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Abstract

This paper addresses the problem of detecting anomalous interactions or traffic within a very large
network using a limited number of unlabeled observations. In particular, consider n recorded interactions
among p nodes, where p may be very large relative to n. A novel method based on using a hypergraph
representation of the data is proposed to deal with this very high-dimensional, “big p, small n” problem.
Hypergraphs constitute an important extension of graphs which allows edges to connect more than two
vertices simultaneously. An algorithm for detecting anomalies directly on the corresponding discrete
space, without any feature selection or dimensionality reduction, is presented. The algorithm has O(np)
computational complexity, making it ideally suited for very large networks, and requires no tuning,
bandwidth or regularization parameters.

The distribution of the data is modeled as a two-component mixture, consisting of a “nominal”
and an “anomalous” component. The deviance of each observation from nominal behavior, as well
as the mixture parameters, are learned using Expectation-Maximization (EM), assuming a multivariate
Bernoulli variational approximation. This approach is related to probability mass function level set
estimation and is shown to allow False Discovery Rate control. The identifiability of the underlying
distribution, the local consistency of the EM algorithm, and the avoidance of singular solutions are
proved. The proposed approach is validated on high-dimensional synthetic data and it is shown that, for
a useful class of data distributions, it can outperform other state-of-the-art methods.

I. INTRODUCTION

Many important problems in networks, be they computer, social, biological, or other types of
networks, are commonly tackled using data structures based on graphs and associated theoretical
results. Graphs are a well established discrete mathematical tool for representing connectivity data
with irregular topology. It is convenient to use graphs for tasks as varied as anomaly detection
[1], semi-supervised classification [2], traffic matrix estimation [3]], dimensionality reduction [4]],
and many others.

However, graphs cannot encode potentially critical information about ensembles of networked
nodes interacting together. Despite a wealth of theoretical work in graph theory (for instance,
see [S] and [6]), graphs are simply not a sufficiently rich structure in many contexts. Consider
the following example: we make several observations of groups of people meeting, and wish
to recognize some pattern in these meetings or detect unusual meetings. Since each meeting
consists of several (potentially more than two) people, pairwise connections between people
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encoded by graphs only represent a portion of the real information collected and available for
analysis.

This calls for a new paradigm in network traffic analysis, and this paper proposes an approach
based on hypergraphs. Hypergraphs [/] are generalizations of graphs, where the notion of an
edge is generalized to that of a hyperedge, which may connect more than two vertices (e.g. more
than two people in a social network or more than two nodes in a route taken by a packet in a
network). Many of the main theoretical results for graphs are directly applicable to hypergraphs.
In fact, many theorems on graphs are proven using the more general hypergraph structure [7]].

Assume that there exist p vertices, corresponding to p network nodes, and that we observe
n messages, or interactions where there is co-occurrence of some of the vertices. Then, each
interaction can be represented as a hyperedge in the network hypergraph. This paper addresses
the problem of detecting anomalous interactions, with special emphasis on the case when p > n
and when p may be in the hundreds or even thousands, without intermediate feature selection
or dimensionality reduction.

The definition of “anomaly” can sometimes be taken out of the hands of the learning system,
if labeled examples are provided during training: this then becomes a supervised classification
problem. However, such an approach is not always possible, either because labeled examples are
scarce, or because the nature of the anomalies changes rapidly over time, which is relevant in
contexts such as network intrusion. Therefore, we will focus on the unsupervised setting where
“anomalous” is taken to signify “unusual” or “rare”. We are interested in interactions in the
network that occur with very low probability. In particular, we want to identify hypergraph edges
that have very little probability mass, when the number of observations is small and estimating
the probability mass function (pmf) over the entire space of hyperedges is challenging, if not
infeasible, in terms of statistical robustness and computational efficiency.

We start, in Section [[IL by introducing the hypergraph representation and formulating the prob-
lem of anomaly detection on the corresponding discrete space. We then provide, in Section a
brief review of relevant prior work and the current state-of-the-art methods available for anomaly
detection on networks. Prior work on the annotation of observations with a measure indicating
the degree of anomalousness is highlighted in Section these annotations are based on the
positive False Discovery Rate (pFDR) [8] from a hypothesis testing perspective. Next, in Sections
and VI we propose a variational approximation to the pmf and a resulting O(np) variational
Expectation-Maximization (EM) algorithm that automatically learns: (i) the parameters of a finite
mixture model for the distribution of the observed data; (ii) posterior probabilities of observations
being anomalous. We address theoretical issues, such as identifiability of the mixture model
and convergence of the EM algorithm, in Section Section [VIII] shows experimental results
that demonstrate the algorithm’s performance in comparison to other state-of-the art anomaly
detection algorithms. To conclude, in Section we discuss the results and take into account
how the variational approximation affects the class of distributions (which we denote as F) that
can be well estimated. Namely, we look into new directions that aim at enriching F, while
retaining the attractive computational properties — such as O(np) complexity — of the variational
approximation.
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Fig. 1
MODELING TWO OBSERVATIONS, 111111000 AND 000101111, WITH p = 9, USING A GRAPH (TOP) AND A HYPERGRAPH

(BOTTOM). WITH THE GRAPH, REPRESENTING ONE OBSERVATION OF AN INTERACTION REQUIRES MULTIPLE EDGES. WITH
A HYPERGRAPH, ONE HYPEREDGE SUFFICES. THE HYPERGRAPH IS MORE EFFICIENT FOR STORING/REPRESENTING
OBSERVATIONS AND MORE INFORMATIVE ABOUT THE REAL STRUCTURE OF THE DATA.

II. ANOMALY DETECTION ON HYPERGRAPHS

Let H = {V, £} be a hypergraph [7] with vertex set V and hyperedge set £. Each hyperedge,
denoted = € &, can be represented as a binary string of length p. Bits set to 1 correspond to
vertices that participate in the hyperedge. In this setting, we may approximately equate £ with
{0,1}?, i.e. the binary hypercube of dimension p. (We say “approximately” due to the existence
of prohibited hyperedges, namely the origin, = 0, and all  within Hamming distance 1 of the
origin, which correspond to interactions between zero or one network nodes. The impact of this
precluded set becomes negligible for very large p and is omitted from this paper for simplicity
of presentation.) This is a finite set with 2” elements. We define g(x) to be the probability mass
function (pmf) over &, evaluated at x.

Hypergraphs provide a more natural representation than graphs for multiple co-occurrence data
of the type examined in this paper. For example, one could consider using a graph to represent
co-occurrence data by having each vertex represent a network node and using weighted edges to
connect vertices associated with observed co-occurrences. As Figure |1| illustrates, using a graph
in this manner would imply connecting any pair of vertices appearing in an observation with an
edge. The edge structure of a graph is usually represented as a p X p symmetric adjacency matrix
with £(p—1) distinct elements, so that even converting observations into a collection edge weights
could be enormously challenging computationally. As Figure (1] illustrates, two observations can



efficiently be represented using only two hyperedges, but would require significantly more edges
in a traditional graph-based representation. Furthermore, the graph data structure as described
above does not encapsulate information about how often more than two vertices may interact
simultaneously, and instead reduces the data to an overly simple pairwise representation.

If the data consists of a multiset X,, = {x,...,x,} containing n observed, and possibly
repeated, interactions x;, with each x; an independent realization of a random variable X € &,
then one might be tempted to simply form the histogram of the x;. However, given that in our
problem p > n, histogram estimation would lead to every single new x not in the training
set being branded an anomaly. Since, in a practical setting, the dimension p might be in the
thousands, the curse of dimensionality guarantees that X, can never adequately cover £. The
finite nature of our space of interest confers it no immunity to the curse, which instead appears
in the guise of an exponential explosion in the numbers of histogram bins: 27, when we have a
sample size of n < p.

The usual way of exorcizing the curse is to perform some kind of regularization, i.e. to restrict
the class of pmf estimates to be “simple” in some sense. This can be accomplished, for example,
by defining some smoothness measure on a graph and then favoring smoother pmfs. It is likely
that the sample is not sufficiently dense to properly estimate highly varying functions; however,
defining such smoothness measures is a difficult problem in its own right. Furthermore, the
amount of regularization that strikes the right balance between under- or oversmoothing is not
trivial to achieve.

An additional source of difficulty is the contamination of the training set. If we assume that
A, only contains examples of normal, or nominal behavior, then our problem is essentially pmf
estimation, where we must threshold the estimated pmf, denoted f,(x), at some appropriate
level. If, however, X, is contaminated with some unknown proportion of anomalies, then it is
more appropriate to assume the following mixture model:

g(x) = (1 —m)f(x) + mp(z) (D

where the overall pmf g of the observed data is a mixture of the nominal distribution f and
an anomalous distribution p with proportion 7. This type of mixture model is sometimes called
semi-parametric in the case when a nonparametric procedure is used to obtain estimates for f.
To make it possible to learn this mixture, it is necessary to make assumptions on the component
distributions f and . It is assumed here that u is known and equal to the uniform distribution on
£. Assuming that y is uniform can be shown to be the optimal choice, in terms of maximizing
the worst-case detection rate, among all possible anomalous distributions [9], [10].

A realization  of X is called an anomaly if it is drawn from the distribution p instead of
the nominal distribution f. We can now define the anomalous set of hyperedges as

A ={z: (1-7)f(z) < arp(z)},

where « is a parameter that controls the tradeoff between false positives and false negatives.
This leads to the definition of the (unobserved) binary random variable Y = Ix.,, where [
denotes the indicator function. Define n(x) = P(Y = 1|X = x, f, 7); we note that it is possible
to write A* = {ac n(x) > HLQ} . Since f and 7 are unknown, this means that the distribution



of Y, n and A* are unknown as well. In this paper, we use the iid data X, to estimate 7 and
hence A*.

III. RELATED WORK

When labeled data is available, anomaly detection has often been treated as a classification
problem in which no attempt is made to learn anything about the underlying pmf. In this type
of approach, sometimes called “discriminative” as opposed to “generative”, we could potentially
apply an off-the-shelf classifier such as the Support Vector Machine (SVM). For problems where
examples are available from one class only, there is a well-known variant: the one-class SVM
(OCSVM) [L1]. Our setting is somewhat different, since we have unlabeled examples from both
classes, although that might be addressed through the use of slack variables in the OCSVM
framework, as they would be needed regardless for the purpose of regularization. Note that an
approach based on the OCSVM is very sensitive to the choice of kernel and bandwidth parameter,
and also that is has, at best, O(n?p) computational complexity. We will show that it is possible,
and more informative, to tackle the problem of detecting anomalies through pmf estimation, even
in very high dimensional spaces. In particular, this approach allows us to control performance
criteria such as the pFDR.

Another common approach is to estimate the underlying distribution ¢ and then threshold it.
When there exists no particular functional form that can be assumed for f(x), it is common to
use nonparametric methods, kernel pmf estimation (better known as kernel density estimation
(KDE) in the continuous case) being one of the most widespread. Recall that a kernel pmf
estimate is usually of the form

ful@) = %ZK(C‘”;“’) @)

=1

where K (®5%) is an a priori defined kernel function with bandwidth parameter /. In this form,
it is assumed that the kernel is radially symmetric, with equal bandwidth in all dimensions and
across the entire domain of x. For the specific case of the binary hypercube defined by our
hyperedge space &, a kernel based on the Hamming distance |z — x;| has been proposed by
[12], leading to a pmf estimate of the form

fula) = %Z Iyt~ (1 = Ry Pleml 3)
=1

where h, € [3,1].

This approach, however, has several disadvantages. First, as in the OCSVM, it is hard to
estimate the best bandwidth. This can be tackled by cross-validation, but that is typically a
computationally expensive procedure. Second, estimating measures of sets under a kernel pmf
estimate is computationally intractable for large p and precludes FDR control. Moreover, the error
performance of KDE can be poor in the big p small n setting [13]]. Finally, the computational
complexity of KDE is, at best, O(n?p).



Kernel pmf estimates are known to be universally, strongly consistent, subject to the conditions
that h — 0 and nh — oo as n — oo. These asymptotic, large sample results ensure that the
estimate will, eventually, converge to the true pmf with probability one, although that may be of
little use with finite sample size, especially in very high dimensions. The condition h — 0 also
implies that the bandwidth must change with sample size n. Relaxing either radial symmetry, or
the spatial invariance, or both, can improve performance, but this comes at the price of making
the choice of bandwidth even harder. Examples of kernel-based pmf estimation approaches for
anomaly detection include [9)], who work in general Euclidean space with a mixture model
similar to our own.

Another type of approach, based on graph theoretic results, can be found in [1], where it is
shown that a K-point minimum spanning tree (K-MST) can be used to estimate the nominal
set (i.e. the complement of A*). A K-MST is a tree which connects K vertices and has the
least sum of edge weights. Once such a tree has been estimated from the data, using a greedy
algorithm (exact computation is computationally intractable), vertices outside of the K-MST can
be considered anomalies. A computationally efficient, O(pn?logn), variant of this approach,
called a leave-one-out k& nearest-neighbor graph (L10-kNNG), is proposed in [1]]. One of the
benefits of the L10-kNNG approach is that bounds on the false alarm level can be derived as a
function of /K. However, this method is best suited to problems in which the network connectivity
graph is known. Moreover, it is not clear how to account for contamination in the dataset.

More thorough surveys of anomaly detection in networks, with an emphasis on network
security, may be found in [14] and [15]. Scalability of methods to large p is a significant
challenge for the vast majority of these approaches.

IV. ANNOTATIONS

The related work described above either (a) makes a hard decision about whether each
observation is an anomaly and does not provide any additional information or (b) provides
an estimate of the distribution underlying the data but does not provide a simple mechanism for
detecting anomalies from this pmf estimate. One of the key facets of the approach proposed in
this paper is the annotation of observations. The annotations, which we assume to be scalars
in the [0, 1] interval, allow the observations to be ranked, and provide some measure of how
anomalous they appear to be under the model. Most methods in the existing literature cannot
readily accomplish this task.

Starting from premises similar to our own, [9] propose first learning the mixing parameter 7
separately and then assigning annotations ; to each x;, equal to

vi=1- pFDR(Ai)a “4)

where pFDR is the positive false discovery rate [§] associated with the set .4;, which is defined
as

A; =arg max {U(A): f(x) < f(x;),Ve € A}, 3)

AC{o,1}r

with U denoting p-measure. Note that 4; can be thought of as largest set of anomalous (i.e.
low probability mass) hyperedges which excludes observation x;, so that larger 4; suggests that



x; is less anomalous. Further note that A; is the complement of the minimum volume level set
of f that includes «; and that the A;’s constitute a collection of nested level sets of f. To see
the relationship between the A;’s and A*, let A denote the k*™® largest A; according to the
p-measure (i.e. A corresponds to the x; with the kM largest f (x;)). Then there exists some
k* such that

Ay 2 Ay 2 2 Ap—1) 2 A" D Ay - 2 Aw;

in other words, the level set .A* contains a nested collection of the .4;’s. The value of k* depends
on «, the parameter which controls for the compromise between false alarms and detection
failures, and on the mixture parameters f, w. The pFDR, for some set 4, is defined as follows:

pFDR(A) = P{X ~ f|X € A}. (6)

Thus, if we declare observations « that lie in \A; to be “discovered” anomalies, then pFDR(.A;)
is the probability that those observations arise from the nominal distribution f. It can be shown
that

7 = mU(A) /G (A), )

where G(.) refers to the probability measure associated with g. Denoting the f-measure by F(.),
we can estimate the ~; by

o _ %[[AJ(AJ _ /ﬂ[/j(Az) (8)
LT (1—7)F(A) + 70U(A;)

Since, for non-trivial sets .4;, these empirical probability measures cannot be obtained in practice
(because that would require enumerating the 27 elements of the hypercube), they must be
estimated via Monte Carlo methods. If we can obtain m samples z from f, then the empirical
measure

~ 1 X
F(AZ) = E Z [zlGAi
=1

is an estimator of [F(.4;). The same can be done for U.

Unfortunately, most methods for estimating the pmf do not provide an “easy to sample” form
of the pmf. Drawing samples from distributions estimated using nonparametric methods such as
kernel estimation require involved MCMC techniques whose convergence is hard to assess. To
counteract this issue and other computational complexity bottlenecks, we propose a variational
approximation to f which results in a variational EM algorithm for estimating both the mixture
components of g and the posterior probabilities (1(x;) for each ¢ = 1,...,n). By choosing the
variational approximation to be fully factorized, it becomes very easy to obtain samples from
both f and x and hence to estimate the annotations described above. In the following section
we describe the variational approximation of f.



V. VARIATIONAL APPROXIMATION
As a computationally efficient alternative to kernel pmf estimation, we choose an estimate of
f from the class F of distributions with the following properties:
(a) each f € F can be expressed as the product of its marginals, so that

flx) = Hf}(:vj), )

where each f; : {0,1} — Ry is a bona fide probability mass function that sums
to one, with x; a realization of a binary random variable X that corresponds to the
participation of the j** network node being observed in an interaction, and

(b)  members of F have no uniform marginals (this condition ensures identifiability, as we
discuss below).

Assume, for now, that we know which observations come from f, and that we wish to use

them to obtain an estimate f, = 1;:1 fw, where f, ;(x) = f,;(z;) are given by
~ vl —,
flag) = —Z’—ln — (10)

In our hypergraph setting, where the space of possible hyperedges can be represented as vertices
of the p-dimensional hypercube, the natural way to obtain the estimated marginals f, ;(x;) is
to use two-bin, {0, 1} histograms, which, like all histograms (subject to conditions on the bin
size, which do not apply here) are well-known to be consistent estimators. As for the overall
consistency of f,(x), it is unfortunately only verified when X} is independent of (though not

necessarily uncorrelated with) X; for all k,j € 1,...,p,k # j, since in that case, assuming
we have training data @, ...,x,, which are i.i.d. draws from f, the expectation of f,(x) =
fo(x|xy, ..., x,) becomes

Efie) = / Fu@) (@) f(wa)da, - - da,

= / (H ﬁw(%)) (H fj(l’l,j)) (H fj(%,j))
" " (d./L‘Ll AR 6;;17;)) AR (dan AR da’:n,p)7 (11)

where z; ; is the 5" bit of the i*" observation, ;. Using the separability of f due to independence
of the X, we have

Ef(x) = H/J?n,j(%) (Hfj(%j)) (dz1j---drn;) (12)

= [[Efnit@) =
j=1

—.

I
N

fi(z;) = f(=). (13)

J
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Fig. 2
EXAMPLES OF (A) ORTHOUNIMODAL (I.E UNIMODAL AND AXIS-ALIGNED) AND (B) NON-ORTHOUNIMODAL
DISTRIBUTIONS, FOR p = 2. THE DISTRIBUTIONS HAVE THE SAME MARGINALS AND MODE m = 00.

Approximating the true f* by members of F is an example of a variational approximation, which
has been used in machine learning in several contexts. For example, in Bayesian networks [16],
[17], such a factorization of the class conditional densities leads to the well-known “naive”
Bayes classifier. We note the very attractive properties associated with this approximation: (a)
Estimating each of the p marginals requires only the sum of 2n terms, which is a key factor in
achieving O(np) complexity. (b) There are no tuning parameters (such as bandwidth) to select.
(c) Protection from overfitting comes as a natural consequence of the restricted class of estimates.

Finally, we can also characterize JF: all members of F are unimodal, axis-aligned diAstributions
(although the converse is not necessarily true). To see this, first note that the marginals f,, ;(z;) are
non-uniform Bernoulli distributions and, therefore, strongly unimodal as well as log-concave. We
use the definitions of unimodality and log-concavity introduced in [[18]] for discrete distributions.
Furthermore, the product of log-concave functions is log-concave. Thus, all members of F are
log-concave and, equivalently, strongly unimodal. “Axis-aligned” is defined usingrthe notion of
orthounimodality described in [19]: if f(x) is a distribution and m = [m; ...m,|" is a mode of
f, then f(z) is orthounimodal iff, for = [zy,...,z;,... ,xp]T and for all j, f is monotonically
non-decreasing in x; (holding all other coordinates of x fixed) when x; < m; and monotonically
non-increasing in z; when x; > m,;. To illustrate with a simple example in the binary setting,
in Figure [2] we show two different joint distributions that have the same marginals and the same
mode, m = 00, but where one is orthounimodal (and in ) and the other is not, meaning that
it can not be consistently estimated by our procedure. This variational approximation is used
during the M-step in the variational EM algorithm proposed in the next section for estimating
the entire mixture distribution ¢ in addition to the posterior probabilities 7).
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VI. ESTIMATION METHOD
A. Variational Expectation-Maximization

Since we do not know whether or not a given observation is an anomaly (i.e. whether it was
drawn from (), we may treat that information as the hidden random binary variable Y = Ix,.
Given the dataset X, the corresponding ),, = {y;},—1__n may be treated as missing data and the
posterior probabilities 7; = n(x;) may be estimated using EM. As is customary in the EM setting,
let L(X,, Vulf,m) = >0 logp(x;, yi|f, ™) be the log-likelihood, under the joint distribution
p(X,Y|f, ), of the complete data (X,,,)),). This cannot be computed, since ), is missing,
but the conditional expectation Ey|x L, with respect to Y'|X, can. Omitting the conditioning on
(f, ) for brevity, we have

EY|X£ = EY|X Zlogp(wi,yi) = ZEY\X 1ng(~’1f'i>yi)

i=1 i=1
n

= Z (1 —n;)logp(x;, Y =0) +n;logp(x;, Y = 1)
— S (=) log [p(@lY = 0)P(Y = 0)] + 5 log [p(a:]Y = HP(Y = 1)

i=1
n

= > (1—m)log[(1 = 7) f(:)] + s log [wp(a;)]. (14)
i=1
Alternating, at each iteration ¢ + 1, between maximizing Ey|x £ with respect to the 7; and to
(f,m), leads to the following E- and M-steps, as first derived in [20]:

« E-step:
(1= 70) f (@) + 7O ()
o M-step:
1 n
A(t41) _ 2 /\(t+1) 16
n t+1
J?(tJrl)( Zk 1(1 _;7\( ))I:vkj—:vi,j
J

) = e )

p
t+1
@) = J1A (@)
j=1
In 1b z;; denotes the value of the j™ bit of pattern x;. If a hard decision is necessary, it
is natural to threshold the annotations 7; at —— + , where « controls the tradeoff between false

positives and detection failures. Recall that A* = {:n n(x il +a}
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B. Computation of annotations

At the conclusion of the EM algorithm, we may use the estimate f(t“) to compute the
annotations ~y; for ¢ = 1,...,n using a very computationally efficient Monte Carlo estimate. In
particular, we sample from the fully factorized f and y distributions — this amounts to sampling
from p independent Bernoulli distributions, which can be easily done using MATLAB’s rand
command — and then compute the empirical measures of the .A4;, for each of the x;. Afterwards,
we plug the estimates into (8], thus obtaining the 7;.

C. A note about numerical underflow

When working in very high-dimensions, pmf values tend to become extremely small, eventu-
ally leading to underflow problems. Therefore, it is advantageous to work with the logarithm of
the pmf, whenever possible. The proposed variational EM algorithm can be formulated almost
entirely in terms of the log-probabilities, with the exception of the denominator in the E-step,
(13), where we are faced with the sum of posterior probabilities. By using the identity

log Z a— m]ax a; + log Z etiTmaxj 4 (17)

the problem can be easily circumvented, provided that the absolute difference between the log-
probabilities remains much smaller than the absolute value of their maximum.

D. Key advantages of proposed estimation method

The proposed variational EM algorithm has a number of key advantages:

(1) the variational approximation leads to a very computationally efficient M-step;

(i)  the v;’s and the 7;’s can be computed very easily and rapidly;

(i11))  the pmf only has to be computed at the n @; locations, rather than at all 27 hyperedges,
for anomaly detection and observation annotation;

(iv)  unlike the OCSVM, the proposed method returns posterior probabilities rather than
simple hard decisions;

(v)  unlike KDE-based methods, a principled criterion for making a decision about each
observation, based on the pFDR, is available.

VII. THEORETICAL PROPERTIES

In this section, we build on previous groundwork which guarantees that the problem of
identifying model is well posed, in the sense that it has a unique solution (f,m) among
all f € F and all 7 € [0, 1]. We then show that consistency of f,, and 7, for the case when the
true f € F, comes from the properties of maximum likelihood estimation and depends on the
convergence of the variational EM algorithm to that estimate. For our case, we show that the
regularity conditions for local consistency are satisfied, which means that the variational EM
will converge to the global maximum of the likelihood, provided that it is initialized sufficiently
close to that maximum.
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A. Identifiability

A mixture model such as (1)) is said to be identifiable when the vector © = (f, j1, ) of mixture
parameters that satisfies exists and is unique. This definition can be generalized to more than
two mixture components. Identifiability is not guaranteed in general and requires restrictions on
f and p. The case of mixtures of multivariate Bernoulli distributions has been addressed by, e.g.
[21], [22], where it is shown that such mixtures are not, in general, identifiable. However, our
particular model is identifiable for p > 3, as the following theorem states.

Theorem 1 (Hall & Zhou [23]): 1f g has the form g(x) = (1—7) [[]_, fi(x)+7 [[}_, 1 (@),

with p > 3, and if ¢ is irreducible, then, up to exchanging (1—m, f1, .. fp) Wlth (70, 15wy )
the parameter vector © = (f1,..., fp, ft1, - - -, ftp, T) i uniquely determined by g.
This result applies to discrete as well as continuous distributions, as long as the mixture g
is irreducible, a property we shall define shortly. It does not apply to more than two mixture
components, however. As stated, identifiability is assured up to exchanging the roles of (1—m, f)
and (7, pt), which is called label switching. Since, in our setting,  is known (and, being uniform,
factorizes in the form appropriate for the theorem), this particular ambiguity is resolved.

Definition 1 (Irreducibility [23|]]): The pmf g is irreducible if none of its bivariate marginals

factorizes into the product of univariate marginals.
In our setting, the irreducibility condition is equivalent to the condition that the component f
must not have any uniform marginals, i.e. f; # p; forall j = 1,...,p. To see that this condition
is a direct result of irreducibility, and presenting the original reasoning in a slightly different
format, assume that f; = p; for some j, say j = 1 without loss of generality. Then,

g(@) = p(z1) [(1 —m) ] filx) +7THMJ‘(%‘)]

Jj=2 Jj=2

and, integrating over all other x; except, for example x5, we get the bivariate marginal

g(z1,m9) = ul(xl)/[(1—77)Hfj(xj)+7rnuj(xj) drs...dx,
= Ml(f’fl){ (1—m) Hf] dzs .. dxp+7r/ [Huj(xj)] dasg...dxp}

= pu(wr) {(1 — ) fowa) + mpa(w2) }

and irreducibility is thus violated.

B. Convergence and consistency

The EM algorithm is well-known, in each iteration, to not decrease the likelihood. Also,
if the true nominal density f is in the class F (and, hence, has no uniform marginals), then
the mixture is identifiable. When p > 3, if the true f is in F, then the maximum likelihood
estimates of f and 7 will tend to the true f and 7 as n — oo. Therefore, maximum likelihood
gives (at least weakly) consistent estimates for 7 and f, which lead to consistent estimates for
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g and for the posterior probabilities 7. However, the EM algorithm is also well-known to be
vulnerable to local maxima, and even to saddle points if they exist. Unlike the continuous case,
in which the log likelihood may be unbounded, having singularities where it tends to o0, our
hypergraph-based approach yields a log likelihood which is bounded above [21]; the —oo case is
not problematic because the EM algorithm monotonically increases the log likelihood and hence
will not be attracted to these singularities. Therefore, we are left with the problem of stationary
points. Even with the variational approximation, the log-likelihood is not necessarily concave,
and therefore can have stationary points other than the global maximum; we show this below.

Proposition 1 (Non-concavity of the log-likelihood): Let g(x) be of the form , with ¢ €
€ = {0,1}7, and let X, be a sample of size n. Denote the log-likelihood as L£(X,,|©), with

= (f,m). Then, L(X,,|O) is a not necessarily a concave function of ©.

Proof: Recall that a function is log-concave if and only if its logarithm is concave. We

may write the log-likelihood as a sum over the hyperedge set £ = {0, 1}?, as follows:

2p

L(X[0) = 3 i log g(b,]©).

where k is an index over all elements in &, b;, € £ is the k'" element, n;, denotes its frequency
in the dataset X, and ¢(by|O) is the mixture g(x) evaluated at * = by, as a function of O.
Because the n; are non-negative, a sufficient condition for the concavity of L is that each of
the g(bx|©) must be log-concave. Since g(bx|©) is the sum of 7y, which is linear in © and
thus concave, plus (1 — ) f(b,|©), which is the product of a concave term with f, clearly the
concavity of £ hinges on the concavity of f. In our variational approximation setting, we may
write f as a product of Bernoulli distributions with parameters 6, = P(z; = 1), i.e

p

f(bk|®):H Fi(be,|©) = Hgbm ) b,

=1

Each of the terms 6; and 1 — 6, is concave with respect to ¢;. The product of concave functions
(i.e. f or (1 —m)f) is not necessarily concave, although it is log-concave. Moreover, the sum
with 7 does not preserve log-concavity [24)]. Thus, £ is not necessarily concave. [ ]
Proposition [I] means that we can not guarantee that the outlined EM procedure will always
converge to the global maximum likelihood estimate OM- = (ML 7ML) for all initializations,
because there might be local maxima and/or saddle points. Therefore, even with a unique global
maximum, there may be a risk of not reaching it for all initializations. For this reason, the EM
algorithm may require random restarts; its consistency, in this case, has been shown for stochastic
versions (see [25] and the accompanying discussion and references). Alternatively, we may turn
to a slightly weaker form of consistency, called local consistency [26], [27]. Local consistency
implies that EM will converge to the correct ML solution if it is initialized sufficiently close to
the global maximum, subject to regularity conditions involving derivatives of g and log g up to
third order. The regularity conditions are the following [27]:

« Condition 1. For all © = [0y,...,0,,1] = [7,0y,...,6,]" in a neighborhood  of the true
parameter vector ©* and for almost all x, all of the p+ 1 partial derivatives dg(x|®)/00y,
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k=1,...,p, exist and there also exist integrable functions ¢;(x), ¢;;(x) and ¢;;x(x) such
that

< ¢i7

< ¢ij,

dg
‘ < ¢lgk7

00;

fori,5,kinl,...,p+ 1.
o Condition 2. The Fisher information matrix

I(®) = Ex [(Velogg) (Ve logyg)]

is well defined and positive definite at ® = ©*.
It can be readily seen, by differentiating ¢ and log g (see Appendix), that all the relevant partial
derivatives exist, have no singularities, and are bounded. This is enough to satisfy Condition 1.
As for Condition 2, first note that log g is sufficiently well behaved to allow us to write the
Fisher information matrix as

9%g
00,00,

9 log g
96,00,00;

0%log g
00,00,

fori,j,kin 1,... ,p+ 1, where H(®) is the Hessian of log g. For I(©*) to be positive definite,
the Hessian must be negative definite at ®*, i.e. log ¢ must be locally concave at ®*. The purpose
of this condition is to guard against +oo singularities and against ridges of the log-likelihood,
which might contain a continuum of solutions (including ®*) within which EM could potentially
oscillate without necessarily converging. We have already shown that ¢ is identifiable, which
readily precludes any such multiplicity of solutions. Recalling that the log-likelihood also has no
+o00 singularities, as mentioned above, it follows that the conditions of Redner and Walker are
satisfied and, therefore, EM is locally consistent for our two-component mixture. With this in
mind, we note that in every single one of our experiments (described below), a highly accurate
solution was reached.

[(®) = —Ex { } — —H(®)

VIII. EXPERIMENTS

In order to validate our algorithm, and to illustrate one type of setting in which it will be
useful, we have created a synthetic dataset consisting of a mixture of nominal and anomalous
interactions among networked nodes, distributed according to (I)). The dataset was split into
training and test sets, each of size n. The algorithms were trained using the training set and all
results below were obtained for the test set. The nominal samples were generated according to
the following rule: let S be a subset of the vertex set ) of the hypergraph H. Let the elements of
S be nodes that are active with probability p. Let S be the complement of S, corresponding to
nodes which are active with probability p;, and assume p; < % < pg. Intuitively, this represents
a situation where a main group S might be active with high probability, while the background
group S would have much lower activity. In a social network context, this situation corresponds
to the existence of a group S of highly active individuals and a less active, background group
S. As another example, in a communication network, members of S could be high connectivity
nodes or routers.
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The type of distribution that arises from this situation is a unimodal cluster, centered at
x = 11...100...0. (18)
—_— =
#S #S

where, without loss of generality, we have reordered ) such that the elements of S and S appear
consecutively, and where the cardinalities #S and #S sum to p. To see this, note that the true
distribution f is, without normalization,

#S P
flx) prf(l — pu) H pr(1—pr)t ™ (19)
=1 I=#S+1

The expression (T9) takes its maximum value when x; = 1 for vertices j € S and x; = 0 for
vertices [ € S, i.e., when & = &. In the particular case when p;, = 1 — py, and denoting the
Hamming distance between x and & as |« — &|, then (19) reduces to

#S p
fl@) ~ [[ri—pm) I (0 =pu)py™
j=1 I=#S5+1
p
_ Hpjlq—Ujes—fﬂﬂ(l o pH)\Ijes—zj|
=1
= P T = ), (20)

which is clearly isotropic around . In other words, & corresponds to a “typical” meeting, and
the likelihood of a group of people meeting under f decreases with Hamming distance from .

For our experiments, we have used p = 10 and 2000, with n = 100, py = 0.95, p;, = 0.05
and 7 = 0.1. The pmf estimate results from the variational EM algorithm are shown in Figure [3
which depicts the estimated and true densities, f and f, evaluated at the test data locations. The
left plot corresponds to p = 10 and the right plot to p = 2000. Also shown, in Figure {4} are
the nominal measures F(Ay) their empirical estimates ]F(/.flk) obtained by Monte Carlo with
10000 samples of f,. Thanks to the factorized form of f,, no Markov chain was necessary
to obtain the samples and the estimates could be computed extremely rapidly. Ground truth
probability masses were exhaustively computed for all hypercube vertices by, £k = 1,...,2P.
This was done for p = 10 only, since it is impractical to compute ground truth using for
p = 2000. It is clear that the proposed method is highly successful in estimating both f and
the measure of its level sets. For comparison, the OCSVM [11]] and L10-kNNG [1] algorithms
were applied to the same dataset, with the Gaussian kernel used for OCSVM. Note that the
OCSVM treats the p-dimensional binary data as vectors in the Euclidean space RP. The model
parameters for OCSVM are (v,7), where v controls the amount of regularization and + is the
kernel bandwidth parameter. The results of these methods and the proposed approach, using
test data independent from the training set, are displayed in Figure [5) where the first image
corresponds to p = 10 and the second image corresponds to p = 2000. The top plot in each
image corresponds to “ground truth”, i.e. y; = I{x~,}, so that the large spikes correspond to truly
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SIMULATION RESULTS ON THE TEST SET, FOR p = 10 (LEFT) AND p = 2000 (RIGHT). HORIZONTAL AXIS IS OBSERVATION
INDEX 4. TOP PLOT: GROUND TRUTH, ¥; = Iz,~u. SECOND PLOT: §; ESTIMATED BY OCSVM, WHICH CONTAINS A
SIGNIFICANT NUMBER OF FALSE ALARMS (WITH BOTH p = 10 AND p = 2000) AND ZERO MISSED DETECTIONS. THIRD
PLOT: ANOMALOUSNESS SCORES ESTIMATED BY L10-KNNG, WHICH, WHEN THRESHOLDED AT 0.5, CONTAINS ZERO
FALSE ALARMS AND ZERO MISSED DETECTIONS WITH p = 2000, AND A SMALL NUMBER OF MISSED DETECTIONS WITH
p = 10. FOURTH PLOT: 7); COMPUTED BY THE PROPOSED VARIATIONAL EM ALGORITHM; SETTING §; = I(5,1/2} RESULTS
IN ZERO FALSE ALARMS AND ZERO MISSED DETECTIONS WITH BOTH p = 10 AND p = 2000. FIFTH PLOT: 7;.

anomalous observations. To compare with the performance of OCSVM, we have selected the
best pair (v°V,7¢Y), with respect to 5-fold cross-validation performance, using a two-dimensional
grid search over the ranges v € {27,274 .. 2125} and v € {2729, 2719 .. 271 20} As
illustrated in Figure [5} the OCSVM succeeds in detecting most of the anomalies, but, unlike the
variational EM algorithm, it does so at the cost of a high number of false positives. Also, if one
includes the cross-validation grid search, the OCSVM is orders of magnitude slower that the
proposed approach, even with a relatively small n = 100 (recall that the OCSVM has O(n?p)
computational complexity).

As Figure [5] shows, the LIO-kNNG algorithm performs better than the OCSVM, achieving
essentially the same performance as our variational EM, in the considered dataset, for p = 2000,
while performing slightly worse for p = 10. It should be taken into account, however, that
the computational complexity of L10-kNNG is, at best, O(pn?logn), compared to O(np) for
the proposed variational EM approach. Also, while the L1O-kNNG returns scalar “scores” in
the [0, 1] interval, they do not have a clear interpretation, particularly when the training data
are contaminated as in our example. This is in contrast to the annotations computed using our
proposed approach, which can be directly linked to the pFDR detection performance measure.
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IX. CONCLUSIONS

This paper addresses the problem of detecting anomalous multi-node interactions in very
large networks with p nodes, given a limited number, n, of recorded interactions as training
data, and taking into account the possibility that an unknown proportion of the training sample
may be contaminated with anomalies. We have shown that it is advantageous to use a hypergraph
representation for the data, rather than the more commonly used connectivity graph, and that it
is possible to overcome the curse of dimensionality, even when p > n, by restricting the class
of estimates using a variational approximation.

We have proposed a scalable algorithm that detects anomalies through pmf estimation on the
p-dimensional hypercube, with only O(np) computational complexity. The algorithm models the
data as a two-component mixture, and learns all the parameters of the mixture using Expectation-
Maximization with a multivariate Bernoulli variational approximation. We have investigated the
theoretical properties of the algorithm, and have demonstrated that, unlike the general mixture
model case, our model is identifiable, under very mild assumptions, and that the proposed EM
algorithm enjoys local consistency and is guaranteed to avoid singularities of the log-likelihood.
Additionally, we have established a relationship between the posterior probabilities estimated
in the E-step and other widely used measures of anomalous behavior, such as the pFDR. The
proposed algorithm allows annotations (+;’s) related to the pFDR to be computed more efficiently
than alternative procedures such as methods based on kernel pmf estimation. Furthermore, the
algorithm improves upon classification-based approaches like the OCSVM by providing more
information than simply an all-or-nothing decision, and on kernel pmf estimation by providing
principled criteria for choosing a decision threshold.

The proposed procedure has been validated on a very high-dimensional example dataset, and
compared favorably with other state-of-the-art methods. As the results show, our method can
outperform alternatives in terms of estimation error, for a useful class of distributions, while
computationally scaling considerably better — in fact, linearly — with both p and n.

An interesting observation is that the proposed pmf estimation algorithm actually performs
better for higher p, as can be seen in Figure [3] We attribute this fact to a blessing of dimen-
sionality: the nominal and anomalous distributions are more separable in high dimensions, i.e.
the measure of the set where f and p have similar values vanishes when p increases, which
means that a given observation & will, with high probability, be either unambiguously anomalous
or unambiguously nominal. This type of phenomenon has been successfully exploited in other
contexts, namely kernel-based SVM classification. As a consequence, not only did the accuracy
of the estimates improve with higher p, but the number of EM iterations needed for convergence
also decreased dramatically for higher dimensions. With p > 1000, convergence never took more
than one EM step. We therefore conjecture that the behavior of the likelihood function may, in
our setting, become more benign with increasing p. This is reflected in the fact that the 7n’s
quickly tend to either zero or one, although this behavior is less pronounced when py is set
closer to 0.5 than in the reported experiments (since this makes f and p more similar).

For further research, we identify two main issues: firstly, due to the variational approximation,
the algorithm is only consistent within a family F of distributions, all members of which are
unimodal. In order to enrich F so that is can consistently estimate multimodal distributions, an
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evident approach would consist of adding more components to the mixture model. The impact
on identifiability and consistency of using more than two components needs to be investigated,
however. The second issue is that of developing an online version of the anomaly detector, which
would be particularly useful when observations of interactions arrive sequentially and also when
the nature of the anomalies changes over time.

APPENDIX

As stated in |VII-B| local consistency requires that g satisfy regularity conditions involving the
partial derivatives Jg/00; ...0g/00,:1, as well as the second-order derivatives of ¢ and the
third-order derivatives of log g. Straightforward (though tedious) differentiation of (1)) yields, for
5 0LE=1...p,

9~ e) - f(a)
@ B { (1—7T)Hl¢j9fl(1—91)1_””, ifx; =1
20; —(1—m) Hl# 6" (1—6)' ™, ifzx;=0

g

ﬁ — O

. ) 0 ifl=y

90,00, (1- )Hk;élk;é]e “(1—0k) :zk, %fl%iand Tj =
J —(1=7) Tjpipey 07 (1 = O)' 7, if 1 # j and x; #

9’9 9 —m 1, 07 (1= 0)' ™, ifwy =1
ordd; — 00,0m Ty 07 (L= 60) ™, ifa; =07

and, for log g,

Plogg . (ul@) - f@)\’
on3 g(x)
9 log g P3g 0%g 99 0?g 09 Og 0%
- %0 T ) )
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00,00,00, 00,00, (@) + 00,00, 00, 00,00, 00,  00; 00,00,

82 dg Jg dg
o) - 220 ) 220
89306’; 00,06, ) 00y




20

93 lo 1 o0? 0%g 0 0%g 0
S = 5 |55 9m9@) + 55550 — w5 ) 9(@)
00,0m g(x) 00,07 00;,0m Oor 06,07 On

NEDNIN

06,00 " 96,01 ) “on

9 logg 1 g 0%g Og 0?g 0g 0g 0%
Pleg _ _L o)+ 0900 T 0y D0 0y
89]'91871' g(a:) 80j9187r 8@86’; or (‘%’jaw 881 883 80@7?

(P9 (w)_@@ 599
00,00,""" ~ 96,00, ) “or |’

where the last two lines hold regardless of the order of differentiation. The crucial point is that, in
all derivatives that involve a quotient, the denominator is a power of g. In the discrete hypercube,
g(x) is bounded above. In order to bound it below, away from zero, we impose the additional
condition ™ > €, where ¢ > (. This corresponds to the very mild assumption that the anomalous

€

distribution has a non-zero proportion in the mixture. Thus, we have — < g(x) < 1 and all

2P

the derivatives listed above are bounded above and below, therefore satisfying the conditions
in
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