speed and coarsening quality: We only run LP for 3 itera-
tions. We call such LP 8-depth LP. The overall complexity of MLP
is O(tB|E|), where t is the number of runs of S-depth LP. With
the same complexity, we may choose to run one LP with depth ¢4,
such a strategy is denoted by 1 x ¢g; or alternatively run ¢ S-depth
LP, denoted by ¢ x 3. The following simple analysis shows that

generally ¢ X f3 is better than 1 x ¢f3.

Let P; be the partitioning after running the i-th 5-depth LP on
G;. Let P; be the partitioning on V (G) by mapping P; back to
the input graph G. We can establish a linear order based on the
finer relationship among partitionings Py, ..., P; due to Lemma 4.
Given two partitionings P1, P2 defined on the same set, P is finer
than Ps, if for each C; € Pi, C; C C; where C; € Pa. Thus,
intuitively, in ¢ x [, after each run of 8-depth LP, we enforce that
vertices with the same label in G; will always share the same label
in G;+1. However, in contrast, in each iteration of 1 x t{3, vertices
with the same label may be assigned different labels in the later
iterations, thus easily leading to oscillations. We will provide more
evidence in the experiment section.

LEMMA 4. In MLP, for each i, partitioning P} is finer than
PZ{+1'

4.3 The Refinement Step

Let G¢(V4, E¢) be the final graph produced by the coarsening
step. We further partition G in the refinement step and adopt the
following guidelines: first, each label (partition) is the smallest unit
to be distributed; second, we want to create a balanced distribution;
third, we want to minimize the total weight of crossing edges a-
mong the machines.

We discuss two ways to distribute G; across k£ machines. The first
is multiprocessor scheduling (MS), the second is weighted graph
partitioning (WGP). We assume that the machines have enough s-
pace to hold the clusters to be assigned, i.e., we have a fixed number
of machines with finite but large enough space.

4.3.1 A baseline approach: the MS model

One direct model to meet the first two requirements is multipro-
cessor scheduling (MS).

DEFINITION 5 (MS). For a given k and a partitioning P =
{C4,Cy,...,Cn} over set V, find partitions {S1, S2,...Sk} over
V such that (1) each S; is a union of subsetin P’ C P, i.e., S; =
Usep’ S and (2) the value max{|S;||1 < i < m} is minimum.

The first condition ensures that each label is distributed as a w-
hole. The second condition requires us to find the most balanced
assignment. Clearly, MS is NP-complete. We use a greedy algo-
rithm to solve this problem. We first sort the subsets in P by their
sizes in descending order, then we assign each subset to the ma-
chine with the largest remaining capacity. It is known [21] that
this greedy algorithm produces an approximation of 4/3 — 1/(3k).
The greedy approach is also efficient with a time complexity of
O(|Vi|log |V4|). Thus, we can handle large G;. This implies that
we can perform MS-based refinement even when the coarsening is
conducted for a limited number of levels.

However, the MS model does not follow the third guideline, i.e.,
minimizing the total number of crossing edges. In general, the
MLP+MS approach (i.e., coarsening by multilevel LP and refining
by MYS) is efficient but may introduce a loss in partitioning quality.

4.3.2 An improved approach: the WGP model

To minimize the edge cut size, we propose a weighted graph par-
titioning (WGP) model.

DEFINITION 6 (WGP). For a given k and a weighted graph
G(V, E), find a partitioning P = {C1, Ca, ..., Cr} of V such that

e (Weighted balance) for each C;, |W;| = W/k, where W;
is the sum of vertex weights in C; and W is the total vertex
weight;

e (Minimizing edge weight) > . w(e), where E¢ is the
set of edges with two ends lying in different parts of P.

This model is different from its unweighted version in two as-
pects. The first is that we want to achieve balance in terms of total
vertex weight. The second is that the number of cut edges is re-
placed by the total weight of crossing edges.

We use METIS to solve WGP. Note that METIS in general can
only handle graphs with a couple millions of nodes. Hence, in our
overall algorithm framework, we need to perform coarsening un-
til the coarsened graph can be handled by METIS. In Algorithm 1,
we use parameter « to control the size of the graph that METIS
can handle. Of course, any other weighted graph partitioning algo-
rithms can also be applied.

For MLP + WGP, two key issues have impact on the partitioning
quality. First, we hope that when a good partitioning on the coarsest
graph is projected back, the projected partitioning is also good in
the original graph. This holds due to Lemma 4. Second, we hope
that the coarsening step can ensure the partitioning quality.

MLP addresses the second issue using the following approach.
First, we use Eq 3 to ensure that edges with large weights are coars-
ened into a single vertex. Second, in MLP when G is coarsened to
Gi+1 the following equation holds:

w(Git1) = w(Gi) — w(Pi) S)

where w(G;) is the total edge weight of G;, and w(P;) is the total
weight of edges that lie within each part of P;. Thus, the final goal
in WGP of minimizing the total crossing edge weight is compatible
to the coarsening of large-weight edges. Hence, the coarsening step
in MLP naturally leads to a good partitioning.

S. DISK-BASED MLP

In this section, we show that, even if we do not have a large num-
ber of machines to hold an entire billion-node graph in the memory,
we can still partition the graph without much performance penalty.

5.1 Rationale

Real life graphs are becoming bigger and denser. The Facebook
social network currently has about 1 billion nodes and over 100
billion links. The size of the graph topology is at least 1T. If each
machine has 32G memory, we need at least 30 machines to hold
the graph topology in memory. For the web graph, hundreds of
machines are needed. To make things worse, real life graphs are
becoming denser [22]. Let d denote the average degree of a graph.
A graph consumes ©(d-|V'|) memory space. It has been shown that
for real life graphs, the numbers of edges and nodes at time ¢, de-
noted by e; and n., respectively, satisfy e; o< nd where 1 < 6 < 2.
This shows that real life graphs are getting denser over time. Clear-
ly, for web-scale graphs, memory is a bottleneck. Small organi-
zations are not able to work on large graphs because they cannot
afford to deploy a large memory cloud. Hence, the challenge is:
Can we run our algorithms on a big graph using limited memory?

5.2 Overview of our approach

Recall that we keep graphs memory resident because online graph
queries incur random accesses on a graph, and disk-based random
accesses are very slow. But for queries that only access a portion
of the graph instead of the entire graph, we only need to keep that
portion memory resident. In MLP, the labels of the vertices are
updated independently. Thus, if we are able to schedule MLP se-
quentially, then we can pipeline the execution on different portions
of the graph, and at any point of time only one portion of the graph
need to be memory resident. This enables us to partition graphs of
any size.

In Trinity, each machine manages a sub-graph. We divide a sub-
graph into a set of disjoint blocks so that each block is small enough
to fit in the memory of a single machine. A block contains a set
of vertices and their adjacent lists. During computation, we load
the blocks into memory one by one. For each block, we need to
ensure we can carry out the following computation when no other

-
/{ Block ——4\ Block

L.Load 2.Genrate 3.Send 4.Wait message &
fomdisk [P| labelrequests [P| requestmessage [P| Updatelabel [P| SSavetodsk

\ / A

Figure 4: Process of pipeline execution

blocks is in memory: each vertex in the block sends its label to all
of its neighbors, receives messages from its neighbors, and finally
updates its label. This allows us to pipeline the process to improve
the usage of the CPU, disk I/O, and network communication.

5.3 Pipelined MLP (pMLP)

We now present the details of how to perform LP in a pipelined
manner.

Data Structures. Assume we are currently performing the k-th
iteration of LP on machine 7. Let V; be the vertices that reside on
machine ¢, and at any point, only a single block, which contains
vertices S C V;, is in the memory.

Machine 7 is both a consumer and a producer. As a consumer,
it requests remote machines to send labels of S’s neighboring ver-
tices. As a producer, it needs to provide labels of V; to other ma-
chines upon request. Since machine 7 only keeps .S, which is a
subset of V;, in memory, in order to provide V;’s labels, it needs
to perform disk I/O. To avoid disk I/O, we keep the labels of V;
memory resident. Note that keeping the entire V;’s adjacent lists
memory resident takes O(d - |V;|) space, where d is the average
degree (d > 100 in Facebook), while keeping the labels only takes
O(]Vi]) memory space. In fact, in each machine, we keep the fol-
lowing three dictionaries in memory, as shown in Table 1.

Content Usage

LD1 (vertex, label) Vi’s labels in iteration k — 1
LD2 (vertex, label) V;’s labels in iteration &k

RD (vertex, machine/label) Neighbors’ machine ID and labels

Table 1: In-memory dictionaries

The dictionaries support constant-time lookup and update (by in-
dexing on vertex). We use dictionary LD1 to maintain V;’s labels
generated in the last iteration, and LD2 to maintain V;’s labels gen-
erated in the current iteration. At the beginning of a new iteration,
the content of LD2 is copied over to LD1. Dictionary RD is used
as an input/output buffer. A machine generates a request in the for-
m of (vertex, machine), meaning it needs to know the label of the
vertex that resides on the given machine. The requests are buffered
and sent in batch, and the responses come back in the form of (ver-
tex, label). RD buffers and groups these incoming and outgoing
messages.

Basic Pipelining Procedure. During the pipelined execution,
each machine performs the five steps illustrated in Figure 4. In the
first step, we load the next block from disk. In the second step,
for each vertex v in the block, we find the labels of its neighbors.
For each remote neighbor v, we generate a label request message
in the form of (v, machine), where machine is the machine where
vertex v resides. We then add each message into RD (using dic-
tionary RD as a sending buffer). In the third step, after all label
request messages are generated, we group them by machine and
send each group as a single message to the remote machine. In the

fourth step, we wait until all message requests are processed by the
remote machines and all the responses come back in the form of (v,
label) in RD, where label is the label for v. Using the label infor-
mation of neighboring nodes, we update the labels of V; in LD2.
Finally, the block is disposed from memory, and we enter the next
iteration. Besides updating the labels of V;, each machine also re-
ceives remote requests for the labels of V;. The requests are served
by dictionary look ups in LDI.

We pipeline the above procedure to improve the effectiveness
of system resources, including CPU, disk controller, and network
bandwidth. Each of the above steps is carried out by a single pro-
cess. Through pipelining, the CPU usage and the network usage are
significantly improved. Furthermore, all communication mecha-
nisms, such as sending, receiving, deadlock detection and synchro-
nization, are provided as the off-the-shelf components of Trinity.
These off-the-shelf components are general enough for our purpose
(no customization of algorithms or data structures are needed).

Label size estimation. After one B-depth LP, we need to count
the size of each label to construct a coarser graph. A naive solu-
tion needs to count the sizes of labels on each machine, then ac-
cumulate the label size on a master computer. This solution needs
overall O(k|L|) communications and poses O(k|L|) computation
overheads on the master computer, where L is the set of labels. In
the first several iterations of MLP, | L| may be quite close to |V]. In
many cases, it is larger than one-tenth of |V'|. To reduce the com-
munication cost and computation overheads on the master com-
puter, we sample vertices in each machine with probability ¢ and
estimate the label size as n’/q, where n’ is the number of vertices
with the label in the samples. In this manner, the communication
complexity is O(|V'|g). In general, we can use quite a small ¢ to
ensure that O(|V'|q) is smaller than O(k|L|) with bounded estima-
tion error.

Coarser graph generation. Consider the procedure to gener-
ate G; by G;_1 and P;_1. We first use hash functions

h(l(v)) =1(v) mod k (6)

to distribute vertices v € G;—1 with label I(v) and their adjacent
lists onto k£ machines. This hash function ensures that vertices with
the same label will be assigned on the same machine and the graph
creation job is evenly distributed over k machines. Then, on each
machine, we use the next two steps to create ;. First, for each
label = we create a new vertex u of GG; for all vertices in G;_1
with the label. Meanwhile, we create the mapping between v and
V' (u) (the vertices in Go that u represents). Next, we create the
new adjacent list for u. We collect the new vertex id in G; for
all neighbors of {v|v € Gi—1,l(v) = x} in Gj—1. This can be
achieved by message passing. Each of these new vertices represents
a neighbor of u in G;. Simultaneously, we calculate the weight of
edges between u and each of of its new neighbors. Once G; is
created, G;—1 is dropped off.

5.4 Analysis

We give the analysis of complexity of time, space, and communi-
cation for pMLP, then discuss the influence of block size.

Complexity analysis. The time complexity is obviously O((¢3+

¢)|E|/k) for t runs of 5-depth LP, where c accounts for the rounds
of message passing for coarser graph creation at the end of each
[-depth LP. Within each iteration of LP, overall O(2|V;| + |S|d)
memory space is needed on each machine, where S C V; is a block
of V;. 2|V;| accounts for the space usage of LD1 and LD2. |S|d ac-
counts for the space usage of RD. In general, we can set |\S| ~ %
to limit the size of RD.

Next, we present the communication complexity analysis. Note

that we use dictionaries to avoid duplicate label requests. Lemma 5

shows that when V; can be entirely loaded into memory as a block
(i.e. |S| = |Vi]), the total number of label requests under partition-
ing P, is exactly cv(P). When allowing duplicate messages, the
total number of messages is obviously ec(P). Hence, by using a
dictionary, in the best case we reduce the communication complex-
ity from ©(ec(P)) to O(cv(P)). As shown in Section 3, cv(P) is
smaller than ec(P).

LEMMA 5. Given a partitioning P over graph G on k ma-
chines, the total number of messages is ©(cv(P)) when |S| = |Vi|.

When |S] is smaller than |V;], a constant factor { = ‘I‘g\l

be introduced into the above result because a remote vertex label
may be requested approximately ¢ times. However, whatever (is,
ec(/P) is always an upper bound of the total number of messages.
Thus, a more accurate estimation of the communication complexity

is ©(min{Ccv(P), ec(P)}).

will

Block size. The block size |S| determines the memory usage and
communication overheads. The larger |S| is, the more memory will
be consumed and the fewer total communications will be produced.
|S| has also another indirect influence on the overall performance.
When |S| is quite large, too many messages will be sent to other
machines, which in turn will overload these machines and degrade
their performance. Hence, |S| is critical for the balance between
the message generating speed and consuming speed, and the trade-
off between memory usage and communication volume. In general,
the optimal block size depends on CPU speed, parallelism efficien-
cy, network speed, and memory size. It is hard to quantify the
optimal block size. We will explore this by experiments.

6. EXPERIMENTS

We present experiment results in this section. For performance,
we measure peak memory usage and running time. For partitioning
quality, we measure edge cut size (ec), total communication volume
(cv), and imbalance, where imbalance is measured by the maximal
imbalance or the percentage by which the size of the largest part
exceeds the average partition size. We evaluate two versions of our
solution: LP+MS and MLP+METIS.

We further compare our solutions to two typical versions of METIS
as well as the baseline random partition approach. One is recursive
bisection with RM, denoted by rb+rm. The other is k-way par-
titioning with sorted HEM, denoted by kway+shem. Sorted HEM
(SHEM) is identical to HEM except that vertices are matched in the
descending order of degree so that it will match small-degree ver-
tices as well. In general, SHEM shrinks a graph faster than HEM.
For comparison with random partitioning, we generate 10 random
partitionings, then report the average measures.

6.1 Sequential MLP

We implement a sequential version of MLP in C (the same as
METIS), and then compare it to the sequential version of METIS.
We run all experiments on a PC with Intel Xeon at 2.67GHz, 48G
memory running 64-bit Windows server 2008. We compare MLP
and its competitors on both real life graphs and synthetic graphs.

6.1.1 Experiments on real life graphs

Datasets. We use three large graphs: LiveJournal, WikiTalk, and
Patents *. LiveJournal is an online social network, in which nodes
represent users and edges represent the friendship relationship. In
the WikiTalk graph, nodes represent Wikipedia users, and a direct-
ed edge from node ¢ to node j represents that user ¢ at edited a
talk page of user j at least once. Patents is the citation network of
patents in the U.S.

“Download from http://snap.stanford.edu/index.html

n
o

METIS(rb+rm)
METIS(kway+shem) &

MLP+METIS sesm—

LP+MS

o 4N
o o o o

Communication Volume (105)

3 A

Edge Cut (10°)
N
o

ool 7

WikiTalk Patents LiveJournal

WikiTalk Patents LiveJournal

Memory (MB)

16000

Random zzzzz

14000
12000
10000
8000
6000
4000
2000

Ks

WikiTalk PatentsLiveJournal

Time (s)

600

500 -
400 -
300 -
200 -
100 -

e W
2t

WikiTalk Patents LiveJournal

Figure 5: Quality and performance on million-node real graphs

Network #Vertex # Edge size (M)
WikiTalk 2394385 4659565 53.8
Patents 3774768 16518947 154.8
LiveJournal 4846609 42851237 363.9

Table 2: Basic information of real graphs

Partitioning quality. The first two plots of Figure 5 show the
quality of partitioning for real life graphs. The quality is measured
by cv (communication volume) and ec (edge cut). The results were
obtained by running MLP+METIS with 3 X 5 coarsening strategy
and LP+MS with one 15-depth LP. As we can see, our solutions
and METIS produced partitions of significantly better quality than
random partitioning. The comparisons show that MLP+METIS’s
quality is comparable to that of METIS. LP+MS’s quality is weak-
er than METIS but still better than random partitioning. The imbal-
ance results are omitted since for both our solutions and its com-
petitors on all tested networks, the maximal imbalance is less than
3%, which is minor and can be ignored.

Performance. The last two plots in Figure 5 show the perfor-
mance results of various partitioning algorithms. The results were
obtained by running MLP+METIS with 3 X 5 coarsening strategy
and LP+MS with one 15-depth LP. The results imply that a minor
sacrifice of quality brings significant performance improvement.
In general, MLP+METIS and LP+MS consume significantly less
memory than METIS. We can see that MLP+METIS or LP+MS
consistently runs faster than METIS on different real networks. In
some cases (e.g., memory usage on LiveJournal, running time on
WikiTalk), the performance of our solutions is one order of magni-
tude better than METIS.

Convergence. In this experiment, we compare the speed of con-
vergence of different coarsening strategies. We show the results on
LiveJournal in Figure 6. Results on other graphs are similar and
are omitted here to save space. From the results, we can see that
SHEM converges fastest since it pays special attention to matching
small-degree vertices. The speed of convergence of two of our s-
trategies is close to that of SHEM. We also compared different a x b
strategies of our solution. We found that 3 x 5 performs the best.
In 3 x 5, after each 5-depth LP there is a clear drop in the number
of labels. This observation indicates that by creating a new graph
and then running LP on the new graph we reduce the graph size
further. We also found that by 3 X 5 coarsening, the coarsest graph
is almost two orders of magnitude smaller than the original graph.
This is really important when partitioning a large graph with billion
nodes.

6.1.2 Experiments on synthetic graphs

Synthetic graph model. We generated a collection of synthet-
ic graphs with embedded communities to test the effectiveness and
efficiency of MLP. We used the graph model [47] that generates
synthetic graphs with varying degree of “clearness” of community

0123 456 7 8 9101112131415

Iterations

Figure 6: Convergence of coarsening on LiveJournal

structure. There are three parameters «, 3, 1t in the model. Both
degree and community size follow power-law distribution with ex-
ponents « and /3, respectively. The parameter p controls the pro-
portion of neighbors of a vertex that reside in other communities.
By tuning p, we vary the clearness of the community structure.
We generated five graphs with 1 million vertices and approximate-
ly 10.6 million edges by setting @« = 2,3 = 3. The parameter p
varied from 0.1 to 0.5. As p becomes smaller, the boundaries of
the communities in the graph become clearer.

Fartition quality and performance. Table 3 measures the
quality and the performance of METIS and our partitioning method
on synthetic graphs. We ran MLP+METIS under the 1 x 10 coars-
ening strategy. We found that MLP uses much less memory and
time than the two versions of METIS. The quality of MLP, mea-
sured by ec (edge cut) and cv (communication volumn), is not only
comparable but in some cases better than METIS. The partitioning
quality of MLP is consistently better than METIS(kway+schem)
for different p. It is also clear that when boundaries between com-
munities are clearer (smaller @), MLP’s quality is closer to that of
METIS(rb+rm). The imbalance of all solutions can be ignored s-
ince the maximal imbalance is at most 3%.

In summary, the results on the synthetic graphs with embedded
communities sufficiently show that MLP can effectively leverage
the community structure of graphs to generate a good partitioning
with less memory and time. In contrast, METIS, which is based
on the maximal matching method, is not community-aware when
it coarsens a graph, thus heavily relying on costly refinement in
the uncoarsening phase to ensure the solution quality. As a result,
METIS incurs more time and space costs.

6.2 pMLP

We next examine the scalability and effectiveness of pMLP. The
following results were all obtained by running pMLP on Trinity.

Speedup. To study the efficiency of pMLP, we ran pMLP under
the 3 X 5 coarsening strategy on the LiveJournal graph using 2
to 8 machines. The results are shown in Figure 7. We can see
that the running time almost linearly decreases with the number of
machines. We achieved almost 6 speedup on 8 machines, indicating
that our parallel solution is effective.

cv (x10%) ec (x10%) Memory (MB) Time(s) Imbalance Ratio
K MI M2 | MLP | MI M2 | MLP MI M2 MLP MI M2 MLP M1 M2 | MLP
0.1 | 0.64 | 0.89 | 0.64 | 040 | 0.66 | 0.40 994.74 591.47 | 352.08 | 12.31 437 | 5.117 | 1.00 | 1.00 | 1.03

02| 1.61 [201 | 1.59 | 1.06 | 1.62 | 1.05 | 1162.18 | 1007.22 | 354.98 | 19.67 | 9.58 7.33 | 1.00 | 1.02 | 1.03
03 | 217 | 2.64 | 220 | 1.60 | 243 | 1.61 | 1541.54 | 1359.48 | 406.07 | 21.47 | 12.15 | 8.46 | 1.00 | 1.03 | 1.03
04 | 280 | 329 | 3.01 | 223 | 3.18 | 239 | 1863.83 | 1745.54 | 516.50 | 26.35 | 18.61 | 9.67 | 1.00 | 1.03 | 1.03

0.5 | 331 | 383 | 383 | 285 | 3.96 | 3.53 | 2192.56 | 2091.88 | 646.47 | 29.97 | 27.32 | 12.22 | 1.00 | 1.00 | 1.03

Table 3: Quality and performance on synthetic networks. M1 is METIS(rb+rm), M2 is METIS(kway+shem).

140

Time(s)

#Machine
Figure 7: Parallelism efficiency of pMLP

Block size. In this experiment, we examined the influence of
block size (for a set of vertices V; on a machine, block size de-
termines the number of blocks). The experimental settings were
the same as used in previous experiments, and the only difference
is that we ran it on 8 machines with a varying numbers of blocks.
As shown in Figure 8(a), the number of messages increases with
the number of blocks. We also show ec and cv of the partitioning.
We can see that, when there is only one block, the system produces
a minimal number of messages (which is close to cv). On the oth-
er hand, when the number of blocks is very large, many redundant
messages are generated and the total number of messages is close
the theoretical worst case of ec. The running time under differen-
t block numbers is given in Figure 8(b). As expected, an optimal
number of blocks exists. In our experiment, 4 blocks led to the least
time.

100

#Message (106)
Time(s)

64
#Block #Block

(a) # Message (b) Running time
Figure 8: Performance of partitioning algorithms.

6.

25

Scalability. We generated synthetic graphs with the numbers of
vertices ranging from 64M to 512M and an average degree of 26
using the RMAT [46] graph generator (a widely-used model to gen-
erate graphs with power-law degree distribution). The RMAT mod-
el has four parameters a, b, ¢, d. We set the parameters 0.45, 0.15,
0.15, and 0.25, respectively. We ran MLP+METIS under the 5 x 5
coarsening strategy. All other experiment settings are the same as
that used in the previous experiment. We used 8 machines, each
of which had 48G of memory. The results are shown in Figure 9.
As we can see, the running time almost increases linearly with the
growth of the graph size.

We want to highlight that on the largest graph, which has 512M
nodes and 6.5G edges, it only takes about 4 hours and 8 x 48G total
memory for pMLP to finish the partitioning job. This is the largest
graph that has ever been partitioned to the best of our knowledge.
For this graph, after 5 X 5 coarsening, the coarsest graph has only
about 1.4M nodes, which is a significant reduction. This reduction
is the key reason why pMLP can scale up to web-scale graphs. For
all the tested large graphs, the maximal imbalance is less than 5%.
The RMAT graphs do not necessarily have community structures.

100000

10000 ¢

Time(s)

1000 ¢

100

226 227 528 229
#Vertex

Figure 9: Scalability to billion-node graphs

Hence, it is less possible to find a partitioning that is significantly
better than a random partitioning. In spite of this, the ec and cv of
the partitioning produced by pMLP is only 90% of that of random
partitioning. For web-scale real life graphs that contain communi-
ties, the partitioning results will be even better.

7. RELATED WORK

We survey related work on graph partitioning from four angles.

Large graph partitioning. The problem of graph partition-
ing is an NP-complete problem [23]. Earlier efforts focused on
designing effective sub-optimal algorithms. Typical algorithms of
this class include local search based solutions (such as KL [5] and
FM [6]), which swap heuristically selected pairs of nodes, simulat-
ed annealing [24], and genetic algorithm [25] based solutions, etc.
To scale up to graphs with million of nodes, multi-level partitioning
solutions, such as Metis [8], Chaco [7], and Scotch [10], have been
proposed. These algorithms are further parallelized to handle even
larger graphs, and examples of these parallelized solutions include
ParMetis [11] and Pt-Scotch [12]. To summarize, existing solutions
can partition graphs with up to tens of millions nodes. The method
presented in this paper is the first that is able to partition billion-
node graphs on a general-purpose distributed memory system.

Distributed graph computing platform. Our solution is built
on top of Trinity [17], but the algorithm is portable to other dis-
tributed graph computing schemes that support efficient vertex-centric
programming and message passing. In recent years, a variety of
distributed graph computing platforms have emerged, including P-
BGL [26], Pregel [15], InfiniteGraph [28], HyperGraphDB [29],
and many others are under development [30]. PBGL is a C++ li-
brary for parallel distributed computation on graphs and support
message passing by MPI. Pregel is provided as a MapReduce-like
programming framework to support vertex-centric programming
model. InfiniteGeraph and HyperGraphDB are graph database en-
gines that support storage, query, and update of a graph database.
Most of them by default use the random partitioning to partition the
data. Many of them, such as PBGL and Pregel, provide the flexi-
bility to allow users to specify the partitioning. However, none of
them provides an efficient algorithm or solution to partition a large
graph. An ongoing project GPS [31] has been aware of partitioning
on web-scale graphs on a general-purpose distributed platform, but
the project is still in an early stage, and neither documentation nor
source code is available.

Label propagation. Raghavan et al. [32] first proposed using
label propagation (LP) to detect communities in real networks. Lat-
er, Barber et al [33] reformulated the naive LP approach to an e-
quivalent optimization problem. Leung et al. [34] found that LP
leads to ‘monster’ communities that contain more than half of the
vertices in the graph, and use a parameter to penalize a label by
distance. LP was further improved to detect communities in bipar-
tite networks [35], to detect overlapping communities [36], and to
identify core, as well as whisker, communities [37]. LP also offers
applications for compressing a large social network [38]. However,
to the best of our knowledge, LP is not used for partitioning. The
label updating rules proposed in this paper has rarely been studied
in previous works.

Algorithms on large graphs. TIn recent years, a great deal of
research has been dedicated to managing and mining large graph-
s. Typical problems that have attracted wide research interest in-
clude: label-constraint reachability queries [39], top-K substruc-
ture pattern mining [40], approximate subgraph search [41], best
cluster finding [42], subgraph query optimization [43], etc. How-
ever, most of these algorithms or solutions are not designed for a
general-propose distributed graph platform. The results reported
in these works were primarily obtained on a single machine, and
the largest graph ever reported has only millions of nodes. Quite
recently, some papers have proposed some scalable solutions for
spectral analysis [44], pattern inference [28], and max flow [45] on
billion-node graphs. However, these solutions generally are built
upon MapReduce instead of a general-purpose distributed memory
system. And partitioning algorithms for a billion-node graph is not
yet available.

8. CONCLUSION

In this paper, we propose a novel approach for partitioning billion-
node graphs on a general-purpose distributed memory system. Our
approach, which is called MLP, uses multilevel label propagation
to iteratively coarsen a graph until the coarsened graph is small
enough, and then uses a high-quality off-the-shelf partitioning al-
gorithms to generate the final partitioning on the coarsened graph.
Due to the semantic-awareness and efficiency of LP, MLP is more
efficient, easily parallelized, and effective than existing approach-
es. Extensive experiments on large real graphs and synthetic graphs
verify the efficiency and effectiveness of MLP. MLP successful-
ly finds good partitionings on billion-node graphs with acceptable
memory and time, which shows that MLP can scale up to billion-
node graphs.

9. e REFERENCES

http://www.worldwidewebsize.com/.

[2] http://www.facebook.com/press/info.php?statistics.

[3] http://www.w3.org/.

[4] D.R. Zerbino et al., “Velvet: algorithms for de novo short read
assembly using de bruijn graphs.” Genome Research, vol. 18, no. 5,
pp. 821-9, 2008.

[5] B. Kernighan et al., “An efficient heuristic procedure for partitioning
graphs,” Bell Systems Journal, vol. 49, pp. 291-307, 1972.

[6] C. M. Fiduccia et al., “A linear-time heuristic for improving network
partitions,” in DAC ’82.

[7]1 B. Hendrickson et al., “The chaco user’s guid, version 2.0,” Technical
Report SAND94-2692, Sandia National Laboratories.

[8] G. Karypis et al., “Metis - unstructured graph partitioning and sparse
matrix ordering system, version 2.0,” Tech. Rep., 1995.

[9] G. Karypis et al., “Analysis of multilevel graph partitioning,” in
Supercomputing "95.

[10] F. Pellegrini et al., “Scotch: A software package for static mapping
by dual recursive bipartitioning of process and architecture graphs,”
in HPCN Europe ’96.
[11] G. Karypis et al., “A parallel algorithm for multilevel graph

partitioning and sparse matrix ordering,” J. Parallel Distrib. Comput.,
vol. 48, pp. 71-95, 1998.

[12]
[13]
[14]
[15]
[16]
(7]
[18]
[19]
[20]
(21]
[22]
[23]

[24]

[25]
[26]
[27]
[28]
[29]
(30]
(31]
[32]
[33]
[34]
[35]

[36]

[37]

(38]

[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

(471

C. Chevalier et al., “Pt-scotch: A tool for efficient parallel graph
ordering,” Parallel Comput., vol. 34, pp. 318-331, 2008.

A. Lumsdaine et al., “Challenges in parallel graph processing,”
Parallel Processing Letters, pp. 5-20, 2007.

K. Munagala et al., “I/O-complexity of graph algorithms,”
’99.

G. Malewicz et al., “Pregel: a system for large-scale graph
processing,” in SIGMOD ’10.

A. Abou-Rjeili et al., “Multilevel algorithms for partitioning
power-law graphs,” in IPDPS "06.

B.Shao et al., "The trinity graph engine,” Microsoft Technique
Report, MSR-TR-2012-30.

P. Erd6s et al., “Graphs with prescribed degrees of vertices
(hungarian).” Mat. Lapok, vol. 11, pp. 264-274, 1960.

A.-L. Barabasi et al., “Emergence of scaling in random networks,”
vol. 286, pp. 509-512, 1999.

A. Z. Broder et al., “Min-wise independent permutations,” Journal of
Computer and System Sciences, vol. 60, pp. 327-336, 1998.

R. L. Graham et al., “Bounds on multiprocessing timing anomalies,”
SIAM Journal on Applied Mathematics, vol. 17, pp. 416429, 1969.
J. Leskovec et al., “Graphs over time: Densification laws, shrinking
diameters and possible explanations,” in KDD ’05.

M. R. Garey et al., “Some simplified np-complete problems,” in
STOC ’74.

D. S. Johnson et al., “Optimization by simulated annealing: an
experimental evaluation. part i, graph partitioning,” Oper. Res.,

vol. 37, pp. 865-892, 1989.

T. N. Bui et al., “Genetic algorithm and graph partitioning,”
Computers, IEEE Transactions on, vol. 45, no. 7, pp. 841 —855, 1996.
D. Gregor et al., “The parallel bgl: A generic library for distributed
graph computations,” in POOSC ’05.

http://neodj.org/.

http://www.infinitegraph.com/.

B. Iordanov, “Hypergraphdb: a generalized graph database,” in
WAIM’10.

http://en.wikipedia.org/wiki/Graph_database.
http://infolab.stanford.edu/gps/.

U. N. Raghavan et al., “Near linear time algorithm to detect
community structures in large-scale networks,” Phys.Rev.E, vol. 76,
p. 036106, 2007.

M. J. Barber et al., “Detecting network communities by propagating
labels under constraints,” Phys.Rev.E, vol. 80, p. 026129, 2009.

I. X. Y. Leung et al., “Towards real-time community detection in
large networks,” Phys.Rev.E, vol. 79, p. 066107, 2009.

X. Liu et al., “How does label propagation algorithm work in
bipartite networks?” in WI-IAT "09.

S. Gregory, “Finding overlapping communities in networks by label
propagation,” New Journal of Physics, vol. 12, no. 10, p. 103018,
2010.

L. Subelj et al., “Unfolding communities in large complex networks:
Combining defensive and offensive label propagation for core
extraction,” Phys.Rev.E, vol. 83, p. 036103, 2011.

P. Boldi et al., “Layered label propagation: a multiresolution
coordinate-free ordering for compressing social networks,” in WWW
'11.

R. Jin et al., “Computing label-constraint reachability in graph
databases,” in SIGMOD ’10.

F. Zhu et al., “Mining top-k large structural patterns in a massive
network,” in VLDB ’11.

A. Khan et al., “Neighborhood based fast graph search in large
networks,” in SIGMOD ’11.

K. Macropol et al., “Scalable discovery of best clusters on large
graphs,” in VLDB ’10.

P. Zhao et al., “On graph query optimization in large networks,” in
VLDB ’10.

U. Kang et al., “Spectral analysis for billion-scale graphs:
discoveries and implementation,” in PAKDD’11.

F. Halim et al., “A mapreduce-based maximum-flow algorithm for
large small-world network graphs,” in ICDCS ’11.

D. Chakrabarti et al.,“R-MAT: A recursive model for graph mining,”
in SDM’ 04.

A. Lancichinetti et al., “Benchmark graphs for testing community
detection algorithms,” Phys. Rev. E, vol. 78, no. 4, pp. 046110 (2008).

in SODA

