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Abstract

Several prior research contributions [15, 9] have explored
the problem of distinguishing “benign” and harmful data
races to make it easier for programmers to focus on a
subset of the output from a data race detector. Here we
argue that, although such a distinction makes sense at
the machine code level, it does not make sense at the C
or C++ source code level.

In one sense, this is obvious: The upcoming thread
specifications for both languages [6, 7] treat all data races
as errors, as does the current Posix threads specification.
And experience has shown that it is difficult or impossi-
ble to specify anything else. [1, 2]

Nonetheless many programmers clearly believe, along
with [15] that certain kinds of data races can be safely
ignored in practice because they will produce expected
results with all reasonable implementations. Here we
show that all kinds of C or C++ source-level “benign”
races discussed in the literature can in fact lead to incor-
rect execution as a result of perfectly reasonable com-
piler transformations, or when the program is moved to
a different hardware platform. Thus there is no reason to
believe that a currently working program with “benign
races” will continue to work when it is recompiled. Per-
haps most surprisingly, this includes even the case of po-
tentially concurrent writes of the same value by different
threads.

1 Background

We define a data race as simultaneous access to the same
memory location by multiple threads, where at least one
of the accesses modifies the memory location. As is dis-
cussed in [5], this is essentially equivalent to other com-
mon definitions, e.g. that used in [10] based on accesses
not ordered by a happens-before relation.

Definitions of most mainstream programming lan-
guages provide simple semantics (sequential consis-

tency [12]) for well-behaved programs without data
races, but treat data races in one of two ways:

1. They treat data races as errors that are not necessar-
ily detectable by the implementation, but may result
in arbitrary application results. This is commonly
described as “catch-fire” semantics for data races.
For reasons discussed in [2] and [5], this treatment
was chosen by Ada 83 [19], Posix threads [11], and
the upcoming C++ [5, 6], and C [7] memory model.

2. They attempt to give some semantics to data races
that are (1) weak enough to allow standard compiler
optimizations, (2) strong enough to preclude behav-
ior that would invalidate important security proper-
ties, and (3) simple enough to be usable. Java [14]
is the prime example of this, but this piece of the
Java memory model is now widely recognized as
failing to satisfy either (1) or (3) [16, 2], leaving the
actual meaning of Java programs with data races in
doubt. There is growing concern about the feasi-
bility of this approach, motivating research on more
speculative alternatives [2, 13].

In the first case data races are clearly disallowed, while
in the second case their semantics are merely unclear. We
assume the first case here.

2 “Benign” data races

Although data races have arguably never been allowed
in multithreaded versions of C and C++, they are fairly
commonly used in existing code, and there is a strong
perception that they are acceptable in certain contexts.
For example, [15] addresses the problem of distin-
guishing “benign” and “destructive” races, so that pro-
grammers can concentrate on repairing the latter!, and
data races are regularly reported in well-debugged code
(cf. [13]). Even the OpenMP 3.0 specification [18] ac-
cidentally contains examples with data races> in spite of



the fact that the specification, unlike its predecessors, ex-
plicitly disallows them.

Since [15] looks at machine language programs, the
notion of a “benign race” is in fact meaningful in its con-
text. Although data races essentially have no defined se-
mantics in C or C++, they are perfectly meaningful in
x86 assembly code [17]. An assembly program with a
data race is not necessarily an error. In fact synchroniza-
tion primitives are commonly implemented with assem-
bly code that has data races.

However, we argue here that such a distinction is not
useful if the data race existed in a C or C++ which
was then compiled, and the code was intended to be
portable.’> Not only is the original source code techni-
cally incorrect in such cases, future recompilation of the
code by reasonable compilers may realistically introduce
bugs.

We make our case by going through all of the different
types of “benign races” discussed in section 5.4 of [15]
in turn, and demonstrating how each such source-code-
level “benign race” could very reasonably be compiled
into incorrect code.* We discuss them in a somewhat
different order to facilitate the presentation.

2.1 Double checks for lazy initialization

This is well-known to be incorrect at the source-code
level [8]. A typical use case looks something like

if (linit_flag) {

lock();

if (linit_flag) {
my_data = ...;
init_flag = true;

}

unlock();

}
tmp = my_data;

Nothing prevents an optimizing compiler from ei-
ther reordering the setting of my_data with that of
init_flag, or even from advancing the load of my_data
to before the first test of init_flag, reloading it in the
conditional if init_flag was not set. Some non-x86
hardware can perform similar reorderings even if the
compiler performs no transformation. Either of these can
result in the final read of my_data seeing an uninitialized
value and producing incorrect results.

2.2 Both values are valid

This refers to the case in which a reader and writer may
race, but in the event of a data race it does not matter
whether the reader sees the old value (before the write),
or the new value (after the write). One example used

in [15] is a consumer-producer application in which the
producer adds an element to a shared buffer by adding an
element to the array and then incrementing a counter of
the number of elements.

The problem here is that it is quite possible that the
reader will see a result inconsistent with reading either
the old or the new value. For example, if the hardware
only supports 16-bit indivisible writes, but the counter
is a 32-bit value, and if the counter is incremented from
216 _1t0 2'6, then the reader may see the high bits of the
old value, and the low bits of the new value, unexpectedly
yielding a value of zero.

In other cases, the observed value may be inconsistent
with reading any particular value. For example, assume
the consumer code from above were written as some-
thing like:

{
int my_counter = counter; // Read global
int (* my_func) (int);
if (my_counter > my_old_counter) {
. // Consume data
my_func = ...;
... // Do some more consumer work
}
. // Do some other work
if (my_counter > my_old_counter) {
. my_func(...)
}
}

If the compiler decides that it needs to spill the regis-
ter containing my_counter between the two tests, it may
well decide to avoid storing the value (it’s just a copy
of counter, after all), and to instead simply re-read the
value of counter for the second comparison involving
my_counter, effectively transforming the code to:

{
int my_counter = counter; // Read global
int (* my_func) (int);
if (my_counter > my_old_counter) {
... // Consume data
my_func = ...;
... // Do some more consumer work
}
. // Do some other work
my_counter = counter; // Reread global!
if (my_counter > my_old_counter) {
. my_func(...)
}
}

This may lead to the first test failing, and the second
succeeding, with the call to my_func resulting in a wild
branch. Another transformation also resulting in a wild



branch is presented in [5]. In either case, the outcome
does not correspond to just reading either the old or new
value of counter, and clearly results in unexpected and
incorrect behavior.

As we point out in [5], the core problem arises from
the compiler taking advantage of the assumption that
variable values cannot asynchronously change without
an explicit assignment. Such an assumption is entirely
legitimate if data races are disallowed by the language
specification as in our setting. No such asynchronous
changes are possible in the absence of a data race. As far
as we have been able to determine, existing compilers
such as gcc are designed to allow such transformations,
though such effects are rarely observed in practice.

2.3 User constructed synchronization

User constructed synchronization should not rely on or-
dinary data operations. Doing so generally runs into the
same potential problems as in section 2.2. The upcoming
C [7] and C++ [6] standards provide atomic operations
for this purpose. These serve roughly the same purpose
as Java volatile fields. They make user-defined syn-
chronization easily recognizable. By maintaining this in-
formation a race detector can easily ignore races on such
accesses.

Using ordinary variables for such accesses is unsafe in
portable code for at least three reasons:’

1. The operations may again fail to be indivisible, as in
the preceding section. For example, on an x86 ma-
chine, a pointer that was misaligned and spanned a
cache-line boundary might appear to be updated in
two steps. Although most compilers avoid generat-
ing such code, they are not prohibited from doing
SO.

2. As in the preceding section, they violate the com-
piler’s assumption that ordinary variables do not
change without being assigned to. This can lead to
surprising results, such as the register-spilling ex-
ample above. If the variable is not annotated at all,
the loop waiting for another thread to set flag:

while (!flag) {}
}

could even be transformed to the, now likely infi-
nite, but sequentially equivalent, loop:

tmp = flag; // tmp is local
while (!tmp) {}

3. In portable code, there is no way to prevent hard-
ware or compiler reordering of memory operations
that is inconsistent with the synchronization seman-
tics. For example, consider a user-defined barrier

implementation (in the sense of e.g. OpenMP bar-
riers [18]) that eventually waits for the last thread
to set a flag, using a loop like the one above. As-
sume that data is a shared variable accessed after
the barrier. Either the compiler or hardware could
effectively reverse the order of the two statements
in

while (!flag) {}
tmp = data;

causing data to be accessed before all threads have
reached the barrier.

The last two are sometimes addressed through the use
of implementation-specific fence constructs and/or C
volatile. These solutions are either not portable or in-
complete.

2.4 Redundant writes

None of the above concerns apply to the case of two
threads writing the same value to the same location with-
out synchronization. So long as this is the only data race,
and the code is compiled in a straightforward manner,
all readers of the affected location must either happen-
before both writes, and see an earlier one, or happen-
after the writes, and see the written value. It seems un-
likely on any conventional architecture that a store would
be implemented such that rewriting the same bits would
result in a final value different from either of the written
values.® Thus the behavior of such a program initially
appears to be equivalent to one in which only one thread
writes to the location.

However, there are again legitimate compiler transfor-
mations justified by the data-race-free assumption that
introduce incorrect behavior. We are not aware of any
compiler that currently correctly performs such transfor-
mations, but we expect that to change as compilers start
to conform to, and take advantage of, recently revised
and clarified memory model specifications.

To illustrate this, we first observe that it is generally
incorrect for a C or C++ compiler, meeting either the
Posix threads [11] or upcoming language threads spec-
ifications [7, 6], to introduce a spurious assignment of a
variable to itself. Borrowing our example from [4], as-
sume we define £ () as follows:

f(x)
{
for (p=x; p !'=0; p=p > next) {
if (p -> data < 0) count++;



where count is a global variable that could possibly
be concurrently accessed by another thread.

It is unacceptable [4] (though common among mod-
ern compilers [3]7) to transform the loop by promoting
count to a register, effectively transforming it to:

reg = count;

for (p = x; p !'=0; p =p > next) {
if (p -> data < 0) reg++;

}

count = reg;

The original loop writes count only if the list p con-
tains a negative element; the transformed version writes
count unconditionally. In the case of a list of positive
elements, the compiler introduced a spurious assignment
of count to itself. Thus if the original program calls f on
a list of positive elements concurrently with an increment
of count by another thread, there is no data race. How-
ever the transformed program does have a data race. And
if the increment of count occurs in the middle of the ex-
ecution of the transformed loop, the write to count by
the transformed loop will cause the increment to be lost.

However the transformation once again becomes le-
gal if the variable count is already unconditionally writ-
ten in the same synchronization-free code region. In that
case, no concurrent access to count by another thread is
possible. Such an access would create a data race with
the unconditional write.

Now consider the case in which Thread 1 runs

count = 0;
f(positives);

while Thread 2 runs

f(positives);
count = 0;

where f is still defined as above.

This program accesses the shared variable count only
in that both threads clear it. Thus the only data race is the
redundant store to count. If the program is run with the
untransformed version of £ (), count is properly (and
redundantly) cleared after both threads finish.

But the presence of the stores to count legitimizes
the register promotion transformation. Since count is
known to be updated, and the language rules guaran-
tee the absence of races, the compiler can safely assume
that there are no concurrent accesses to count, and may
thus inline the call to f (positives) and register pro-
mote count in the loop, as described above. Since the
argument to () contains no negative elements, each
thread then effectively performs the following accesses
to count:

Thread 1:

count = 0;
reg = count;
count = reg;

Thread 2:

reg = count;
count = reg;
count 0;

Assuming the original value of count is 17, these
may interleave as

thread2_reg = count;
count = 0; // thread 1
count = thread2_reg;
threadl_reg = count;
count = 0; // thread 2
count = threadl_reg;

// Writes 17
// Reads 17

// Writes 17

This leaves count set to its original value of 17. Para-
doxically, the presence of the redundant write race en-
abled compiler transformations that allowed an outcome
in which neither write is seen, producing incorrect re-
sults.

Although current compilers are likely to perform this
transformation unconditionally (i.e. even without the
data race) or not at all, it appears likely that future com-
pilers will have exactly the behavior described above.
Performing the transformation unconditionally is not
standards conforming, and potentially breaks code under
very rare, but hard to describe, conditions. Nonetheless,
this kind of register promotion transformation is occa-
sionally important, and we expect compilers to look for
opportunities to preserve it, such as when the promoted
variable is already unconditionally accessed.

Thus even redundant write data races are likely to rein-
troduce the kind of very rare, but unpredictable, failures
that recent work on memory models has been trying to
avoid.

2.5 Disjoint bit manipulation

This category is described in [15] as:

There can be data races between two mem-
ory operations where the programmer knows
for sure that the two operations use or modify
different bits in a shared variable.

However, such data races are not generally benign,
even at the machine code level, if both of the racing ac-
cesses modify the variable. Specifically, an update to one



such group of bits generally involves:

1. Read the whole variable.
2. Update the relevant bits.

3. Write back the whole variable.

If two such updates to different groups of bits are per-
fectly interleaved, one update (the one whose write op-
eration occurs first) will be lost, certainly not a benign
effect.

A much more plausible case can be made that such
races are benign if only one of the racing threads per-
forms an update. But even in that case, it is possible to
construct, admittedly convoluted, examples, in which the
racing write again gives the compiler license to generate
code that leads to a racing read seeing an incorrect value.
These roughly parallel the construction from the last sec-
tion.

Consider, for example, the case in which we have
a shared variable x with bit-fields bits1 and bits2.
Thread 2 simply reads x.bits2. Thread 1 executes the
following code, in a context in which the programmer,
but not the compiler, knows that i = 3:

x.bitsl = 1;

switch(i) {

case 1:
x.bits2

1]
i

break;
case 2:
x.bits2 =

I
-

break;
case 3:

break;
default:

x.bits2

]
-

break;

}

Since this code is only executed when i = 3, it is data-
race-free, except that Thread 1 writes x.bits1, while
Thread 2 reads x.bits2.

The upcoming C and C++ standards (as well as ex-
isting compilers) treat adjacent bit-fields, like bits1 and
bits2 in the example, as a single memory location. Thus
the initial assignment to x.bits1 allows a correct com-
piler to conclude that no concurrent accesses to x. bits2
may take place, since these would introduce a data race.
Thus the compiler is perfectly justified in introducing a
speculative store to x.bits2, e.g. to reduce code size.
Thus the above might effectively be transformed to:

x.bitsl = 1;
tmp = x.bits2;
x.bits2 = 1;
switch(i) {
case 1:
break;
case 2:
break;
case 3:
x.bits2 = tmp;
break;
default:
break;

}

This again introduces writes to x.bits2 on the actu-
ally taken code path, introducing a data race on x . bits2,
and allowing Thread 2 to see a bits2 value that was
logically never stored. Again the race on disjoint bits
gave the compiler license to perform a transformation
that broke the code.

3 Conclusions

Although there is a perfectly reasonable notion of be-
nign data race at the level of x86 or similar machine
code, the same is not true at the C or C++ source pro-
gram level. Standards are increasingly clear about pro-
hibiting data races. We have argued that ignoring this
prohibition introduces a practical risk of future miscom-
pilation of the program. Depending on the platform and
type of race, this risk varies from essentially guaranteed
miscompilation (e.g. if the platform doesn’t easily sup-
port indivisible data accesses of the right kind) to rather
obscure consequences of compiler data-race-freedom as-
sumptions that are not yet common. But even the latter
are likely to be a real issue in future mainstream compil-
ers. And they are difficult to avoid with certainty, since
the problematic transformations are usually difficult or
impossible to characterize for a non-compiler-expert.

C or C++ data races are always unsafe in portable
code. In Java, the implemented semantics of data races
are unclear. [16, 2]. Although “benign” races in Java are
not clearly incorrect, they nonetheless put the program-
mer into an uncertain and dangerous territory that can be
avoided by avoiding data races.
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Notes

1[9] explores another interesting technique to make a similar dis-
tinction for Java

2For example, see A.2.2. Most examples involving explicit use of
the £1ush primitive have similar issues, which we believe will be fixed
in the next draft.

3We do not thoroughly consider the case of data races introduced by
the compiler. These may occur either because the compiler is incorrect,
at least based on upcoming standards [3, 4], or because it introduced a
speculative load of a value that was subsequently not used. We con-
tinue to observe the first case in code designed to test for it, but both
appear to be rare in practice [15, 13]. If speculative dead loads were a
serious issue, it should be possible to have the compiler replace them
with prefetches [13] to eliminate the problem at very modest cost.

4We believe that our arguments for Section 2.4, and for the
read/write case in Section 2.5 were not previously known, while the
others have been discussed elsewhere.

SRecall that the original work in [15] identified benign races in ma-
chine code. Particularly for user-defined synchronization, the associ-
ated source code may have not been intended to be portable. It might
have been in-line assembly code, for example. In our view, such code
should be treated differently from C or C++ code by a data race detec-
tor.

Surprisingly, temporary changes due to a redundant write
are sometimes observable for large objects. David Dice,
in http://blogs.sun.com/dave/entry/memcpy_concurrency_
curiosities describes a scenario in which a large object store is im-
plemented by a SPARC “block initializing store” instruction, clearing
memory before writing to it, thus avoiding a cache line fetch, but al-
lowing a racing reader to see a temporary zero value.

7We unfortunately confirmed this behavior for several recent ver-
sions of gcc, including 4.5.1, which otherwise generates surprisingly
fast and clever code for this loop.



