IDA PLUG-IN WRITING
IN
C/C++

[Version 1.1]

Copyright © 2009 Steve Micallef
steve@binarypool.com

mailto:steve@binarypool.com

Table of Contents

I 1431 o T LT 1o Yo TP 6
1.1 Why ThisS TULOMIAIT. ... s e e e e e 6
AT F= T 0 1Y =Y =T S 6
1.3 What's NOt COVEIEA........uuiiiieeeeii ettt e e e e e e e e e e e e e e e e e e eenn e e 6
1.4 Knowledge REQUINEA.u ettt e e e e e e e e 6
1.5 Software REQUITEA. ...t e e e e e e e e e e e e e e e e ae e 7
1.6 AREMNALIVES 10 C/CH ... ittt e aeaaaaeeees 7
1.7 AboUL ThiS DOCUMENT......cii et e e e e e e e e e eaa e 7
1.8 Change HiStOrY......ccoo it e e e e e e e e e e e e e e e e e aae e 7
(RS O =T [£ PRUPPPPPPP 8
1.10 FUther REAGING.coiii ittt e et e e e e e e e e e b e e e e e e e e nneee 8

2. THE IDA SDK....coiiiiiieitie e cccse e s s e rsse e e e s s s s smn e e s s e s m e e e e e s e s am e e e e e sesamneeessessanneeeesassnnneenennnnnnns 9
D220 T 13 = = 1 = o o T 9
2.2 DIrECIONY LAYOUL. ...ttt e aaeaeaeees 10
D2 1= To [1 =SSP 10
2.4 USING the SDK.....eeiiiiiiii e e e e e e e e e e e e e e e e 11

3. Setting up a Build ENVIrONMENt...........ooo i 12
3.1 Windows, UsiNg ViSUal STUIO..........coiuriiiiieiiiiiiiiee ettt e e nree e e e e e e e e e e 12
3.2 Windows, Using Dev-C++ with GCC and MiNGW............coiiiiiiiii i 13
3.3 LINUX, USING GCC... .o e s 13
K @ L=T gl F= 1 o] o USSP 14
3.5 A PIUG-iN TeMPIALE....ccc e e e e e e e 14
3.6 Configuring and RUNNING PIUG-INS.........uiiiiiiiiiiie e 15

. S LT g o F= T 4T 41 € 1P 17
g B 0o R Y/ o1 SRR 17
4.2 Core Structures and ClasSes.ooi it e e et e s eeeeeeaees 18

32 W =Y = TN [{3 =1 o] o TP 18
A N 4 Y- 1= P 18
4221 The area t SITUCIUIE.........uueiii e 19
4.2.2.2The areach t Class.......cccooiiuiiiiiiiiiieeeeee e 19
4.2.3 Segments and FUNCHONS.ooiiiiii e e e e e e e e 20
4.2.3.71 SEOMENES.....uutiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e e e e aa e e e e e e e e e 20
4.2.3.2 FUNCHONS. ..ttt e et e 21
4.2.4 Code REPreSENtatioN........ceiiiiiiiiie e 22
4.2.4.1 OPEIraNd TYPES. . uueieiieeiiiiiiieee e ittt ee e e e ettt e e e e e ettt e e e e s abteeeeeeesanbbeeeeaeeaabbeeeeeeeaannnns 23
4.2.4.2 OPEIANGS.eiiiiiiiitiiiee et e ettt e e e e ettt e e e e e h et e e e e e s a b et e e e e e e et e e e e e e e e anrreeeeeeeann 23
S Y/ [T o 4T) (o 24
B [1= £ U o (o] o < P 24
4.2.5 Cross REfEreNCING......ccoiiiiiiiii e e e e 25
4.2.51 The xrefblk_t StruCture...... ... 26
T O To | PSRRI 26
TR T - | - PP PRRR 27

G I Y] (= = Vo L TP 28
I 1= D= o 0 o o = 29
4.4.1 The debugger t STrUCE....... ... e eeeaaaaaa s 30
A =0 1] (= TP 30
4.4.3 BreaKpPOiNtS.coi et e e e e a e e e e e e e aeaas 31
R I = Vo7 o o [P PPPPPPPP 32
4.4.5 Processes and TRreads.........coveeeeiiiiii it e e annaas 34
4.5 Event NoOtifiCatioNS.ooo it e e e e e e e e eaees 34
4.5.1 Receiving NOHfICAtION.........ooiiiiiie e 35
4.5.2 Ul Event NOtIfiCatiONS.........eeeeeeeeeeeeeee et 36
4.5.3.1 Low Level EVENtS. ... 37
4.5.3.2 High Level Event Notifications.............ooiiiiiiiiiiiie e 38
4.5.3.3 Function Result Notifications..........cccooiiiiiiiiiiiiiiiiee e 39

IS (41T - T PP U PR PP UUPPPPPPOR PPN 40

5.1 Common Function Replacements........ ... i 42
5.2 IMESSATING. .. eetetiittte et e ettt ettt e e e e e e e e b e e e e e e e e e e e e e e aeaaeas 42
o T2 I 1 41 USSP 43
STV | 1 {0 PO PURPRTPPN 43
V2R 7= T4 o1 o T R TTRSRPPIN 43
TN T o TP PP UUPPUPTTRRSPPPRIN 43
G T 1 I A= To T o) o 44
R B o 1= AT 1= 1=) o [== PO PP RPPPPURTRSPPPPRN 44
ST T2 181211 o] (o T PP PRPRPRRPR 44
TR TR e 1Y o1] =T PP PURPRPR 44
5.3.4 G CUIMINE. ... ettt e e e e e e e e e eeeeeeeenneanes 45
5.3.5 1EA0_SEIECHION.....ccei it a e e 45
TR 2 I o7 | USSP 45
TR N = 11 &= o Lo | OSSPSR 46
5.3.8 ASKUSINGFOMMN_ ...ttt et e nnnnenneeees 46
B4 ENErY POINES. .. e e e e e e e e e e e e e e e e e 47
ST o o 1= A =T o £V o | PP UUPPPPRTUPPPPR 47
5.4.2 get_entry _OrdiNal..........euiiiii i 47
T I T o 1= A= o 11 778 48
5.4.4 get Nty _NAMIE.. ..o 48
TR == 3O 48
B.5.1 GO ArCa. ... e e e e e e s aarraaes 49
5.5.2 91 Ar@a Ol ...eeeeiii i e 49
5.5.3 GOIN_ArCa....coiiii e e e 49
ST o 1= A 1= (A= 1 Y- TSRS 50
R TN o [Al o] (=Y = (== VR 50
GRS T =Y [101 | £ S 51
NG R o T= 1 == Te o ¢ [o LTRSS 51
G 1= 1 11T SR TUPPPPR 51
5.6.3 get_SeagmM DY NAME......cco oo 52
LT o = =Y o P 52
I IR o 1= A =TT [T =10 1 1= T 52
oA U g T3 T o T 53
B.7.1 GO TUNC _QlY.eeiiiii it e e 53
B.7.2 GO TUNC. ..ttt e e e e e e e s e e e e 53
B.7.3 GOIN_TUNC....co et e et e e e e e e eaneaee 54
A o 1= A 18] Uo i =0 1 = SR 54
AT 1= A 1= (S 10 o2 55
B5.7.6 gt PreV_fUNC. ...ttt e e e e e e aenae 55
I Ao =Y A 18 o o 0| PP RRRPRUPP 55
5.8 INSIIUCHIONS. ...ttt e et eeana e s 56
5.8.1 generate_diSasm_lINE.......ccooii i 56
TS T2 o [= Yot Yo LY | 0 1= o P 56
e TR B o7 (== | (= Y | 1< o 1P 57
5.8.4 ua_anal (DEPRECATED).......uuutiiiiiiiiiiiii ettt e e e e e e eaeeeaaaa e eeeaenes 57
5.8.5 ua_code (DEPRECATED)......cccoii ittt e e e e e e e e e e e e e s sa s s s e e e e e e e e e eeene 58
IR IV T T 0 01 =Y o PP PURPRPRR 58
IR I VT T o 111 o] o 12 PP PUPTPPRTR 59
5.8.8 ua_outop (DEPRECATED). ettt ee e e e e e e e e eeea e e e eeeeees 60
5.9 Cross REfEIrENCING.coiiiiiiiiiiie e e e e e e e 60
oIS T I 1] A o] o TP 61
R VA (13 L (o TSSO PPPPRRSRPPIIR 61
5.9.3 NEXE TOM. . e a e 61
RS I o 1= o PR 62
T L0 = 1o g L= S PP PP PPPPPP PP 62

Tt O o =) A o =10 L= PRSPPI 63

5.10.2 et NAME_B@.... i e e e e et eeeeanraee 63

5.10.3 get_NAME_VaAlUE.......coiiiiii et e e e e e e e e e e e eeeae 64
I RS 1= =T (o 1 o o T PP PPPP PP 65
ST I T I 0 T T 5 PP 65
ST B 2 T [o1 =T PSPPURURPR 66
ST 1 | | P PP PP TP 67
0 2 o o 7= o 1 11] 10 | S 67
T 2 o1 o = =Y 11 T o T | 67
5.12.3 load_loader_ MOUIE..............uuumiiiiiiiiiiiiie e 68
5.12.4 10ad_biNary_fil€.......coo i 68
ST o T 1= o [11 VPP PPPPPTRPRPRPPP 69
5.12.6 SAVe_database...........uoiiiiiiiiie e 70
ST G B =T [ORI 70
5.13.1 get_flags_NOVAIUE..........oooiiiie e 71
5.3 2 ISENADIEA. .. et e e e e e aenaa 71
BAB.BISHEAA. ... et e e aaee e e s 71
ST B B 1107 oo [SRRSO 72
ST BT 1] - | - T SRRSO 72
5186 ISUNKNMOWN ...ttt eeaes 73
ST B - - T TP PP PP PPPPP PPN 74
T I o =) A o) (= T PRSPPI 74
5.14.2 get_mMany _DYLeS.......ueiiiiiiiie e e e e 74
5.14.3 get_dDg DYt e 75
5.14.4 PatCh_DYLE....cci et 75
5.14.5 patCh_mMany _DYLeS..... ... 76
T80 T 1 TS 76
STt TR I 0] o= o L SRR 76
T KT o] o = o | = SO PP 77
T Eo TG = Tor (== = TR PP USSP 77
T ES T o (o T TSP 77
B85 @IBAM. ...t aeeeeeeae 78
D158 BWIIE ..t e et e e e e rrnr e 78
T LG B I=T o 18T o 1o Ve [N PO PPEP R SUR 79
5.16.0 A NOE ON REQUESES.....eeiiiiiiiiiiiiie et e e e e et e e e e e s aneeeeeaenenes 79
D161 FUN_TEQUESES. ..ttt ettt e e e e s bttt e e e e s s sttt e eeeesanbaneeeeeennnnnes 80
5.16.2 get_proCess_STate.......cooiiiiiiiiiii e 80
SN LR N 1= o] oo =TT o | VPP OPPPRPR 81
5.16.4 get_ProCeSS INFO....ce ittt e e e e e e e e e e anneeaae 81
B5.16.5 Start PrOCESS ™ ... ettt e e e e e e e e e e e e eeena 82
5.16.6 CONLINUE _PrOCESS ™......iiiiiieeeeeece ettt e e e et e e e e e e et e e e aa e e e aaeeeeeas 82
5.16.7 SUSPENA_PIOCESS ™.......eeiiieiiiiitiiteeie et ettt e et e e e ee e e e e e e e e e e e e e e e e e et e aaaaabasbeaetbaa e eaesesbbaneaaeeens 83
5.16.8 @ttACh_PrOCESS ™.....uviiiiiiiiiiiiiieeee et eaaaans 83
5.16.9 dtACh_PIrOCESS ™.....ueiiiiiiiiiiiiiieie et et e e aaaean 84
5.16.10 EXIt PrOCESS ™ ..o e — e e ae it aaaan 84
5.16.11 get thread QlY....ooooiiiii e aaeae 84
5.16.12 get_current_thread..............ooo i 85
5.16.13 GetN_thrEad......eeeiiiiee e e 85
B5.16.14 GEE_TEG_VaAl....eeeiiiiii e e et e 85
5.16.15 thread_get_sreg_base (member of dbg).........ooouiiiiiiiiiiii e 86
5.16.16 read_memory (member Of dDQ)........cooiuiiiiiiiiiii e 86
5.16.17 write_memory (member of dbg).........couiiiiiiiiiii 87
B5.16.18 Sel_reg VAl .. e e e e eaeeae 87
5.16.19 invalidate_dbgmem_CONTENTS.uuuiiiiiiie e 88
5.16.20 invalidate_dbgmem_CONfig.........c.uuiiiieiiiiiiiiee e 89
T G I U o T (o YU PUSPRRRUPPPPRIN 89
B5.16.22 STEP N0 .ot e e ————————— 90

I L I (=T o o 1Y PP PPPPRRRRPPPRIN 90

5.16.24 step _UNLI_ret ™ ... 91

Lot I = == o To [] £ 91
STt I o 1= o o S o | SRR 91
... 92
T I o 1= 1 T o] o SO PR UTT U PRSPPI 92
R A T o = o | RSP 92
ST A - To Lo [o] o) AP UPRPPURRRPR 93
ST T 1=] o SRR 93
ST A 0T oo F=) (Y o o) SRR SUPPRRPP 94
D177 enable Dt ™. e e e nraee 94

ST T I =T o o PSSR 95
5.18.1 SEE_HrACE_SIZE....eeiiiii i 95
B S o 1= =T 1 =T S RRRRERERERN 95
5.18.3 is_step_trace_enabled........ ..o 96
5.18.4 enable_Step trace ... 96
5.18.51is_insn_trace _enabled................iiiiiiiiii i 96
5.18.6 €nable _INSN_TraCE ™.......coeiiiiiiiiiiiii et 97
5.18.7 is_fuNC _trace _enabled...........coooiiiiiiiiiiii e 97
5.18.8 enable _fUNC trace *..........coi i 97
R RS e =) A (VA o 172U SPPUTRRSPPPPRIN 98
B5.18.10 get_teV_iNfO . i eeaaraee 98
5.18.11 get_iNSN_LeV_Ieg_ Val......ooi i 99
5.18.12 get_inSN_teV_reg reSuUlt.........oouiiiiiiiii e 99
5.18.13 get_call_tev_callee..........oooiiiiiie 100

TR IS 4o To [TP PSS PURPPPPPPPP 101
5191 refresh_Strlist .. .o e 102
5.19.2 get_ StrliSt gy .coo i a e e 102
5.19.3 get_StrliSt M. 102

5.20 MISCEIIANEOUS.ottt et e e e e e e aaaaaaeeeeeeaaaaaaanas 103
24 Bt I = o T =1 0. 0 Y= PP 103
T2 12 o 1= o 1 U | R 103
5.20.3 Call_SYSIEM. ... etaaaaaaaa e e e aaa e aaaaa 104
IV NI o F=To || SO OOUP PSPPSR 104
5.20.5 GEIASPACE.eeiiiiiiiiiiiii ettt 104
I O I {2 =T SRR 105
I O =Y 12 1 R 105
5.20.8 get_nice_colored NaAmME........ccooeiiiieee e e 105

CEXAMPIES...... e a e s e e a s a e e s e e e e nnnan 107

6.1 Looking for Calls to sprintf, strcpy, and sscanf...........ooooi i 107

6.2 Listing Functions Containing MOVS et al..........ccooiiiiiiiiiieee e 110

6.3 Auto-loading DLLs into the IDA Database.............oooiiiiiiiiiiieeeeeee e 112

6.4 Bulk Breakpoint Setter & SAVET...........coooiiiiiiiii e 115

6.5 Selective Tracing (Method 1)........uuiiiiiiiieiiiieee e 118

6.6 Selective Tracing (Method 2)........uuuiiiiiiiiiiiiieee e 120

6.7 BINary CopY & Paste.......cuuiiiiiiie s 122

6.8 BeingDebugged Flipper (Windows ONIY).........cooiiiiiiiiiiii e 125

1. Introduction

1.1 Why This Tutorial?

After spending a lot of time going through the header files in the IDA SDK as well as looking at
the source to other people’s plug-ins, | figured there should be an easier way to get started with
writing IDA plug-ins. Although the header file commentary is amazingly thorough, | found it a little
difficult navigating and finding things when | needed them without a lot of searching and trial-and-
error. | thought that I'd write this tutorial to try and help those getting started as well as hopefully
provide a quick reference point for people developing plug-ins. I've also dedicated a section to
setting up a development environment which should make the development process quicker to
get into.

1.2 What's Covered

This tutorial will get you started with writing IDA plug-ins, beginning with an introduction to the
SDK, followed by setting up a development/build environment on various platforms. You'll then
gain a good understanding of how various classes and structures are used, followed by usage of
some of the more widely used functions exported. Finally, I'll show some examples of using the
IDA API for basic things like looping through functions, to hooking into the debugger and
manipulating the IDA database (IDB). After reading this, you should be able to apply the
knowledge gained to write your own plug-ins and hopefully share them with the IDA user
community.

1.3 What's Not Covered

I'm focusing on x86 assembly because it's what | have most experience in, although most of the
material presented should cover any architecture supported by IDA (which is practically all of
them). Also, if you want a comprehensive reference to all IDA functions, | suggest looking through
the header files.

This tutorial is focused more on "read only" functionality within the SDK, rather than functions for
adding comments, correcting errors, defining data structures, and so on. These sorts of things are
a big part of the SDK, but aren't covered here in an attempt to keep this tutorial at a manageable
size.

| have intentionally left out netnodes from this tutorial, as well as many struct/class members
because the IDA SDK is massive, and contains a lot of things for specialised purposes — a tutorial
cannot cover everything. If there is something you feel really should be in here, drop me a line
and I'll probably include it in the next version if it isn't too specialised. | came pretty close to
including a section about graphing, but realised that there were already several sample plug-ins
in the SDK, and it would blow out the size of this tutorial. Laziness was probably a contributing
factor as well!

1.4 Knowledge Required

First and foremost, you must know how to use IDA to the point where you can comfortably
navigate disassembled binaries and step through the debugger. You should be equipped with a
thorough knowledge of the C/C++ language as well as x86 assembly. C++ knowledge is quite

important because the SDK is pretty much all C++. If you don't know C++ but know C, you should
at least understand general OOP concepts like classes, objects, methods and inheritance.

1.5 Software Required

To write and run IDA plug-ins, you will need the IDA Pro disassembler 5.4, the IDA SDK (which,
as a licensed user of IDA, you get for free from http://www.hex-rays.com) and a C/C++ compiler
with related tools (Visual Studio, GCC toolset, Borland, etc).

Because it's been so long since the last version of this document (sorry about that!), this version
will focus solely on version 5.4 of the API. It would just be too cumbersome to highlight all the
changes since IDA 4.8. The SDK was actually frozen (mostly) since 4.9, so older versions may
work.

1.6 Alternatives to C/C++

If C is not your thing, take a look at IDAPython, which has all the functionality the C++ API offers
in the more accessible language of Python. Check out http://d-dome.net/idapython/ for details.
There is a tutorial written on using [IDAPython by Ero Carrera at
http://dkbza.org/idapython_intro.html, though it doesn’t appear to have been updated since 2006.

There was also an article written in 2005 about using VB6 and C# to write IDA plugins — check it
out here: http://www.openrce.org/articles/full_view/13. A php.net-style version of the first version
of this document has also been placed on OpenRCE, enabling users to add comments, sample
code, etc. to each function.

1.7 About This Document

If you have any comments or suggestions, or if you notice any errors, please contact me, Steve
Micallef, at steve@binarypool.com. If you really feel like you've learnt something from this, I'd also
appreciate an email, just to make this process worth while :-)

It's been four years since the last version of this tutorial, so | will make a better attempt at keeping
this document up-to-date in the future. You will always be able to obtain the latest copy at
http://www.binarypool.com/idapluginwriting/.

1.8 Change History

e Version 1.0 [July, 2005]:
- Firstrelease
« Version 1.1 [May, 2009]:
- Brought up-to-date for IDA 5.4 SDK
- Minor clarity improvements and error corrections
- Changed Visio 2003 example to Visio 2008
- Some new functions covered
- Additional example plug-in (BeingDebugged Flipper)

http://www.binarypool.com/idapluginwriting/
mailto:steve@binarypool.com
http://www.openrce.org/articles/full_view/13
http://dkbza.org/idapython_intro.html
http://d-dome.net/idapython/
http://www.hex-rays.com/

1.9 Credits

I'd like to thank the lifak Guilfanov and Hex-Rays for their continued support with putting this
together and for such a great product.

1.10 Further Reading

Since the first version of this tutorial, there still appears to be limited information specifically on
writing IDA plug-ins available. The two single best resources remain the IDA support page at
Hex-Rays (http://www.hex-rays.com/idapro/idasupport.htm) and the IDA Palace
(http://idapalace.net/). If you get stuck while writing a plug-in, you can always ask for help on the
Hex-Rays Support Forum (http://www.hex-rays.com/forum), where even though the SDK is
officially unsupported, someone from Hex-Rays (or one of the many IDA users) is likely to help
you out.

Another great resource is http://www.openrce.org/, where you'll find not only some great articles
on reverse engineering, but tools, plug-ins and documentation too. There are also a lot of
switched-on people on this board, who will most likely be able to help you with almost any IDA or
general reverse engineering problem.

Since the first release of this tutorial, Chris Eagle with No Starch Press released “The IDA Pro
Book.” | highly recommend this book to any serious IDA user and plug-in writer. If you want to
purchase it through Amazon, please use the following link to show your appreciation for this
tutorial (I get a tiny percentage of the sale price, but at no extra cost to you!):

http://www.amazon.com/gp/product/1593271786?ie=UTF8&tag=binarypool-
20&linkCode=as2&camp=1789&creative=390957 &creativeASIN=1593271786

http://www.amazon.com/gp/product/1593271786?ie=UTF8&tag=binarypool-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=1593271786
http://www.amazon.com/gp/product/1593271786?ie=UTF8&tag=binarypool-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=1593271786
http://www.openrce.org/
http://idapalace.net/
http://www.hex-rays.com/idapro/idasupport.htm

2. The IDA SDK

IDA is a fantastic disassembler and comes with a variety of debuggers too. While IDA alone has
an amazing amount of functionality, there are always things you'll want to automate or do in some
particular way that IDA doesn't support. Thankfully, the guys at Hex-Rays have released the IDA
SDK: a way for you to hook your own desired functionality into IDA.

There are four types of modules you can write for IDA using the IDA SDK, plug-in modules being
the subject of this tutorial:

Module Type Purpose

Processor Adding support for different processor architectures. Also known as
IDP (IDa Processor) modules.

Plug-in Extending functionality in IDA.

Loader Adding support for different executable file formats.

Debugger Adding support for debugging on different platforms and/or interacting

with other debuggers / remote debugging.

From here onwards, the term "plug-in" will be used in place of "plug-in module", unless otherwise
indicated.

The IDA SDK contains all the header and library files you need to write an IDA plug-in. It supports
a number of compilers on Linux, Mac and Windows platforms, and also comes with several
example plug-ins that illustrate a couple of basic features available.

Whether you're a reverse engineer, vulnerability researcher, malware analyst, or a combination of
them, the SDK gives you a tremendous amount of power and flexibility. You could essentially

write your own debugger/disassembler using it, and that's just scratching the surface. Here's a
tiny sample of some very straight-forward things you could do with the SDK:

> Automate the analysis and unpacking of packed binaries.

> Automate the process of finding the use of particular functions (for example,

LoadLibrary (), strcpy (), and whatever else you can think of.)

> Analyse program and/or data flow, looking for things of interest to you.
> Binary diff'ing.
> Write a de-compiler.

> The list goes on..

To see a sample of what some people have written using the IDA SDK, check out the IDA Palace
website or the IDA download page (http://www.hex-rays.com/idapro/idadown.htm).

2.1 Installation

http://www.hex-rays.com/idapro/idadown.htm

This is simple. Once you obtain the SDK (which should be in the form of a . zip file), unzip it to a
location of your choice. My preference is creating an sdk directory under the IDA installation and
putting everything in there, but it doesn't really matter.

2.2 Directory Layout

Rather than go through every directory and file in the SDK, I'm going to go over the directories
relevant to writing plug-ins, and what's in them.

Directory Contains

/ Some makefiles for different environments as well as the readme . txt
which you should read to get a quick overview of the SDK, in particular
anything that might've changed in recent versions.

include/ Header files, grouped into areas of functionality. | recommend going
through every one of these files and jotting down functions that look
applicable to your needs once you have gone through this tutorial.

libbor.wXX/ IDA library to link against when compiling with the Borland C compiler

libgccXX.1lnx/ IDA library to link against when compiling with GCC under Linux and Mac

libgccXX.mac/

libgcc.wXX/ IDA library to link against when compiling with GCC under Windows

libvec.wXX/ IDA library to link against when compiling with Visual C++ under
Windows

plugins/ Sample plug-ins

XX is either 32(bit) or 64(bit), which will depend on the architecture you're running on.

2.3 Header Files

Of the fifty-two header files in the include directory, | found the following to be most relevant
when writing plug-ins. If you want information on all the headers, look at readme. txt in the SDK
root directory, or in the header file itself. This listing is just here to provide a quick reference point
when looking for certain functionality — more detail will be revealed in the following sections.

File(s) Contains

area.hpp area_t and areacb_t classes, which represent “areas” of code,
and will be covered in detail later on.

bytes.hpp Functions and definitions for dealing with individual bytes within a
disassembled file.

dbg.hpp & idd.hpp Debugger classes and functions.

diskio.hpp & fpro.h |IDA equivalentsto fopen (), open (), etc. as well as some misc.
file operations (getting free disk space, current working directory,

etc.)

entry.hpp Functions for getting and manipulating executable entry point
information.

frame.hpp Functions for dealing with the stack, function frames, local variables

and labels.

File(s)

Contains

funcs.hpp

func_t class and basically everything function related.

ida.hpp

idainfo struct, which holds mostly meta information about the file
being disassembled.

kernwin.hpp

Functions and classes for interacting with the IDA user interface.

lines.hpp Functions and definitions that deal with disassembled text, colour
coding, etc.

loader.hpp Mostly functions for loading files into and manipulating the IDB.

name . hpp Functions and definitions for getting and setting names of bytes
(variable names, function names, etc.)

pro.h Contains a whole range of misc. definitions and functions.

search.hpp Various functions and definitions for searching the disassembled

file for text, data, code and more.

segment.hpp

segment_t class and everything for dealing with binary segments/
sections.

strlist.hpp

string info_t structure and related functions for representing
each string in IDA's string list.

ua.hpp insn t,op t and optype t classes representing assembly
instructions, operands and operand types respectively as well as
functions for working with the IDA analyser.

xref.hpp Functions for dealing with cross referencing code and data

references.

2.4 Using the SDK

Generally speaking, any function within a header file that is prefixed with ida export is
available for your use, as well as global variables prefixed with ida export data. The rule of
thumb is to stay away from lower level functions (these are indicated in the header files) and stick
to using the higher level interfaces provided. Any defined class, struct and enum is available for

your use.

3. Setting up a Build Environment

Note for Borland users: The only compiler supported by the IDA SDK that isn't covered in this
section is Borland's. You should read the install cb.txt and makeenv br.mak in the root
of the SDK directory to determine the compiler and linker flags necessary.

Before you start coding away, it's best to have a proper environment set up to facilitate the
development process. The more popular environments have been covered, so apologies if yours
isn't. If you're already set up, feel free to skip to the next section.

3.1 Windows, Using Visual Studio

The version of Visual Studio used for this example is Visual C++ 2008 Express Edition, but
almost everything should be applicable to older versions.

Once you have Visual Studio running, close any other solutions and/or projects you might have
open; we want a totally clean slate.

1

Go to File->New->Project.. (Ctrl-Shift-N)

2 Expand the visual c++ folder, followed by the Win32 sub-folder, and then select the
Win32 Project icon. Name the project whatever you like and click OK.

3 The Win32 Application Wizard should then appear, click the Application Settings
link on the left and make sure Windows Application is selected, and then tick the
Empty Project checkbox. Click Finish.

4 In the Solutions Explorer on the right hand side, right click on the Source Files
folder and go to Add->New Item. ..

5 Select c++ File (.cpp)underthe Templates section and name the file appropriately.
Click add. Repeat this step for any other files you want to add to the project.

6 Go to Project->projectname Properties...

7 Change the following settings (some have been put there to reduce the size of the

resulting plug-in, as VS seems to bloat the output file massively):

Configuration drop down in the top left: Select Release

Configuration Properties->General: Change Configuration Type to
Dynamic Library (.d1l1l)

C/C++->General: Set Detect 64-bit Portability Issues checks to No
C/C++->General: Set Debug Information Format to Disabled
C/C++->General: Add the SDK include path to the Additional Include
Directories field. e.g. C:\IDA\SDK\Include

C/C++->Preprocessor: Add NT ; 1IDP to Preprocessor Definitions
C/C++->Code Generation: Turn off Buffer Security Check, setBasic
Runtime Checks to Default and set Runtime LibrarytoMulti-threaded
C/C++->Advanced: Calling Convention is __stdcall

Linker->General: Change Output File from a .exe to a.plwin the IDA plugins
directory

Linker->General: Add the path to your 1ibvc.wXX to Additional Library
Directories. e.g. C:\IDA\SDK\libvc.w32

Linker->Input: Add ida.lib to Aditional Dependencies

Linker->Debugging: No to Generate Debug Info

Linker->Command Line: Add /EXPORT:PLUGIN

Build Events->Post-Build Event: Set Command-1line t0 your idag.exe to start
IDA after each successful build (Optional)

Click ok

8 Go to Build->Configuration Manager.. and change the drop-down in the
Configuration column for your plug-in project from Debug to Release. Click OK

9 Move on to section 3.5

3.2 Windows, Using Dev-C++ with GCC and MinGW

You can obtain a copy of Dev-C++, GCC and MinGW as one package from
http://www.bloodshed.net/dev/devcpp.html. Installing and setting it up is beyond the scope of this
tutorial, so from here on, it'll be assumed that it's all in working order.

As before, start up Dev-C++ and ensure no project or other files are open; we want a clean slate.

1 Go to File->New Project, choose Empty Project, make sure C++ Projectis
selected and give it any name you wish, click OK

Choose a directory to save the project file, this can be anywhere you wish.

Go to Project->New File, this will hold the source code to your plug-in. Repeat this
step for any other files you want to add to the project.

Go to Project->Project Options, click on the Parameters tab.

5 Under C++ compiler, add:
-DWIN32 -D_NT _ -D_IDP__ -v -mrtd
6 Under Linker, add:

../path/to/your/sdk/libgcc.wXX/ida.a -Wl,--dll -shared
Just a note here - it's usually best to start with . . /, because msys seems to get confused
with just /, and tries to reference it from the root of the msys directory.

7 Click on the Directories tab, and Include Directories sub-tab. Add the path to
your IDA SDK include directory to the list.

8 Click on the Build Options tab, set the Executable output directory to your
IDA plugins directory, and Override the output filename to be a .plw file. Click OK.

9 Move on to section 3.5

3.3 Linux, Using GCC

Unlike Windows plug-ins, which end in .plw, Linux plug-ins need to end in .plx. Also, in this
example, there is no GUI IDE, so rather than go through a step-by-step process, I'll just show the
Makefile you need to use. The below example probably isn't the cleanest Makefile, but it
should work.

In this example, the IDA installation is in /usr/local/idaadv, and the SDK is located under
the sdk sub-directory. Put the below Makefile into the same directory where the source to your

http://www.bloodshed.net/dev/devcpp.html

plug-in will be. You'll also need to copy the plugin.script file from the sdk/plugins
directory into the directory with your source and Makefile.

Set SRC below to the source files that make up your plug-in, and OBJS to the object files they will
be compiled to (same filename, just replace the extension with a . o).

SRC=filel.cpp file2.cpp

OBJS=filel.o file2.o0

CC=g++

LD=g++

CFLAGS=-D IDP _ -D_PLUGIN -c -D LINUX _ \
-I/usr/local/idaadv/sdk/include $ (SRC)

LDFLAGS=--shared $(OBJS) -L/usr/local/idaadv -1lida \
--no-undefined -Wl,--version-script=./plugin.script

all:
$(CC) $(CFLAGS)
$(LD) $(LDFLAGS) -o myplugin.plx
cp myplugin.plx /usr/local/idaadv/plugins

To compile your plug-in, make will do the job and copy it into the IDA plugins directory for you.

3.4 Other Platforms

If you are developing plug-ins on a Mac or other platform not mentioned above, the principals
should remain the same, however take a look at pro.h because you will need to change some of
the pre-processor macros passed to your compiler. For instance, on a Mac you would define

_ _MAC (instead of = LINUX or NT shown above), and if you were on a 64-bit
architecture, you'd additionally need to define x64 (_ x86__is the default).

3.5 A Plug-in Template

The way IDA "hooks in" to your plug-in is via the PLUGIN class, and is typically the only thing
exported by your plug-in (so that IDA can use it). Also, the only files you need to #include that
are essential for the most basic plug-in are ida.hpp, idp.hpp and loader.hpp.

The below template should serve as a starter for all your plug-in writing needs. If you paste it into
a file in your respective development environment, it should compile, and when run in IDA
(Edit->Plugins->pluginname, or the shortcut defined) , it will insert the text "Hello World"
into the IDA Log window.

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>

int IDAP_ init(void)

{
// Do checks here to ensure your plug-in is being used within
// an environment it was written for. Return PLUGIN SKIP if the
// checks fail, otherwise return PLUGIN KEEP.

return PLUGIN KEEP;

void IDAP term(void)

{
// Stuff to do when exiting, generally you'd put any sort
// of clean-up jobs here.
return;

// The plugin can be passed an integer argument from the plugins.cfg
// file. This can be useful when you want the one plug-in to do
// something different depending on the hot-key pressed or menu
// item selected.
void IDAP run(int arg)
{
// The "meat" of your plug-in
msg ("Hello world!"™);
return;

}

// There isn't much use for these yet, but I set them anyway.
char IDAP comment[] = "This is my test plug-in";
char IDAP help[] = "My plugin";

// The name of the plug-in displayed in the Edit->Plugins menu. It
can // be overridden in the user's plugins.cfg file.
char IDAP name/[] = "My plugin";

// The hot-key the user can use to run your plug-in.
char IDAP hotkey[] = "Alt-X";

// The all-important exported PLUGIN object
plugin_t PLUGIN =
{

IDP_INTERFACE VERSION, // IDA version plug-in is written for
0, // Flags (see below)
IDAP init, // Initialisation function
IDAP term, // Clean-up function
IDAP run, // Main plug-in body
IDAP comment, // Comment - unused
IDAP help, // As above - unused
IDAP name, // Plug-in name shown in
// Edit->Plugins menu
IDAP hotkey // Hot key to run the plug-in

b

You can usually get away without setting the flags attribute (second from the top) in the PLUGIN
structure unless it's a debugger module, or you want to do something like hide it from the Edit-
>Plugins menu. See loader . hpp for more information on the possible flags you can set.

The above template is also available at http://www.binarypool.com/idapluginwriting/template.cpp.

3.6 Configuring and Running Plug-ins

If your compiler hasn’t automatically put the compiled plug-in into your IDA plugins directory,
copy the compiled plug-in file (make sure it ends in .plw for Windows or . pl1x for Linux) into the
IDA plugins directory and IDA will load it automatically at start-up.

http://www.binarypool.com/idapluginwriting/template.cpp

Make sure your plug-in can load up all of its DLLs and shared libraries at start-up by ensuring
your environment is set up correctly (LD _LIBRARY PATH under Linux, for example). You can
start IDA with the -z20 flag, which will enable plug-in debugging. This will usually indicate if there
are errors during the loading process.

If you put code into the IDAP init () function, it will get executed when IDA is loading the first
file for disassembly. Otherwise, if you put code in the IDAP run () function, it will execute when
the user presses the hot-key combination or goes through the Edit->Plugins menu.

The user can override a few of the PLUGIN settings in the plugins.cfg file (like the name and
hot-key), but that's nothing for you to really concern yourself with. The plugins.cfg file can
also be used to pass arguments to your plug-in at start-up.

4. Fundamentals

There are quite a few different classes, data structures and types within the IDA SDK, some more
widely used than others. The aim of this section is to introduce you to them, as they provide great
insight into what IDA knows about a disassembled file, and should get you thinking about the
possibilities of what can be done with the SDK.

Some of these classes and structures are quite large, with many member variables and methods/
functions. In this section, it's mostly the variables that are covered, whereas the methods are
covered in Chapter 5 - Functions. Some of the below code commentary is taken straight from the
SDK, some is my commentary, and some is a combination of the two. #defines have, in some
cases, been included beneath various members, the same way as it's been done in the SDK. |
left these in because it's a good illustration of the valid values a member variable can have.

Important note about the example code: Code from any of the examples in this section
should be put into the IDAP run () function from the template in section 3.5, unless otherwise
stated.

4.1 Core Types

The following types are used all throughout the SDK and this tutorial, so it's important that you are
able to recognise what they represent.

All the below types are unsigned long integers, and unsigned long long integers on 64-
bit systems. They are defined in pro.h.

Type Description

ea_t Stands for 'Effective Address', and represents pretty much any address within IDA
(memory, file, limits, etc.)

sel t Segment selectors, as in code, stack and data segment selectors

uval t Used for representing unsigned values

asize t Typically used for representing the size of something, usually a chunk of memory

The following are signed long integers, and signed long long integers on 64-bit systems. They are
also defined in pro.h.

Type Description

sval t Used for representing signed values

adiff t Represents the difference between two addresses

Finally, there are a couple of definitions worth noting; one of these is BADADDR, which represents
an invalid or non-existent address which you will see used a lot in loops for detecting the end of a
readable address range or structure. You will also see MAXSTR used in character buffer
definitions, which is 1024.

4.2 Core Structures and Classes

4.2.1 Meta Information

The idainfo struct, which is physically stored in the IDA database (IDB), holds what | refer to as
'meta’ information about the initial file loaded for disassembly in IDA. It does not change if more
files are loaded, however. Here are some of the more interesting parts of it, as defined in
ida.hpp:

struct idainfo

{

char procName[8]; // Name of processor IDA is running on

// ("metapc" = x86 for example)
ushort filetype; // The input file type. See the

// filetype t enum - could be f ELF,
// £ PE, etc.

ea t startSPp; // [E]SP register value at the start of
// program execution

ea t startIP; // [E]IP register value at the start of
// program execution

ea t beginEA; // Linear address of program entry point,
// usually the same as startIP

ea t minEA; // First linear address within program

ea t maxEA; // Last linear address within the
// program, excluding maxEA

ea t main; // Address of main ()

b

inf is a globally accessible instance of this structure. You will often see checks performed
against inf.procName within the initialisation function of a plug-in, checking that the machine
architecture is what the plug-in was written to handle.

For example, if you wrote a plug-in to only handle PE and ELF binary formats for the x86
architecture, you could add the following statement to your plug-in's init function (IDAP init
from our plug-in template in section 3.5).

// "metapc" represents x86 architecture
if (strncmp (inf.procName, "metapc", 8) != 0
|| inf.filetype != £ ELF && inf.filetype != £ PE))

{

error ("Only PE and ELF binary type compiled for the x86 "

"platform is supported, sorry.");
return PLUGIN SKIP; // Returning PLUGIN SKIP means this plug-in
// won't be loaded

}
return PLUGIN KEEP; // Keep this plug-in loaded

4.2.2 Areas

Before going into detail on the “higher level” classes for working with segments, functions and
instructions, let's have a look at two key concepts; namely areas and area control blocks.

4.2.2.1 The area_t Structure

An area is represented by the area_t struct, defined in area.hpp. Based on commentary in this
file, strictly speaking:

"Areas" consist of separate area_t instances. An area is a non-empty contiguous range of
addresses (specified by its start and end addresses, end address is excluded) with characteritics.
For example, a segment is a set of areas.

As you can see from the below excerpt taken from the area t definition, an area is defined by a
start address (startEA) and end address (endER). There are also a couple of methods for
checking if an area contains an address, if an area is empty, and to return the size of the area. A
segment is an area, but functions are too, which means areas can be nested.

struct area t

{

ea t startEA;
ea_t endEA; // endEA address is excluded from
// the area
bool contains(ea t ea) const { return startEA <= ea && endEA > ea; }
bool empty(void) const { return startEA >= endEA; }
asize t size(void) const { return endEA - startEA; }

}i

Technically speaking, saying that functions and segments are areas, is to say that the func t
and segment_t classes extend area t. This means that all the variables and functions in the
area t structure are applicable to func t and segment t (so for example,
segment t.startEA and func t.contains() are valid). func_t and segment t also
extend area_t with their own specialized variables and functions. These will be covered later.

A few other classes that extend area t are as follows:

Type (file) Description

hidden_area_t (bytes.hpp) |Hidden areas where code/data is replaced and
summarised by a description that can be expanded to view
the hidden information

regvar_t (frame.hpp) Register name replacement with user-defined names
(register variables)

memory info t (idd.hpp) A chunk of memory (when using the debugger)

segreg_t (srarea.hpp) Segment register (Cs, SS, etc. on x86) information

4.2.2.2 The areacb_t Class

An area control block is represented by the areacb t class, also defined in area.hpp. The
commentary for it, shown below, is slightly less descriptive, but doesn't really need to be anyway:

"areacb_t" is a base class used by many parts of IDA

To expand on this definition; the area control block class is simply a collection of methods that are
used to operate on areas. Methods include get area gty(), get next area() and so on.

You probably won't find yourself using any of these methods directly, as when dealing with
functions for example, you're more likely to use func_t's methods, and the same rule applies to
other classes that extend area_t.

There are two global instances of the areacb t class, namely segs (defined in segment . hpp)
and funcs (defined in funcs.hpp), which represent all segments and functions, respectively,
within the currently disassembled file(s). You can run the following to get the number of segments
and functions within the currently disassembled file(s) open in IDA (remember this is not stand-
alone code; it must be placed inside IDAP_run):

#include <segment.hpp>
#include <funcs.hpp>

msg ("Segments: %d, Functions: %d\n",
segs.get area gty(),
funcs.get area gty ());

4.2.3 Segments and Functions

As mentioned previously, the segment t and func_t classes extend area_ t. This means that
all of the area t members are included alongside additional specific functionality that the class
adds.

4.2.3.1 Segments
The segment_t class is defined in segment . hpp. Here are the more interesting parts of it.

class segment t : public area t
{
public:
uchar perm; // Segment permissions (0-no information). Will
// be one or a combination of the below.
#define SEGPERM EXEC 1 // Execute
#define SEGPERM WRITE 2 // Write
#define SEGPERM READ 4 // Read

uchar type; // Type of the segment. This will be one of the below.
#define SEG NORM 0 // Unknown type, no assumptions
#define SEG_XTRN 1 // Segment with 'extern' definitions,

// where no instructions are allowed
// Code segment

// Data segment

// Zero-length segment

// Uninitialized segment

#define SEG CODE
#define SEG_DATA
#define SEG NULL
#define SEG BSS

O 3w N

}i

SEG_XTRN is a special (i.e. not physically existent) segment type that is created by IDA upon
disassembly of a file, whereas others represent physical parts of the loaded file. For a typical
executable file loaded in IDA for example, the value of type for the .text segment would be
SEG_CODE and the value of perm would be SEGPERM EXEC | SEGPERM READ.

To iterate through all the segments within a binary, printing the name and address of each one
into IDA's Log window, you could do the following:

#include <segment.hpp>

// This will only work in IDA 4.9+ because get segm name () changed
// in 4.9. See the Chapter 5 for more information.

// get segm gty() returns the number of total segments
// for file(s) loaded.
for (int s = 0; s < get segm gty(); s++)
{
char segmName [MAXSTR];
// getnseg() returns a segment t struct for the segment
// number supplied
segment t *curSeg = getnseg(s);
// get segm name () retrieves the name of a segment
// msg () prints a message to IDA's Log window
get segm name (curSeg, segmName, sizeof (segmName)-1);
msg ("%s @ %a\n", segmName, curSeg->startEA);

}

Output should look something like when run on a basic Windows executable:

_idata @ 1001000
_text @ 1001388
_data @ 100A000

Understanding what the above functions do isn't important at this stage — they will be explained in
more detail under Chapter 5 - Functions.

4.2.3.2 Functions

A function is represented by the func_t class, which is defined in funcs.hpp. Before going into
detail on the func_t class, it's worth shedding some light on function chunks, parents and tails.

Functions are typically contiguous blocks of code within the binary being analysed, and are
usually represented as a single chunk. However, there are times when optimizing compilers move
code around, and so functions are broken up into multiple chunks with code from other functions
separating them. These loose chunks are known as "tails", and the chunks that reference code
(by a aMP or something similar) within the tails are known as "parents". What makes things a little
confusing is that all are still of the func_t type, and so you need to check the £1ags member of
func_t to determine if a func_t instance is a tail or parent.

Below is highly stripped-down version of the func t class, along with some slightly edited
commentary taken from funcs.hpp.

class func_ t : public area t

{
public:

ushort flags; // flags indicating the type of function
// Some of the flags below:

#define FUNC NORET 0x00000001L // Function doesn't return
#define FUNC_LIB 0x00000004L // Library function
#define FUNC HIDDEN 0x00000040L // A hidden function chunk
#define FUNC_ THUNK 0x00000080L // Thunk (jump) function
#define FUNC_ TAIL 0x00008000L // This is a function tail.

// Other bits must be clear
// (except FUNC_HIDDEN)

union // func t either represents an entry chunk or a tail chunk
{
struct // Attributes of a function entry chunk
{
asize t argsize; // Number of bytes purged from the stack
// upon returning

ushort pntqgty; // Number of times the ESP register changes
// throughout the function (due to PUSH, etc.)
int tailqty; // Number of function tails this function owns
area t *tails; // Array of tails, sorted by ea
}
struct // Attributes of a function tail chunk
{
ea t owner; // The address of the main function

// possessing this tail

}i

Because functions are also areas just like segments, iterating through each function is a process
almost identical to dealing with segments. The following example lists all functions and their
address within a disassembled file, displaying output in IDA's Log window.

#include <funcs.hpp>

// get func gty() returns the number of functions in file(s)
// loaded.
for (int £ = 0; £ < get func gty (); f++)
{
// getn func() returns a func t struct for the function
// number supplied
func_t *curFunc = getn func(f);
char funcName [MAXSTR];

// get func name gets the name of a function,
// stored in funcName
get func name (curFunc->startEA,
funcName,
sizeof (funcName) -1) ;
msg ("%s:\t%a\n", funcName, curFunc->startEA);

This should produce something like:

_WinMain@l6: 100138D
_memset: 1002379
_memcpy: 1002E50

4.2.4 Code Representation

Assembly language instructions consist of, in most cases, mnemonics (MOV, PUSH, CALL, etc.)
and operands (EAX, [EBP+0xAh], 0x0Fh, etc.) Some operands can take various forms, and

some instructions don't even take operands. All of this is represented very cleanly in the IDA
SDK.

To begin with, you have the insn_t type to begin with, which represents a whole instruction, for
example “MOV EAX, 0xO0A”. insn_t is made up of, amongst other member variables, up to 6
op_t's (one for each operand supplied to the instruction), and each operand can be a particular
optype_t (general register, immediate value, etc.)

Let's look at each component from the bottom-up. They are all defined in ua . hpp.

4.2.4.1 Operand Types

optype_t represents the type of operand that is being supplied to an instruction. Here are the
more common operand type values. The descriptions have been taken from the optype t
definition in ua . hpp.

Operand Description Example disassembly
(respective operand in
bold)

o_void No operand pusha

o_reg Any register (ESI, EAX, CS, etc.) dec eax

O_mem Direct memory data reference, known at |mov eax, ds:1001h

compile time

o_phrase Memory reference utilising register push dword ptr [eax]

contents lea esi, [esiteax*2]

o displ Memory reference utilising register push [esp+8]

contents plus displacement movzx eax, word ptr
[eax+5Ch]

o_imm Immediate value add ebx, 10h
push offset myVar

o_near Direct memory code reference, known at |call _fprintf

compile time call sub_401B60

4.2.4.2 Operands

op_t represents a single operand passed to an instruction. Below is a highly cut-down version of
the class.

class op_t

{

public:
char n; // number/position of the operand (0,1,2)
optype t type; // type of operand (see previous section)
ushort reg; // register number (if type is o_req)
uval t value; // operand value (if type is o _imm)
ea t addr; // virtual address pointed to or used by the

// operand (if type is o _mem)
i
So, for example, the operand of [esp+8] will result in type being o displ, reg being 4
(which is the number for the ESP register) and addr being 8, because you are accessing
whatever lives 8 bytes away from the stack pointer, thereby being a memory reference. You can

use the following snippet of code for getting the op t value of the first operand of the instruction
your cursor is currently positioned at in IDA:

#include <kernwin.hpp>
#include <ua.hpp>

// Disassemble the instruction at the cursor position, store it in
// the globally accessible 'cmd' structure.
ua_out (get screen ea(), false);

// Display information about the first operand

msg("n = %d type = %d reg = %d value = %a addr = %a\n",

cmd.Operands [0] .n,
cmd.Operands [0] . type,
cmd.Operands [0] .reg,
cmd.Operands[0] .value,
cmd.Operands[0] .addr) ;

With the cursor located at the instruction “xor ebx, ebx”, the above code produces:
n =0 type =1 reg = 3 value = 0 addr = 0
With the cursor located at the instruction “jmp loc 10322C” the above code produces:

n =20 type = 7 reg = 0 value = 0 addr = 100322C

4.2.4.3 Mnemonics

The mnemonic (PUSH, MOV, etc.) within the instruction is represented by the itype member of
the insn t class (see the next section). This is, however, an integer, and there is currently no
textual representation of the instruction available to the user in any data structure. Instead, it is
obtained through use of the ua_mnem () function, which will be covered in Chapter 5 - Functions.

There is an enum named instruc t (allins.hpp) that holds all mnemonic identifiers
(prefixed with NN). If you know what instructions you are testing for, you can utilise it rather than
work off of a text representation. For example, to test if the first instruction in a binary is a PUSH,
you could do the following:

#include <ua.hpp>
#include <allins.hpp>

// Populate 'cmd' (see section 4.2.4.4) with the code at the entry
// point of the binary.

decode insn(inf.startIP);

// Test if that instruction is a PUSH

if (cmd.itype == NN _push)

msg ("First instruction is a PUSH");
else

msg ("First instruction isn't a PUSH");
return;

4.2.4.4 Instructions

insn_t represents a whole instruction. It contains an op t array, named Operands, which
represents all operands passed to the instruction. Obviously there are instructions that take no
operands (like PUSHA, HLT, etc.), in which case the Operands[0] variable will have an
optype t of o void (no operand).

class insn_t

{

public:
ea t cs; // code segment base (in paragraphs)
ea t ip; // offset within the segment
ea t ea; // instruction start addresses
uintl6 itype; // mnemonic identifier
uintl6 size; // instruction size in bytes
#define UA MAXOP 6
op_t Operands[UA MAXOP];
#define Opl Operands[0] // first operand

fdefine Op2 Operands|[1 // second operand
#define Op3 Operands|
#define Op4 Operands|
#define Op5 Operands]|
#define Op6 Operands]|

}i

]
2]
3]
4]
5]

There is a globally accessible instance of insn_t named cmd, which gets populated by the
decode _insn() and create insn() functions. More on this later, but in the mean time,
here's an example for getting the instruction at a file's entry point and displaying its instruction
number, address and size in IDA's Log window.

#include <ua.hpp>

// decode insn() populates the cmd structure with a disassembly of the
// address supplied.
decode insn(inf.beginEA); // or inf.startIP
msg ("Instruction number: %$d at %a is %d bytes in size.\n",
cmd.itype, cmd.ea, cmd.size);

Produces the output for a mov instruction:

Instruction number: 16 at 10031ED is 5 bytes in size.

4.2.5 Cross Referencing

One of the handy features in IDA is the cross-referencing functionality, which will tell you about all
parts of the currently disassembled file that reference another part of that file. For instance, you
can highlight a function in the disassembly window, press 'x' and all addresses where that
function is referenced (i.e. calls made to the function) will appear in a window. The same can be
done for data and local variables too.

The SDK provides a simple interface for accessing this information, which is stored internally in a
B-tree data structure, accessed via the xrefblk t structure. There are other, more manual,
ways to retrieve this sort of information, but they are much slower than the methods outlined
below.

One important thing to remember is that even when an instruction naturally flows onto the next,
IDA can potentially treat the first as referencing the second, but this can be turned off using flags
supplied to some xrefblk t methods, covered in Chapter 5 - Functions.

4.2.5.1 The xrefblk_t Structure

Central to cross referencing functionality is the xrefblk t structure, which is defined in
xref.hpp. This structure first needs to be populated using its first from() or first to()
methods (depending on whether you want to find references to or from an address), and
subsequently populated using next from() or next to() as you traverse through the
references.

The variables within this structure are shown below and commentary is mostly from xref.hpp.
The methods (first from, first to, next from and next to) have been left out, but will
be covered in Chapter 5 - Functions.

struct xrefblk t
{

ea t from; // the referencing address

ea t to; // the referenced address

uchar iscode; // 1l-is code reference; 0-is data reference
uchar type; // one of the cref t or dref t types (see

// section 4.2.5.2 and 4.2.5.3)
}i

As indicated by the iscode variable, xrefblk t can contain information about a code
reference or a data reference, each of which could be one of a few possible reference types, as
indicated by the type variable. These code and data reference types are explained in the
following two sections.

The below code snippet will give you cross reference information about the address your cursor is
currently positioned at:

#include <kernwin.hpp>
#include <xref.hpp>

xrefblk t xb;

// Get the address of the cursor position

ea t addr = get screen ea();

// Loop through all cross references

for (bool res = xb.first to(addr, XREF FAR); res; res = xb.next to()) {
msg ("From: %a, To: %a\n", xb.from, xb.to);
msg ("Type: %d, IsCode: %d\n", xb.type, xb.iscode);

}

Produces the following output when the cursor is at a line of code referenced elsewhere within
the loaded executable:

From: 10032E3, To: 10032BE
Type: 19, IsCode: 1

4.2.5.2 Code

Here is the cref t enum, with some irrelevant items taken out. Depending on the type of
reference, the type variable in xrefblk t will be one of the below if iscode is set to 1. The
commentary for the below is taken from xref . hpp.

enum cref t

{

f1 CF

16, // Call Far
// This xref creates a function at the
// referenced location
f1 CN, // Call Near
// This xref creates a function at the
// referenced location

f1 JF, // Jump Far
f1 JN, // Jump Near
f1 F, // Ordinary flow: used to specify execution

// flow to the next instruction.
s

A code cross reference taken from a sample binary executable is shown below. In this case,
712D9BFE is referenced by 712D9BF 6, which is a near jump (£1_JN) code reference type.

.text:712D9BF6 jz short loc 712D9BFE

.text:712D9BFE loc_712D9BFE:
.text:712D9BFE lea ecx, [ebp+var 14]

4.2.5.3 Data

If iscode in xrefblk t is set to 0, it is a data cross reference. Here are the possible type
member values when you're dealing with a data cross reference. The commentary for this enum
is also taken from xref . hpp.

enum dref t

{

dr O, // Offset
// The reference uses 'offset' of data
// rather than its value
// OR
// The reference appeared because
// the "OFFSET" flag of instruction is set.
// The meaning of this type is IDP dependent.
dr W, // Write access
dr R, // Read access

Keep in mind that when you see the following in a disassembly, you are actually looking at a data
cross reference, whereby 712D9BD9 is referencing 712C119C:

.idata:712C119C extrn wsprintfA:dword
.text:712D9BDY call ds:wsprintfA

In the case above, the type member of xrefblk t would be the typical dr R, because it's
simply doing a read of the address represented by ds:wsprintfA. Another data cross reference
is below, where the push instruction at 712EABE?2 is referencing a string at 712C255C:

.text:712C255C aVersion:
.text:712C255C unicode 0, <Version>,0

.text:712EABE?2 push offset aVersion

The type member of xrefblk t would be dr 0 in this case, because it's accessing the data as
an offset.

4.3 Byte Flags

For each byte in a disassembled file, IDA records a corresponding four byte (32-bits) set of flags,
stored in the id1 file. The last byte of the four flag bytes is the actual byte at that address within
the disassembled file.

For example, the instruction below takes up a single byte (0x55) in the file being disassembled:
.text:010060FA push ebp

The IDA flags for the above address in the file being disassembled are 0x00010755: 0001007
being the flag component and 55 being the byte value at that address in the file. Keep in mind
that the address has no bearing on the flags at all, nor is it possible to derive flags from the
address or bytes themselves - you need to use get flags novalue () to get the flags for an
address (more on this below).

Obviously, not all instructions are one byte in size; take the below instruction for example, which
is three bytes (0x83 0xEC 0x14). The instruction is therefore spread across three addresses;
0x010011DE, 0x010011DF and 0x010011EO:

.text:010011DE sub esp, 1l4h
.text:010011E1

Here are the corresponding flags for each byte in this instruction:

010011DE: 41010783
010011DF: 001003EC
010011E0: 00100314

Because these three bytes belong to the one instruction, the first byte of the instruction is referred
to as the head, and the other two are tail bytes. Once again, notice that the last byte of each flag-
set is the corresponding byte of the instruction (0x83, 0xEC, 0x14).

All flags are defined in bytes.hpp, and you can check whether a flag is set by using the flagset
returned from get flags novalue(ea t ea) as the argument to the appropriate flag-
checking wrapper function. Here are some common flags along with their wrapper functions
which check for their existence. Some functions are covered in Chapter 5 — Functions and for
others you should look in bytes. hpp:

Flag Name Flag Indication Wrapper function

FF CODE 0x00000600L Is the byte code? isCode ()

FF_DATA 0x00000400L Is the byte data? isData ()

FF_TAIL 0x00000200L Is this byte a part (non-head) of an |isTail ()
instruction data chunk?

FF_UNK 0x00000000L Was IDA unable to classify this isUnknown ()
byte?

FF_COMM 0x00000800L Is the byte commented? has_cmt ()

FF_REF 0x00001000L Is the byte referenced elsewhere? |hasRef ()

FF NAME 0x00004000L Is the byte named? has name ()
FF_FLOW 0x00010000L Does the previous instruction flow |isFlow ()
here?

Going back to the first “push ebp” example above, if we were to manually check the flags
returned from get flags novalue (0x010060FA) against a couple of the above flags, we'd
get the following results:

0x00010755 & 0x00000600 (FF _CODE) = 0x00000600. We know this is code.
0x00010755 & 0x00000800 (FF_COMM) = 0x00000000. We know this isn't commented.

The above example is purely for illustrative purposes - don't do it this way in your plug-in. As
mentioned above, you should always use the helper functions to check whether a flag is set or
not. The following will return the flag(s) for the given head address your cursor is positioned at in
IDA.

#include <bytes.hpp>
#include <kernwin.hpp>

msg ("%08x\n", get flags novalue(get screen ea()));

4.4 The Debugger

One of the most powerful features of the IDA SDK is the ability to interact with the IDA debugger,
and unless you've installed your own custom debugger plug-in, it will be one of the debugger
plug-ins that came with IDA. The following major debugger plug-ins come with IDA by default,
along with many others, and can be found in your IDA plugins directory:

Plugin Filename Description

win32 user.plw Windows local debugger

win32 stub.plw Windows remote debugger

linux user.plw Linux local debugger (only when running IDA in Linux)
linux stub.plw Linux remote debugger

bochs user.plw Bochs local debugger

windbg user.plw WinDbg local debugger

mac_stub.plw Mac remote debugger

These are automatically loaded by IDA and made available at start-up under the Debugger-
>Start Process menu. From here on, the term "debugger" will represent which ever of the
above you are using (IDA will choose the most appropriate one for you by default).

As mentioned earlier, it is possible to write debugger modules for IDA, but this shouldn’t be
confused with writing plug-in modules that interact with the debugger. The second type of plug-in
is what's described below.

Aside from all the functions provided for interacting with the debugger, which will be explored later
in Chapter 5 - Functions, there are some key data structures and classes that are essential to
understand before moving ahead.

4.4.1 The debugger_t Struct

The debugger t struct, defined in idd.hpp and exported as *dbg, represents the currently
active debugger plug-in, and is available when the debugger is loaded (i.e. at start-up, not just
when you run the debugger).

struct debugger t
{

char *name; // Short debugger name like 'win32' or 'linux'
#define DEBUGGER ID X86 IA32 WIN32 USER 0 // Userland win32 processes
#define DEBUGGER ID X86 IA32 LINUX USER 1 // Userland linux processes

register info t *registers; // Array of registers

int registers size; // Number of registers

}

As a plug-in module, it is likely that you'll need to access the *name variable, possibly to test what
debugger your plug-in is running with. The *registers and registers_ size variables are
also useful for obtaining a list of registers available (see the following section), as are several
methods which are covered in Chapter 5.

4.4.2 Registers

A common task performed whilst using the debugger is accessing and manipulating register
values. In the IDA SDK, a register is described by the register info_ t struct, and the value
held by a register is represented by the regval t struct. Below is a slightly cut-down
register info_t struct, which is defined in idd.hpp.

struct register info t
{
const char *name; // Register full name (EBX, etc.)
ulong flags; // Register special features,
// which can be any combination
// of the below.
#define REGISTER READONLY 0x0001 // the user can't modify
// the current value of this
// register

#define REGISTER IP 0x0002 // instruction pointer (EIP)
#define REGISTER SP 0x0004 // stack pointer (ESP)

#define REGISTER FP 0x0008 // frame pointer (EBP)

#define REGISTER ADDRESS 0x0010 // Register can contain an address

}i

The only instance of this structure that is accessible is the array member *registers of *dbg
(an instance of debugger t), therefore it is up to the debugger you are using to populate it with
the list of registers available on your system.

To obtain the value for any register, it is obviously essential that the debugger be running. The
functions for reading and manipulating register values will be covered in more detail in Chapter 5
- Functions, but for now, all you need to know is to retrieve the value using the ival member of
regval t,oruse fval if you're dealing with floating point numbers.

Below is regval t, which is defined in idd.hpp.

struct regval t
{
ulonglong ival; // Integer value
ushort fval[e6]; // Floating point value in the internal
// representation (see ieee.h)
i

ival/fval will correspond directly to what is stored in a register, so if EBX contains
OxDEADBEEF, ival (once populated using get reg val ()), will also contain 0xDEADBEEF.

The following example will loop through all available registers, displaying the value in each. If you
run this outside of debug mode, the value of each register will be OxFFFFFFFE:

#include <dbg.hpp>

// Loop through all registers
for (int 1 = 0; i < dbg->registers size; i++) {
regval t val;
// Get the value stored in the register
get reg val ((dbg->registers+i)->name, &val);
msg ("%s: %08a\n", (dbg->registers+i)->name, val.ival);

}

After setting a breakpoint and running my executable in the debugger, | call my plug-in and see
the output below:

EAX: 00000001
EBX: 00000000
ECX: 00000022
EDX: 00000004
ESI: 00251E50
EDI: 0093A21C
EBP: 0006F9FC
ESP: 0006F970

4.4.3 Breakpoints

A fundamental component of debugging is breakpoints, and IDA represents hardware and
software breakpoints differently using the bpt_t struct, shown below and defined in dbg.hpp.
Hardware breakpoints are created using debug-specific registers on the running CPU (DR0O-DR3
on x86), whereas software breakpoints are created by inserting an INT3 instruction at the desired
breakpoint address - although this is handled for you by IDA, it's sometimes helpful to know the
difference. On x86, the maximum number of hardware breakpoints you can set is four.

struct bpt t
{

// read only characteristics:

ea t ea; // starting address of the breakpoint
asize t size; // size of the breakpoint

// (undefined if software breakpoint)
bpttype t type; // type of the breakpoint:

// Taken from the bpttype t const definition in idd.hpp:
// BPT EXEC = O, // Execute instruction

// BPT WRITE = 1, // Write access
// BPT RDWR = 3, // Read/write access
// BPT SOFT = 4; // Software breakpoint

// modifiable characteristics (use update bpt () to modify):

int pass_count; // how many times does the execution reach

// this breakpoint? (-1 if undefined)

int flags;
#define BPT BRK 0x01 // does the debugger stop on this breakpoint?
#define BPT TRACE 0x02 // does the debugger add trace information

// when this breakpoint is reached?
char condition[MAXSTR]; // an IDC expression which will be used as
// a breakpoint condition or run when the
// breakpoint is hit
bi

Therefore, if the type member of bpt_t is setto 0, 1 or 3, it is a hardware breakpoint, whereas
4 would indicate a software breakpoint.

There are a lot of functions that create, manipulate and read this struct, but for now, I'll provide a
simple example that goes through all defined breakpoints and displays whether they are a
software or hardware breakpoint in IDA's Log window. The functions used will be explained in
more detail further on.

#include <dbg.hpp>

// get bpt gty() gets the number of breakpoints defined
for (int 1 = 0; i < get bpt gty (); i++) {
bpt t brkpnt;
// getn bpt fills bpt t struct with breakpoint information based
// on the breakpoint number supplied.
getn bpt (i, &brkpnt);
// BPT_SOFT is a software breakpoint
if (brkpnt.type == BPT SOFT)
msg ("Software breakpoint found at %a\n", brkpnt.ea);
else
msg ("Hardware breakpoint found at %a\n", brkpnt.ea);

4.4.4 Tracing

In IDA, there are three types of tracing you can enable; Function tracing, Instruction tracing and
Breakpoint (otherwise known as read/write/execute) tracing. When writing plug-ins, an additional
form of tracing is available; Step tracing. Step tracing is a low level form of tracing that allows you
to build your own tracing mechanism on top of it, utilising event notifications (see section 4.5) to
inform your plug-in of each instruction that is executed. This is based on CPU tracing
functionality, not breakpoints.

A "trace event" is generated and stored in a buffer when a trace occurs, and what triggers the
generation of a trace event depends on the type of tracing you have enabled, however it's worth
noting that step tracing will not generate trace events, but event notifications instead. The below
table lists all the different trace event types along with the corresponding tev type t enum
value, which is defined in dbg. hpp.

Trace Type Event Type Description
(tev_type t)

Function call and return |tev _call and tev_ret |A function has been called or returned

from.

Instruction tev_insn An instruction has been executed (this is
built on top of step tracing in the IDA
kernel).

Breakpoint tev_bpt A breakpoint with tracing enabled has

been hit. Also known as a
Read/Write/Execute trace.

All trace events are stored in a circular buffer, so it never fills up, but old trace events will be
overwritten if the buffer is too small. Each trace event is represented by the tev_info t struct,
which is defined in dbg . hpp:

struct tev_info t

{
tev_type t type; // Trace event type (one of the above or tev none)
thid t tid; // Thread where the event was recorded
ea t ea; // Address where the event occurred

}i

Based on the bpt_t struct described in section 4.4.3, a breakpoint trace is the same as a normal
breakpoint but has the BPT TRACE flag set on the £1ags member. Optionally, the condition
buffer member could have an IDC command to run at each breakpoint.

Trace information is populated during the execution of a process, but can be accessed even once
the process has exited and you are returned to static disassembly mode (unless a plug-in you are
using explicitly cleared the buffer on exit). You can use the following code to enumerate all trace
events, provided you enabled it during exeucution:

#include <dbg.hpp>

// Loop through all trace events

for (int 1 = 0; 1 < get tev gty(); i++) {
regval t esp;
tev _info t tev;

// Get the trace event information
get tev_info (i, &tev);

switch (tev.type) {

case tev_ret:
msg ("Function return at %a\n", tev.ea);
break;

case tev call:
msg ("Function called at %a\n", tev.ea);
break;

case tev_insn:
msg ("Instruction executed at %a\n", tev.ea);
break;

case tev bpt:
msg ("Breakpoint with tracing hit at %a\n", tev.ea);
break;

default:

msg ("Unknown trace type..\n");

}

It's worth noting at this point that it is not possible for a plug-in to add entries to, or even modify
the trace event log.

All of the functions used above will be covered in Chapter 5 - Functions.

4.4.5 Processes and Threads

IDA maintains information about the processes and threads currently running under the
debugger. Process and Thread IDs are represented by the pid t and thid t types
respectively, and both are signed integers. All of these types are defined in idd.hpp. The only
other type related to processes is process info_t, which is as follows:

struct process_info t
{
pid t pid; // Process 1D
char name [MAXSTR] ; // Process Name (executable file name)

}i

These are only of use when a binary is being executed under IDA (i.e. you can't use them when
in static disassembly mode). The following example illustrates a basic example usage of the
process_info_t structure.

#include <dbg.hpp>

// Get the number of processes available for debugging.
// get process gty() also initialises IDA's "process snapshot"
if (get process gty() > 0) {

process info t pif;

get process_info (0, &pif);

msg ("ID: %d, Name: %s\n", pif.pid, pif.name);
} else {

msg ("No process running!\n");

}

The functions that utilise these structures will be discussed under Chapter 5 - Functions.

4.5 Event Notifications

Typically, plug-ins are run synchronously, in that they are executed by the user, either via
pressing the hot-key or going through the Edit->Plugins menu. A plug-in can, however, run
asynchronously, where it is involked by IDA in response to some sort of event triggered by the
user or |IDA itself.

During the course of working in IDA, you'd typically click buttons, conduct searches, and so on.
All of these actions are "events", and so what IDA does is generate "event notifications" each
time these things take place. If your plug-in is setup to receive these notifications (explained
below), it can react in any way you program it to. One application for this sort of thing could be the
recording of macros, for instance. A plug-in can also generate events, causing IDA to perform
various functions, possibly even chaining multiple plug-in interactions.

4.5.1 Receiving Notification

To receive event notifications from IDA, all a plug-in has to do is register a call-back function
using hook to notification point (). For generating event notifications, callui() is
used, which is covered in more detail in Chapter 5 - Functions.

When registering a call-back function with hook to notification point (), you can specify
one of three event types, depending on what notifications you want to receive. These are defined
in the hook type t enum within loader.hpp:

Type Receive Event Notifications From |Enum of All Event Notification Types
HT IDP Processor module idp notify (not covered here)

HT IDB Database idp event t (not covered here)

HT UI IDA user interface ui notification t

HT_DBG Currently running IDA debugger dbg_notification_t

Therefore, to receive all event notifications pertaining to the debugger and direct them to your
dbg callback (for example) call-back function, you could put the following inside
IDAP init():

hook to notification point (HT DBG, dbg callback, NULL);

The third argument is typically NULL, unless you want to pass data along to the call-back function
when it receives an event (any data structure of your choosing).

The call-back function supplied to hook to notification point () mustlook something like
this:

int idaapi dbg callback (void *user data, int notif code, va list va)

{

return 0;
}
When dbg callback () is eventually called by IDA to handle an event notification, user data
will point to any data you specified to have passed along to the call-back function (defined in the
call to hook to notification point()). notif code will be the actual event identifier

(listed in the following two sections) and va is any data supplied by IDA along with the event,
possibly to provide further information.

The call-back function should return 0 if it permits the event notification to be handled by
subsequent handlers (the typical scenario), or any other value if it is to be the only/last handler.

Something worth remembering is if you use hook to notification point () in your plug-in,
you must also use unhook from notification point (), either once you no longer need to
receive notifications, or inside your IDAP term() function. This will avoid unexpected
segmentation faults when exiting IDA. Going by the example above, to unhook the hooked
notification point, it would be done like this:

unhook from notification point (HT DBG, dbg callback, NULL);

4.5.2 Ul Event Notifications

ui notification t is an enum defined in kernwin.hpp, and contains all user interface
event notifications that can be generated by IDA or a plug-in. To register for these event
notifications, you must use HT UT as the first argument to hook to notification point ().

The following two lists show some of the event notifications that can be received and/or
generated by a plug-in. These are only a sub-set of possible event notifications; listed below are
the more general purpose ones.

Although the below can be generated by a plug-in using callui (), most have helper functions,
which means you don't need to use callui () and can just call the helper function instead.

Event Notification

Description

Helper Function

ui jumpto

Moves the cursor to an address

Jjumpto

ui screenea

Return the address where the
cursor is currently positioned

get screen ea

ui refresh

Refresh all disassembly views

refresh idaview anyway

uil mbox Display a message box to the vwarning, vinfo and
user more.
ul_msg Print some text in IDA's Log deb, vmsg

window

ui_ askyn

Dislpay a message box with Yes
and No as options

askbuttons cv

ui askfile

Prompt the user for a filename

askfile cv

ui_askstr Prompt the user for a single line |vaskstr
string
ul_asktext Prompt the user for some text vasktext

ui form

Display a form (very flexible —
look at the comments in the
header!)

AskUsingForm cv

ui_open_url Open a web browser at a open_url
particular URL
ui get hwnd Get the HWND (Window Handle) |none

for the IDA window

ui get curline

Get the colour-coded
disassembled line

get curline

ui get cursor

Get the X and Y coordinates of
the current cursor position

get cursor

The following event notifications are received by the plug-in, and would be handled by your call-

back function.

Event Notification

Description

ui saving & ui saved

IDA is currently saving and has saved the database, respectively

ui term

IDA has closed the database

For example, the following code will generate a ui_screenea event notification and display the
result in an IDA dialog box using an ui_mbox event notification.

void IDAP run(int arg)

{
ea t addr;
va list va;
char buf [MAXSTR];

// Get the current cursor position, store it in addr
callui (ui_ screenea, &addr);
gsnprintf (buf, sizeof (buf)-1, "Currently at: %a\n", addr);

// Display an info message box
callui (ui_mbox, mbox info, buf, va);

return;

}

In the above case, you would typically use the helper functions, however callui () was used for
illustrative purposes. The following section describes how to respond to events with your plug-in.

4.5.3 Debugger Event Notifications

Debugger event notifications are broken up into Low Level, High Level and Function Result event
notifications; the difference between them will be made clear in the following sub-sections. All of
the event notifications mentioned in this section belong to the dbg notification t enum,
which is defined in dbg.hpp. If you supplied HT DBG to hook to notification point (),
the below event notifications will be passed to your plug-in while a process is being debugged in
IDA.

4.5.3.1 Low Level Events

The following events taken from dbg notification t are all low level event notifications.
Low level event notifications are generated by the debugger.

Event Notification Description

dbg process_ start Process started

dbg process exit Process ended

dbg process_attach Attached to process

dbg process_detach Detached from process
Thread started
Thread ended

Library was loaded

dbg thread start

dbg thread exit

dbg library load

dbg library unload

Library was unloaded

dbg_exception

Exception was raised

dbg information

Data sent from debugged application using OutputDebugString
(Win32 API)

The debug event t struct (idd.hpp), which you can use to obtain further information about a
debugger event notification, is always supplied in the va argument to your call-back function (for
low level event notifications only). Here is the whole debug event t struct.

struct debug event t

{

event id t eid; // Event code (used to decipher 'info' union)
pid t pid; // Process where the event occurred

thid t tid; // Thread where the event occurred

ea t ea; // Address where the event occurred

bool handled; // Is event handled by the debugger?

// (from the system's point of view)

// The comments on the right indicate what eid value is
// required for the corresponding union member to be set.
union
{
module info t modinfo; // dbg process start, dbg process attach,
// dbg library load
int exit code; // dbg process exit, dbg thread exit
char info[MAXSTR]; // dbg library unload (unloaded lib name)
// dbg information (will be displayed in the
// messages window if not empty)
e breakpoint t bpt; // dbg bpt
e exception t exc; // dbg exception
bi
bi

For example, if your call-back function received the dbg library load event notification, you
could look at debug event t's modinfo member to see what the file loaded was:

// Our callback function to handle HT DBG event notifications
static int idaapi dbg callback(void *udata, int event id, va list va)

{
// va contains a debug event t pointer
debug event t *evt = va arg(va, debug event t *);

// If the event is dbg library load, we know modinfo will be set
// and contain the name of the library loaded
if (event id == dbg library load)

msg ("Loaded library, %$s\n", evt->modinfo.name) ;

return 0;

}

// Our init function
int IDAP_ init(void)
{

// Register the notification point as our dbg callback function.
hook to notification point (HT DBG, dbg callback, NULL);

4.5.3.2 High Level Event Notifications

The following events taken from dbg notification_ t are all high level event notifications,
which are generated by the IDA kernel.

Event Notification Description

dbg_bpt User-defined breakpoint was hit

dbg trace One instruction was executed (needs step tracing enabled)

dbg suspend process Process has been suspended

dbg request error An error occurred during a request (see section 5.14)

Each of these event notifications has different arguments supplied along with them in the va
argument to your call-back function. None have debug event t supplied, like low level event
notifications do.

The dbg bpt event notification comes with both the Thread ID (thid t) of the affected thread
and the address where the breakpoint was hit in va. The below example will display a message in
IDA’s Log window when a user-defined breakpoint is hit.

int idaapi dbg callback(void *udata, int event id, va list va)
{
// Only for the dbg bpt event notification
if (event id == dbg bpt)
// Get the Thread ID
thid t tid = va_arg(va, thid t);
// Get the address of where the breakpoint was hit
ea t addr = va _arg(va, ea t);

msg ("Breakpoint hit at: %a, in Thread: %d\n", addr, tid);

return 0;

}

int IDAP_ init(void)
{

hook to notification point (HT DBG, dbg callback, NULL);

4.5.3.3 Function Result Notifications

In later sections, the concept of Synchronous and Asynchronous debugger functions will be
discussed in more detail; until then, all you need to know is that synchronous debugger functions
are just like ordinary functions — you call them, they do something and return. Asynchronous
debugger functions, however, get called and return without having completed the task, effectively
having the request put into a queue and run in the background. When the task is completed, an
event notification is generated indicating the completion of the original request.

The following are all function result notifications.

Event Notification Description

dbg process start Debugger started a process

dbg process exit Process being debugged ended
dbg process_attach Debugger attached to a process
dbg process detach Debugger detached from a process

dbg step_ into Debugger stepped into a function

dbg step over Debugger stepped over a function

dbg run to Debugger has run to user's cursor position
dbg_step_until_ret Debugger has run until return to caller was made

For example, the below code in IDAP run () asks IDA to attach to a process. Once successfully
attached, IDA generates the event notification, dbg process attach, which is handled by the
dbg callback call-back function.

int idaapi dbg callback(void *udata, int event id, va list va)
{
// Get the process ID of what was attached to.
pid t pid = va_arg(va, pid t);
if (event id == dbg process_attach)
msg ("Successfully attached to PID %d\n", pid);

return 0;

}

void IDAP run(int arg)
{
int res;
// Attach to a process. See Chapter 5 for usage.
attach process (NO PROCESS, res);
return;

int IDAP_init (void) {
hook to notification point (HT DBG, dbg callback, NULL);

4.6 Strings

The Strings window in IDA can be accessed using the SDK, in particular each string within the
binary (that is detected when the file is opened) is represented by the string info t structure,
which is defined in strlist.hpp. Below is a slightly cut-down version of that structure.

struct string info t

{

ea t ea; // Address of the string
int length; // String length
int type; // String type (0=C, l=Pascal, 2=Pascal 2 byte

// 3=Unicode, etc.)
ti

Keep in mind that the above structure doesn't actually contain the string. To retrieve the string,
you need to extract it from the binary file using get bytes () or get many bytes().To
enumerate through the list of strings available, you could do the following:

for (int i = 0; i < get strlist gty(); i++) {
char string[MAXSTR];
string info t si;

// Get the string item

get strlist item(i, &si);

if (si.length < sizeof (string)) {
// Retrieve the string from the binary
get many bytes(si.ea, string, si.length);

if (si.type == 0) // C string
msg ("String %d: %s\n", i, string);
if (si.type == 3) // Unicode

msg ("String %d: %S\n", i, string);

5. Functions

This section is broken up into different areas that the exported IDA SDK functions mostly fit into.
I'll start from the most simple and more frequently used functions to the more complex and
"niche" ones. I'll also provide basic examples with each function and the examples under the
Examples section should provide more context. Obviously, this isn't a complete reference (refer to
the header files in the SDK for that), but more of an overview of the most used and useful
functions.

Important note about the examples: All of the functions below can be called from the
IDAP run(), IDAP init() or IDAP term() functions, unless otherwise indicated. Any of
the examples can be pasted straight into the IDAP run () function from the plug-in template in
section 3.5 and should work. The additional header files required for each function and example
will be specified where necessary.

5.1 Common Function Replacements

IDA provides many replacement functions for common C library routines. It is recommended that
you use the replacements listed below instead of those provided by your C library. As of IDA 4.9,
a lot of the C library routines are no longer available - you must use the IDA equivalent.

C Library Functions IDA Replacements Defined In

fopen, fread, fwrite, gfopen, gfread, gfwrite, fpro.h

fseek, fclose gfseek, gfclose

fputc, fgetc, fputs, fgets |gfputc, gfgetc, gfputs, fpro.h
gfgets

viprintf, vfscanf, vprintf |gfprintf, gfscanf, gvprintf fpro.h

strcpy, strncpy, strcat, gstrncpy, gstrncat pro.h

strncat

sprintf, snprintf, gsnprintf pro.h

wsprintf

open, close, read, write, gopen, gclose, gread, gwrite, |pro.h

seek gseek

mkdir, isdir, filesize gmkdir, gisdir, gfilesize pro.h
exit, atexit gexit, gatexit pro.h
malloc, calloc, realloc, galloc, gcalloc, grealloc, pro.h
strdup, free gstrdup, gfree

It is strongly recommended that you use the above functions, however if you're porting an old
plug-in and for some reason need the C library function, you can compile your plug-in with
-DUSE_DANGEROUS FUNCTIONS or -DUSE STANDARD FILE FUNCTIONS.

5.2 Messaging

These are the functions you will probably use the most when writing a plug-in; not because they
are the most useful, but simply because they provide a means for simple communication with the
user and can be a great help when debugging plug-ins.

As you can probably tell from the definitions, all of these functions are inlined and take printf
style arguments. They are all defined in kernwin.hpp.

5.2.1 msg
Definiti inline int
S msg (const char *format,...)
s . Display a text message in IDA's Log window (bottom of the screen during static
ynopsis . ; '
disassembly, top of the screen during debugging).
Example msg ("Starting analysis at: %a\n", inf.startIP);
5.2.2 info
Definiti inline int
efinition info(const char *format,...)
Synopsis Display a text message in a pop-up dialog box with an 'info' style icon.
Example info("My plug-in v1.202 loaded.");

5.2.3 warning

Definiti inline int

Atliilely warning (const char *format,...)
Synopsis Display a text message in a pop-up dialog box with an 'warning' style icon.
Example warning ("Please beware this could crash IDA!\n");
5.2.4 error
Definiti inline int

Sl tlilel error (const char *format,...)

. Display a text message in a pop-up dialog box with an 'error' style icon. Closes

Synopsis play g pop-up g y

IDA (uncleanly) after the user clicks OK.

Example

error ("There was a critical error, exiting IDA.\n");

5.3 Ul Navigation

The functions below are specifically for interacting with the user and the IDA GUI. Some of them
use callui () to generate an event to IDA. All are defined in kernwin.hpp.

5.3.1 get_screen_ea

Definiti inline ea_ t
Sl tlilel get_screen_ea(void)
. Returns the address within the current disassembled file(s) that the user's
Synopsis : "
cursor is positioned at.
#include <kernwin.hpp>
Example
msg ("Cursor position is %a\n", get screen ea());
5.3.2 jumpto
e inli bool
Definition in-iae Hoo

jumpto(ea_t ea, int opnum=-1)

Moves the user's cursor to a position within the current disassembled file(s),
Synopsis represented by ea. opnum is the X coordinate that the cursor will be moved to,
or -1 ifitisn't to be changed. Returns true if successful, false if it failed.

#include <kernwin.hpp>

Example // Jump to the binary entry point + 8 bytes, don't move
// the cursor along the X-axis
Jumpto (inf.startIP + 8);

5.3.3 get_cursor

inline bool

Definition get cursor (int *x, int *y)

Fills *x and *y with the X and Y coordinates of the user's cursor position

Synopsis within the current disassembled file(s).

#include <kernwin.hpp>

int x, y;

Example // Store the cursor X coordinate in x, and the Y

// coordinate in Y, display the results in the Log window
get cursor (&x, &y);

msg ("X: %d, Y: %d\n", x, y);

5.3.4 get_curline

inline char *

Definition get curline(void)
Return a pointer to the line of text at the user's cursor position. This will return
Svnobsis everything on the line — the address, code and comments. It will also be
ynop colour-coded, which you would use tag_remove () (see section 5.20.1) to
clean.
#include <kernwin.hpp>
Example

// Display the current line of text in the Log window
msg ("$s\n", get curline());

5.3.5 read_selection

Definition

inline bool
read_selection(ea_t *eal, ea_t *ea2)

Synopsis

Fills *eal and *ea2 with the start and end addresses, respectively, of the
user's selection. Returns true if there was a selection, false if there wasn't.

Example

#include <kernwin.hpp>

ea_t saddr, eaddr;
// Get the address range selected, or return false if
// there was no selection
int selected = read selection (&saddr, &eaddr);
if (selected) {

msg ("Selected range: %a -> %a\n", saddr, eaddr);
} else {

msg ("No selection.\n");

}

5.3.6 callui

Definition

idaman callui_t ida export data (idaapi*callui)
(ui_notification_t what,...)

Synopsis

The user interface dispatcher function. This enables you to call the events
listed in section 4.5.2, and many others within the ui_notification t
enum. callui () is always passed a ui_notification t type as the first
argument (ui_jumpto, ui_banner, etc.) followed by any arguments required
for the respective notification.

Example

#include <windows.h> // For the HWND definition
#include <kernwin.hpp>

// For ui get hwnd, *vptr of callui t has the result
// We need to cast the result because vptr is a void
// pointer

HWND hwnd = (HWND)callui (ui_get hwnd) .vptr;

// If hwnd is NULL, we're running under the IDA text
// version
if (hwnd == NULL)

error ("Cannot run in the IDA text wversion!");

5.3.7 askaddr

Definition

inline int

askaddr (ea_t *addr,const char *format,...)
Presents a dialog box asking the user to supply an address. *addr will be the

Synopsis default value to start with, and then filled with the user supplied address upon
clicking OK. *format is the printf style text that goes in the dialog box.
#include <kernwin.hpp>
// Set the default value to the entry point of the file

E I ea t addr = inf.startIP;

xample // As the user for an address.

askaddr (&addr, "Please supply an address to jump to.");
// Move the cursor to that address (see section 5.3.2)
jumpto (addr) ;

5.3.8 AskUsingForm_c

inline int

Definition AskUsingForm c(const char *form,...)
Displays a form to the user, and is too flexible to be covered here but is heavily
Synopsis commented in kernwin.hpp. It effectively allows you to design your own user

form, including buttons, text fields, radio buttons and text as format strings.

#include <kernwin.hpp>

// The text before the first \n is the title, followed
// by the first input field (as indicated by the <>) and
// then a second input field.

// The format of input fields is:

// <label:field type:maximum chars:field length:help

// identifier>

// The result is stored in resultl and resultl

Example // respectively.

// For more information on input fields, see the

// AskUsingForm c section of kernwin.hpp

char form[] = "My Title\n<Please enter some text "
"here:A:20:30::>\n<And here:A:20:30::>\n";

char resultl[MAXSTR] = "";

char result2[MAXSTR] = "";

AskUsingForm c(form, resultl, result2);
msg ("User entered text: %$s and %$s\n", resultl, result2);

5.4 Entry Points

The following functions are for working with entry points (where execution begins) in a binary.
They can all be found in entry.hpp.

5.4.1 get_entry_qty

Definiti idaman size t
efinition ida export get_entry gty (void)
Svnobsis Returns the number of entry points in the currently disassembled file(s). This
ynop will typically return 1, except for DLLs, which can have many.
#include <entry.hpp>
Example
msg ("Number of entry points: %d\n", get entry gty ());

5.4.2 get_entry_ordinal

idaman uval_t

Definition ida_export get entry ordinal(size t idx)

Returns the ordinal number of the entry point index number supplied as idx.
Synopsis You need the ordinal number because get entry () and
get _entry name () useit.

#include <entry.hpp>

Example // Display the ordinal number for all entry points
for (int e = 0; e < get_entry gty(); e++)
msg ("Ord # for %d is %d\n", e, get entry ordinal(e));

5.4.3 get_entry

idaman ea_t

Definition ida_export get entry(uval t ord);

Returns the address of an entry point ordinal number, supplied as the ord
Synopsis argument. Use get _entry ordinal () to get the ordinal number of an entry
point number, as shown in section 5.4.2

#include <entry.hpp>

// Loop through each entry point.
for (int e = 0; e < get entry qgty(); e++)
msg ("Entry point found at: %a\n",
get entry(get entry ordinal(e)));

Example

5.4.4 get_entry_name

idaman char *

Definition ida_export get entry name (uval_t ord)

Synopsis Return a pointer to the name of the entry point address (e.g. start)

#include <entry.hpp>

// Loop through each entry point
for (int e = 0; e < get entry gty (); e++) {
int ord = get entry ordinal (e);
// Display the entry point address and name
msg ("Entry point %a: %s\n",
get entry(ord),
get entry name (ord));

Example

5.5 Areas

The following functions work with areas and area control blocks, as described in section 4.2.2 and
4.2.3 respectively. Unlike all the functions covered so far, they are methods within the areacb t
class, and so therefore can only be used on instances of that class. Two instances of areacb t

are funcs and segs, representing all functions and segments within the currently disassembled
file(s) in IDA.

Although you should use the segment-specific functions for dealing with segments, and the
function-specific functions for dealing with functions, working with areas directly gives you a more
abstract way of dealing with functions and segments.

All the below are defined in area.hpp.

5.5.1 get_area

area_t *

Definition get area(ea_t ea)

Synopsis Returns a pointer to the area_t structure to which ea belongs.

#include <kernwin.hpp> // For askaddr() definition
#include <funcs.hpp> // For funcs definition
#include <area.hpp>

ea_ t addr;

// Ask the user for an address (see section 5.3.7)
askaddr (&addr, "Find the function owner of address:");
Example
// Get the function that owns that address
// You could use segs.get area(addr) to get the
// segment that owned to address here too.
area t *area = funcs.get area(addr);
msg ("Area holding %a starts at %a, ends at %a\n",
addr,
area->startEA,
area->endEA) ;

5.5.2 get_area_qty

uint

Definition get_area gty (void)

Synopsis Get the number of areas within the current area control block.

#include <funcs.hpp> // For funcs definition

#include <segment.hpp> // For segs definition

#include <area.hpp>

Example

msg ("%d Functions, and %d Segments",
funcs.get area qty(),
segs.get area gty());

5.5.3 getn_area

area_t *

Definition getn_area(unsigned int n)
Synopsis Returns a pointer to an area_t struct for the area number supplied as n.
#include <funcs.hpp> // For funcs definition
#include <segment.hpp> // For segs definition
#include <area.hpp>
// funcs represents all functions, so get the first
// function area (0).
area t *firstFunc = funcs.getn area(0);
msg ("First func starts: %a, ends: %a\n",
Example firstFunc->startEA,

firstFunc->endEA) ;

// segs represents all segments, so get the first

// segment area (0).

area_t *firstSeg = segs.getn _area(0);

msg ("First seg starts: %a, ends: %a\n",
firstSeg->startEA,

firstSeg->endEA) ;

5.5.4 get_next_area

Definiti int
efinition get next area(ea_t ea)

Synopsis Returns the number of the area following the area containing address ea.
#include <funcs.hpp> // For funcs definition
#include <area.hpp>
// Loop through functions as areas from first to last
int 1 = 0;
for (area t *func = funcs.getn area(0);

i < funcs.get area qgty();
Example i++)

msg ("Area start: %a, end: %a\n",
func->startEA,
func->endEA) ;
int funcNo = funcs.get next area(func->startEA);
func = funcs.getn area (funcNo) ;

5.5.5 get_prev_area

Definition

int
get prev_area(ea_t ea)

Synopsis Returns the number of the area preceding the area containing address ea.

#include <segment.hpp> // For segs definition
#include <area.hpp>

// Loop through segments as areas from last to first
int 1 = segs.get area gty();
for (area t *seg = segs.getn area(0); 1 > 0; i--) {
msg ("Area start: %a, end: %a\n",
seg->startEA,
seg->endEA) ;
int segNo = segs.get next area(seg->startEA);
seg = segs.getn area(segNo);

Example

5.6 Segments

The following functions work with segments (.text, .idata, etc.) and are defined in
segment . hpp. A lot of these functions are simply wrappers to areacb_t methods for the global
segs variable.

5.6.1 get_segm_qty

Definiti inline int
efinition get_segm gty (void)
Svnobsis Returns the number of segments in the currently disassembled file(s). This
ynop simply calls segs.get _area gty ().
#include <segment.hpp>
Example msg ("%d segments in disassembled file(s).\n",
get_segm gty ());
5.6.2 getnseg
. egs inline segment t *
Definition getnseg (int n)
. Returns a pointer to the segment t struct for the segment number, n,
Synopsis : L —
supplied. This is a wrapper to segs.getn_area().
#include <segment.hpp>
E I // Get the address of segment 0 (the first segment)
Xample segment t *firstSeg = getnseg(0);
msg ("Address of the first segment is %a\n",
firstSeg->startEA);

5.6.3 get_segm_by name

idaman segment t *ida_ export

e get segm by name(const char *name)
Returns a pointer to the segment _t struct for the segment with name, *name.
Synopsis Will return NULL if there is no such segment. If there are multiple segments
with the same name, the first will be returned.
#include <segment.hpp>
Example // Get the segment t structure for the .text segment.
segment t *textSeg = get segm by name (".text");
msg ("Text segment is at %a\n", textSeg->startEA);
5.6.4 getseg
. ey inline segment t *
Definition getseg(ea_t ea)
. Returns the segment t struct for the segment that contains address ea.
Synopsis : L —
This function is a wrapper to segs.get _area().
#include <kernwin.hpp> // For get screen ea() definition
#include <segment.hpp>
// Get the address of the user's cursor position
// see section 5.2.1 for get screen ea()
ea_t addr = get screen ea();
Example

// Get the segment that owns that address

area t *area = segs.get area(addr);
msg ("Segment holding %a starts at %a, ends at %a\n",
addr,

area—->startEA,
area->endEA) ;

5.6.5 get_segm_name

idaman ssize_t ida_export

Definition get_segm name (const segment t *s, char *buf, size t
bufsize)
. Fills *buf, limited by bufsize with the name ("_text", " idata", etc.) of
Synopsis

segment *s. Returns the size of the segment name, or -1 if s is NULL.

#include <segment.hpp>

// Loop through all segments displaying their names
for (int i = 0; 1 < get_segm gty (); 1i++) {
char segName [MAXSTR];
segment t *seg = getnseg(i);
get segm name (seg, segName, sizeof (segName)-1);
msg ("Segment $d at %$a is named %$s\n",
i,
seg->startEA,
segName) ;

Example

5.7 Functions

The below set of functions are for working with functions within the currently disassembled file(s)
in IDA. As with segments, functions are areas, and so some of the below functions are simply
wrappers to areacb_t methods for the global funcs variable. All are defined in funcs. hpp.

5.7.1 get_func_qty

Definiti idaman size_t ida_ export
efinition get func gty (void)
Synopsis Returns the number of functions in the currently disassembled file(s).
#include <funcs.hpp>
Example msg ("%d functions in disassembled file(s).\n",
get func gty ());

5.7.2 get_func

idaman func_t *ida_export

e get_func(ea_t ea)
Returns a pointer to the func_t structure representing the function that "owns"
Synopsis address ea. If ea is not part of a function, NULL is returned. Only function entry
y chunks are returned (see section 4.2.3.2 for information about chunks and
tails).
Example #include <kernwin.hpp> // For get screen ea() definition

#include <funcs.hpp>

// Get the address of the user's cursor
ea t addr = get screen eal();
func t *func = get func(addr);
if (func != NULL) {
msg ("Current function starts at %a\n", func->startEA);

} else {
msg ("Not inside a function!\n");

}

5.7.3 getn_func

idaman func_t *ida_export

R getn_func(size_t n)
Returns a pointer to the func_t representing the function number supplied as
Synopsis n. Will return NULL if n is a non-existent function number. It will also only return
function entry chunks.
#include <funcs.hpp>
// Loop through all functions
Example for (int i = 0; i < get func gty (); i++) {
func_t *curFunc = getn func(i);
msg ("Function at: %a\n", curFunc->startEA);

5.7.4 get_func_name

idaman char *ida_export

e get func name(ea_t ea, char *buf, size_t bufsize)

Gets the name of the function owning address ea, and stores it in *buf, limited
Synopsis by the length of bufsize. It returns the *buf pointer or NULL if the function

has no name.

#include <kernwin.hpp> // For get screen ea() definition

#include <funcs.hpp>

// Get the address of the user's cursor

ea t addr = get screen ea();

func t *func = get func(addr);

if (func != NULL) {

// Buffer where the function name will be stored

Example

char funcName [MAXSTR];
if (get func name (func->startEA, funcName, MAXSTR)
!= NULL) {
msg ("Current function %a, named %$s\n",
func->startEA,
funcName) ;

5.7.5 get_next_func

idaman func t *

Definition ida_export get next_ func(ea_t ea)
Svnobsis Returns a pointer to the func_t structure representing the function following
ynop the one owning ea. Returns NULL if there is no following function.

#include <kernwin.hpp> // For get screen ea() definition
#include <funcs.hpp>
ea t addr = get screen ea();
// Get the function after the one containing the

Example // address where the user's cursor is positioned

func t *nextFunc = get next func(addr);

if (nextFunc != NULL)
msqg ("Next function starts at %a\n",
nextFunc->startEA) ;

5.7.6 get_prev_func

Definition

idaman func_t *
ida export get prev_func(ea_t ea)

Synopsis

Returns a pointer to the func_t structure representing the function before the
one owning ea. Returns NULL if there is no previous function.

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <funcs.hpp>

ea t addr = get screen eal();

// Get the function before the one containing the
// address where the user's cursor is positioned
func t *prevFunc = get prev_ func(addr);

if (prevFunc != NULL)
msg ("Previous function starts at %a\n",
prevFunc->startEA) ;

5.7.7 get_func_cmt

inline char *

Definition get func cmt(func_t *fn, bool repeatable)
Return any commentary added by the user or IDA for the function indicated by
Synopsis *fn. If repeatable is true, repeatable comments are included. NULL is

returned if there are no comments.

#include <funcs.hpp>

// Loop through all functions, displaying their comments
// including repeatable comments.
for (int i = 0; i < get func gty (); i++) {
func_t *curFunc = getn func(i);
msg ("%a: %$s\n",
curFunc->startEA,
get func cmt (curFunc, false));

Example

5.8 Instructions

The functions below work with instructions within the currently disassembled file(s) in IDA. All are
defined in ua. hpp, except for generate disasm line (), which is defined in 1ines. hpp.

5.8.1 generate_disasm_line

idaman bool ida_export
Definition generate disasm line(ea_t ea, char *buf, size t bufsize,
int flags=0)

Fills *buf, limited by bufsize, with the disassembly at address ea. This text
Synopsis is colour coded, so you need to use tag remove () (see section 5.20.1) to get
printable text.

#include <kernwin.hpp> // For get screen ea() definition
#include <lines.hpp>

ea t ea = get screen eal();

// Buffer that will hold the disassembly text
char buf [MAXSTR];

Example
// Store the disassembled text in buf
generate disasm line(ea, buf, sizeof (buf)-1);

// This will appear as colour-tagged text (which will
// be mostly unreadable in IDA's Log window)
msg ("Current line: %s\n", buf);

5.8.2 decode_insn

idaman int

Definition ida_export decode insn(ea_t ea)

Disassemble ea. Returns the length of the instruction in bytes and fills the
global cmd structure with information about the instruction. If ea doesn't contain

an instruction, 0 is returned. This is a read-only function and does not modify
the IDA database.

Synopsis

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <ua.hpp>

ea t ea = get screen eal();

if (decode _insn(ea) > 0)

msg ("Instruction size: %d bytes\n", cmd.size);
else

msg ("Not at an instruction.\n");

5.8.3 create_insn

idaman int

EtiliEn ida export create_insn(ea_t ea)
Disassemble ea and update the IDA database with the results. Returns the

Svnobsis length of the instruction in bytes and fills the global cmd structure with

ynop information about the instruction. If ea doesn't contain an instruction, 0 is

returned.
#include <kernwin.hpp> // For get screen ea() definition
#include <ua.hpp>
ea t ea = get screen eal();

Example

if (create insn(ea) > 0)

msg ("Instruction size: %d bytes\n", cmd.size);
else

msg ("Not at an instruction.\n");

5.8.4 ua_ana0 (DEPRECATED)

idaman int

Definition ida export ua_ana0l (ea_t ea)
Disassemble ea. Returns the length of the instruction in bytes and fills the
Svnopsis global cmd structure with information about the instruction. If ea doesn't contain
ynop an instruction, 0 is returned. This is a read-only function and doesn't modify the
IDA database. Deprecated, use decode insn instead.
#include <kernwin.hpp> // For get screen ea() definition
#include <ua.hpp>
ea t ea = get screen eal();
Example

if (ua_anal(ea) > 0)

msg ("Instruction size: %d bytes\n", cmd.size);
else

msg ("Not at an instruction.\n");

5.8.5 ua_code (DEPRECATED)

idaman int

e ida_export ua_code(ea_t ea)
Disassemble ea. Returns the length of the instruction in bytes, fills the global
Svnopsis cmd structure with information about the instruction and updates the IDA
ynop database with the results. If ea doesn't contain an instruction, O is returned.
Deprecated, use create insn instead.
#include <kernwin.hpp> // For read selection() definition
#include <ua.hpp>
ea_t saddr, eaddr;
ea t addr;
// Get the user selection
Example int selected = read selection (&saddr, &eaddr);

if (selected) {
// Re-analyse the selected address range
addr = saddr;
while (addr <= eaddr) {
addr += ua_code (addr) ;

}

5.8.6 ua_mnem

idaman const char *ida_ export

Definition ua_mnem(ea_t ea, char *buf, size_ t bufsize)
Fills *buf, limited by bufsize, with the mnemonic used in the instruction at
Synopsis ea and updates the IDA database with the instruction if it isn't already defined.
Returns the *buf pointer or NULL if there is no instruction at ea.
Example #include <segment.hpp> // For segment functions

#include <ua.hpp>

// Loop through each executable segment, displaying
// the mnemonic used in each instruction
for (int s = 0; s < get segm gty (); s++) {
segment t *seg = getnseg(s);
if (seg->type == SEG CODE) {
int bytes = 0;

// a should always be the address of an
// instruction, which is why bytes is dynamic
// depending on the result of ua mnem()
for (ea t a = seg->startEA;
a < seg->endEA; a += bytes) {
char mnem[MAXSTR];
const char *res;

// Get the mnemonic at a, store it in mnem
res = ua mnem(a, mnem, sizeof (mnem)-1);

// If this was an instruction, display
// the mnemonic, set the bytes counter
// to cmd.size, so that the next address
// processed by ua mnem() is the next

// instruction.

if (res != NULL) {
msg ("Mnemonic at %a: %s\n", a, mnem);
bytes = cmd.size;

} else {

msg ("No code\n");

// If there was no code at this address,
// increment the byte counter by 1 so that
// ua _mnem() works off the next address.
bytes = 1;

5.8.7 ua_outop2

Definition

idaman bool ida_export
ua_outop2(ea_t ea, char *buf, size_t bufsize, int n, int
flags=0) ;

Synopsis

Fills *buf, limited by bufsize, with the text representation of operand number
n of the instruction at ea and updates the IDA database with the instruction if it
isn't already defined. Returns false if operand n doesn't exist. f1ags is for
future use.

The text returned in *buf is colour coded, so you need to use tag_remove ()
(see section 5.20.1) to get printable text.

Example

#include <ua.hpp>

// Get the entry point address
ea t addr = inf.startIP;

// Fill cmd with information about the instruction
// at the entry point
decode_ insn (addr);

// Loop through each operand (until one of o void type
// is reached), displaying the operand text.
for (int i = 0; cmd.Operands[i].type != o void; i++) {
char op[MAXSTR];
ua_ outop2 (addr, op, sizeof(op)-1, 1i);
msg ("Operand %d: %s\n", i, op);

5.8.8 ua_outop (DEPRECATED)

. .y idaman bool ida export
Definition ua outop(ea_t e;, char *buf, size_ t bufsize, int n)
Fills *buf, limited by bufsize, with the text representation of operand number
n to the instruction at ea and updates the IDA database with the instruction if it
isn't already defined. Returns false if operand n doesn't exist.
Synopsis
The text returned in *buf is colour coded, so you need to use tag remove ()
(see section 5.20.1) to get printable text. Deprecated, use ua_outop?2
instead.
#include <ua.hpp>
// Get the entry point address
ea t addr = inf.startIP;
// Fill cmd with information about the instruction
// at the entry point
decode insn (addr);
Example -
// Loop through each operand (until one of o void type
// 1is reached), displaying the operand text.
for (int i = 0; cmd.Operands[i].type != o void; i++) {
char op[MAXSTR]; B
ua outop (addr, op, sizeof (op)-1, 1i);
msg("Operand %d: %s\n", 1, op);
}

5.9 Cross Referencing

The following four functions are not stand-alone functions, but members of the xrefblk t
structure, defined in xref . hpp. They are used to populate and enumerate cross references to or
from an address. All functions take flags as an argument, which can be one of the following, as
taken from xref . hpp:

#define XREF ALL 0x00 // return all references
#define XREF FAR 0x01 // don't return ordinary flow xrefs
#define XREF DATA 0x02 // return data references only

An ordinary flow is when execution normally passes from one instruction to another without the
use of a CALL or JMP (or equivalent) instruction. If you are only interested in code cross
references (ignoring ordinary flows), then you would use XREF ALL and check if the isCode
member of xrefblk t is true in each case. Use XREF DATA if you are only interested in data
references.

5.9.1 first_from

Definition

bool
first from(ea_t from, int flags)

Synopsis

Populates the xrefblk_t structure with the first cross reference from the
from address. flags dictates what cross references you are interested in.
Returns false if there are no references from from.

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <xref.hpp>

ea t addr = get screen eal();
xrefblk t xb;
if (xb.first from(addr, XREF ALL)) {
// xb is now populated
msg ("First reference FROM %a is %a\n", xb.from,
xb.to);

5.9.2 first_to

Definition

bool
first to(ea_t to,int flags)

Synopsis

Populates the xrefblk_t structure with the first cross reference to the to
address. f1ags dictates what cross references you are interested in. Returns
false if there are no references to to

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <xref.hpp>

ea t addr = get screen ea();
xrefblk t xb;
if (xb.first to(addr, XREF ALL)) {
// xb is now populated
msg ("First reference TO %a is %a\n", xb.to,
xb.from) ;

5.9.3 next_from

Definition

bool
next from(void)

Synopsis

Populates the xrefblk t structure with the next cross references from the
from address. Returns false if there are no more cross references.

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <lines.hpp> // For tag remove () and

// generate disasm line ()
#include <xref.hpp>

xrefblk t xb;
ea t addr = get screen ea();

// Replicate IDA 'x' keyword functionality
for (bool res = xb.first to(addr, XREF FAR); res;
res = xb.next to()) {
char buf [MAXSTR];
char clean buf [MAXSTR];

// Get the disassembly text for the referencing addr
generate disasm line(xb.from, buf, sizeof (buf)-1);

// Clean out any format or colour codes
tag remove (buf, clean buf, sizeof(clean buf)-1);
msg ("%a: %s\n", xb.from, clean buf);

5.9.4 next_to

Definition

bool
next to(void)

Synopsis

Populates the xrefblk t structure with the next cross references to the to
address. Returns false if there are no more cross references.

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <xref.hpp>

xrefblk t xb;
ea t addr = get screen ea();

// Get the first cross reference to addr
if (xb.first to(addr, XREF FAR)) {
if (xb.next to())
msqg ("There are multiple references to %a\n",
addr) ;
else
msg ("The only reference to %a is at %a\n",
addr, xb.from);

5.10 Names

The following functions deal with function (sub_*), location (loc *) and variable (arg *,
var *) names, set by IDA or the user. All are defined in name.hpp. Register names are not
recognised by these functions.

5.10.1 get_name

Definition

idaman char *ida_ export
get name(ea_t from, ea_t ea, char *buf, size_t bufsize)

Synopsis

Fill *buf, limited by bufsize, with the uncoloured name for ea. The *buf
pointer is returned if ea has a name, or NULL if it doesn't. If you are after a
name that is local to a function, from should be within the same function, or it
won't be seen. If you are not after a local name, f£rom should just be BADADDR.

Example

#include <name.hpp>
char name [MAXSTR];

// Get the name of the entry point, should be start
// in most cases.
char *res = get name (BADADDR,
inf.startIP, // Entry point
name,
sizeof (name)-1);

if (res != NULL)
msg ("Name: %s\n", name);
else
msg ("No name for %a\n", inf.startIP);

5.10.2 get_name_ea

idaman ea_t ida_export

Definition get name ea(ea_t from, const char *name)
Return the address of where the name supplied in *name is defined. If you
. are after a name that is local to a function, from should be within the same
Synopsis

function, or it won't be seen. If you are not after a local name, from should just
be BADADDR.

Example

#include <kernwin.hpp> // For askstr and get screen ea
#include <name.hpp>

// Get the cursor address
ea t addr = get screen ea();

// Ask the user for a string (see kernwin.hpp), which

// will be the name we search for.

char *name = askstr (HIST IDENT, // History identifier
"start", // Default value
"Please enter a name"); // Prompt

// Display the address that the name represents. You will
// get FFFFFFFF for stack variables and nonexistent

// names.

msg ("Address: %a\n", get name ea(addr, name));

5.10.3 get_name_value

Definition

idaman int ida_export
get name value(ea_t from, const char *name, uval t *value)

Synopsis

Returns the value into *value, represented by the name *name, relative to
the address from. *value will contain either a stack offset or linear address.

If you are after a name that is local to a function, from should be within the
same function, or it won't be seen. If you are not after a local name, from
should just be BADADDR. The return value is one of the following, representing
the type of name it is. Taken from name.hpp:

// name doesn't exist or has no value
// name 1is byte name (regular name)
// name is local label

name is stack variable name

// name is symbolic constant

// name is absolute symbol

// (SEG_ABSSYM)

name is segment or segment register
// name

name is structure member

name is a bit group mask name

#define NT NONE
#define NT BYTE
#define NT LOCAL
#define NT STKVAR
#define NT ENUM
#define NT ABS

g w N O
~
~

#define NT_ SEG

[e)}
~
~

#define NT STROFF
#define NT BMASK

o0
~ O
~ O

#include <kernwin.hpp> // For get screen ea() and askstr()
#include <name.hpp>

uval t value;
ea t addr = get screen ea();

// Ask the user for a name
char *name = askstr (HIST IDENT, "start",

"Please enter a name");
Example // Get the value of that name, relative to addr
int type = get name value (addr, name, &value);

// The type will correspond to one of the NT values

// defined in name.hpp.

// Value will be FFFFFFF4 for the first local variable
// or 8 for the first argument to a function. It could
// also be the linear address of the strcpy() definition
// for example.

msg ("Type: %d, Value: %a\n", type, value);

5.11 Searching

The following functions are used for doing simple searching within the disassembled file(s) in IDA,
and are defined in search.hpp. There are also other search functions for specific search types
(errors, etc.) which can also be found in search.hpp. The search functions take flags, which
dictate how the search is conducted, what is searched for, etc. These flags are, as taken from
search.hpp:

#define SEARCH UP 0x000 // only one of SEARCH UP or

// SEARCH DOWN can be specified
#define SEARCH DOWN 0x001
#define SEARCH NEXT 0x002 // Search for the next occurrence
#define SEARCH CASE 0x004 // Make the search case-sensitive
#define SEARCH REGEX 0x008 // Use the regular expression parser
#define SEARCH NOBRK 0x010 // don't test ctrl-break

#define SEARCH NOSHOW 0x020 // don't display the search progress
#define SEARCH UNICODE 0x040 // treat strings as unicode
#define SEARCH IDENT 0x080 // search for an identifier
// it means that the characters before
// and after the pattern can not be
// is_visible char()
#define SEARCH BRK 0x100 // return BADADDR if break is
// pressed during find imm/()

Typically, you'd just use SEARCH DOWN to conduct a case-insensitive search, towards the bottom
of the file(s).

5.11.1 find_text

idaman ea_t ida_export

Definition find text(ea_t startEA, int y, int x, const char *ustr,

int sflagqg);

Searches the currently disassembled file(s), starting at startEa and x-
Synopsis coordinate x, y-coordinate y (both can be 0), for the text *ustr. sflag can be

any of the previously mentioned flags.

#include <kernwin.hpp> // For askstr() definition

#include <search.hpp>

char *s = askstr (0, "", "String to search for", NULL);
Example

// Find the first occurrence of the string
ea t foundAt = find text (inf.minEA, 0, 0, s, SEARCH DOWN) ;
while (foundAt != BADADDR) {

msg ("%s was found at %a\n", s, foundAt);

5.11.2 find_binary

Definition

idaman ea_t ida_export
find binary(ea_t startea, ea_t endea, const char *ubinstr,
int radix, int sflagqg)

Synopsis

Searches between startea and endea for the string in *ubinstr. radix is
the numeric base (if you're searching for numbers), which can be 8 (octal), 10
(decimal) or 16 (hex). sflag can be any of the previously mentioned flags.

Note that this function doesn't search the disassembled text that you see in
IDA, but the binary itself.

The content of *ubinstr will differ depending on the type of search you are
conducting. For strings, the string itself must be wrapped in quotes ("), for
single characters, they must be wrapped in single quotes ('). A question-mark
(?) can be used to indicate a single wildcard byte.

Example

#include <kernwin.hpp> // for askstr() and jumpto ()
#include <search.hpp>

// Ask the user for a search string
char *name = askstr (HIST SRCH, "",

"Please enter a string");
char searchstring[MAXSTR];

// Encapsulate the search string in quotes
gsnprintf (searchstring, sizeof (searchstring)-1,
u\u%s\uu, name);

ea t res = find binary(inf.minEA, // Top of the file
inf.maxEA, // Bottom of the file
searchstring,
0, // radix not applicable
SEARCH_DOWN) ;

if (res != NULL) {
msg ("Match found at %a\n", res);
// Move the cursor to the address
Jjumpto (res) ;

} else {
msg ("No match found.\n");

}

5.12 IDB

The following functions are for working with IDA database (IDB) files, and can be found in
loader.hpp. Although there is no actual definition of the 1input t class, you need to call the
open linput () (diskio.hpp) function to create an instance of the class, which some
functions use as an argument. You can also use make linput () to convert a FILE pointer to a
linput_t instance; see loader . hpp for more information.

5.12.1 open_linput

idaman linput_t *ida_export

Definition open_linput(const char *file, bool remote)

Create an instance of the 1input_t class for file path *file. If the file is
Synopsis remote, set the remote argument to true. Returns NULL if it failed to open the
file.

#include <kernwin.hpp> // For askfile cv definition
#include <diskio.hpp>

// Prompt the user for a file
char *file = askfile cv (0, "", "File to open", NULL);

// Open the file
Example linput t *myfile = open linput(file, false);
if (myfile == NULL)

msg ("Failed to open or corrupt file.\n");
else

// Return the size of the opened file.

msg ("File size: %d\n", glsize(myfile));

5.12.2 close_linput

Definiti idaman void ida_export
efinition close_ linput(linput t *1i)
. Close the file represented by the 1input t instance, *11i, created by
Synopsis . -
open_linput ().

Example

#include <loader.hpp>

linput t *myfile = open linput ("C:\\temp\\myfile.exe",
false);
close linput (myfile);

5.12.3 load_loader_module

idaman int ida_ export

Definition load loader module(linput t *1i, const char *1lname, const
char *fname, bool is remote)
Load a file into the current IDB, either as a 1input_t instance, *11, or file
Synopsis path in * fname, using the loader module *1name. If *1i is NULL, *fname
must be supplied and vise versa. Returns 1 on success, 0 on failure.
#include <kernwin.hpp> // For askfile cv ()
#include <loader.hpp>
// Prompt the user for a file to open.
char *file = askfile cv (0, "", "DLL file..", NULL);
Example

// Load it into the IDB using the PE loader module
int res = load loader module (NULL, "pe", file, false)

if (res < 1)
msg ("Failed to load %s as a PE file.\n", file);

5.12.4 load_binary_file

Definition

idaman bool ida_export

load binary file(const char *filename, linput t *1i,
ushort neflags, long fileoff, ea t basepara, ea_t binoff,
ulong nbytes) ;

Synopsis

Load a binary file *1i, named *filename starting at offset, fileoff.
_nflags is any of the NEF _ flags defined in 1oader.hpp. nbytes specifies
the number of bytes to load from the file, or 0 for the whole file.

basepara is the paragraph where this new binary will be loaded, and binoff
is the offset within that segment. You can safely set basepara to the adress
you want the file loaded at, and set binoff to 0.

Returns false if the load failed.
This is not the function you would use for loading a DLL or executable file (a

PE file for instance) into the IDB. For that, you would use use
load loader module () above.

Example

#include <kernwin.hpp> // For askfile cv ()
#include <diskio.hpp> // For open linput ()
#include <loader.hpp>

// Ask the user for a filename
char *file = askfile cv (0, "", "DLL file..", NULL);

// Create a linput t instance for that file
linput t *1i = open linput(file, false);

// Load the file at the end of the currently loaded
// file (inf.maxEA).
bool status = load binary file(file,

1i,

NEF SEGS,

0,

inf.maxEA,

0,

0);

if (status)
msg ("Successfully loaded %$s at %a\n", file,
inf.maxEA) ;
else
msg ("Failed to load file.\n");

5.12.5 gen_file

idaman int ida_ export

Definition gen file(ofile type t otype, FILE *fp, ea t eal, ea_t ea2,
int flags)
Synopsis Generate an output file, * fp, based on the currently open IDB file. eal and

ea? are the start and end addresses respectively, however these are ignored
for some output types. ot ype must be one of the following, taken from
loader.hpp:

OFILE MAP = 0, // MAP file

OFILE EXE = 1, // Executable file
OFILE IDC = 2, // IDC file

OFILE LST = 3, // Disassembly listing
OFILE ASM = 4, // Assembly

OFILE DIF = 5; // Difference

flags can be any combination of the following, also taken from 1oader.hpp:

#define GENFLG MAPSEG 0x0001 // map: generate map

// of segments
#define GENFLG MAPNAME 0x0002 // map: include dummy names
#define GENFLG MAPDMNG 0x0004 // map: demangle names
#define GENFLG MAPLOC 0x0008 // map: include local names
#define GENFLG IDCTYPE 0x0008 // idc: gen only

// information about types

#define GENFLG ASMTYPE 0x0010 // asm&lst: gen
// information about
// types too

#define GENFLG GENHTML 0x0020 // asmé&lst: generate html
// (ui genfile callback
// will be used)

#define GENFLG ASMINC 0x0040 // asmé&lst: gen information
// only about types

The function will return -1 if there was an error, or the number of lines
generated if it was a success. For OFILE_EXE files, it returns 0 for failure, 1 for
success.

Example

#include <loader.hpp>

// Open the output file

FILE *fp = gfopen("C:\\output.idc", "w");

// Generate an IDC output file

gen file(OFILE IDC, fp, inf.minEA, inf.maxEA, 0);
// Close the output file

gfclose (fp) ;

5.12.6 save_database

idaman void ida_export

Definition save_database (const char *outfile, bool delete_unpacked)
Save the database to the file path, *output. If delete unpackedis false,
S . temporary unpacked files are not deleted. As this function doesn't return
ynopsis :) U
anything, there is no way to determine if the save was successful, except for
testing whether the file exists after the function call is made.
#include <loader.hpp>
msg ("Saving database...");
char *outfile = "c:\\myidb.idb";
save database (outfile, false);
Example
// There was an error if the filesize is <= 0
if (gfilesize(outfile) <= 0)
msg ("failed.\n");
else
msg ("ok\n") ;
5.13 Flags

The functions below are for checking whether particular flags (see section 4.3) are set for a byte
within the currently disassembled file(s). They are all defined in bytes. hpp.

5.13.1 get_flags_novalue

inline flags_t idaapi

B get flags_novalue (ea_t ea)
Svnobsis Returns the flags set for address ea. You will need to run this to obtain the
ynop flags for an address to then use with functions like isHead (), isCode (), etc.
#include <kernwin.hpp> // For get screen ea() definition
#include <bytes.hpp>
Example

msg ("Flags for %a are %08x\n",
get screen ea(),
get flags novalue (get screen ea()));

5.13.2 isEnabled

idaman bool ida_export

Definition isEnabled(ea_t ea)
Synopsis Does the address, ea, exist within the currently disassembled file(s)?
#include <kernwin.hpp> // For askaddr () definition
#include <bytes.hpp>
ea_ t addr;
askaddr (&addr, "Address to look for:");
Example
if (isEnabled(addr))
msg ("%a found within the currently opened file(s).",
addr) ;
else
msg ("%a was not found.\n");
5.13.3 isHead
. ey inline bool idaapi
Definition isHead (flags_t F)
Synopsis Does the flagset, F, denote the start of code or data?

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <bytes.hpp>

ea t addr = get screen ea();

// Cycle through 20 bytes from the cursor position
// printing a message if the byte is a head byte.
for (int i = 0; 1 < 20; i++) {

flags t flags = get flags novalue (addr);

if (isHead(flags))

msg("%a is a head (flags = %08x).\n",
addr, flags);
addr++;

5.13.4 isCode

Definition

inline bool idaapi
isCode (flags_t F)

Synopsis

Does the flagset, F, denote the start of an instruction? This is the same as
isHead (), but only returns true for code, not data. Therefore, if used on a
code byte that is not a head byte, it will return false.

Example

#include <segment.hpp> // For segment functions
#include <bytes.hpp>

for (int i = 0; i < get segm gty (); i++) {
segment t *seg = getnseg(i);
if (seg->type == SEG CODE) {
// Look for any bytes in the code segment that
// aren't code.
for (ea t a = seg->startEA; a < seg->endEA; a++)
flags t flags = get flags novalue(a);
if (isHead(flags) && !isCode(flags))
msg ("Non-code at %a in segment: %s.\n",
a,
get segm name (seq)) ;

{

5.13.5 isData

Definition

inline bool idaapi
isData(flags_t F)

Synopsis

Does the flagset, F, denote the start of some data? This is the same as
isHead (), but only returns true for data, not code. Therefore, if used on a
data byte that is not a head byte, it will return false.

Example

#include <segment.hpp> // For segment functions
#include <bytes.hpp>

for (int i = 0; 1 < get_segm gty (); 1i++) {
segment t *seg = getnseg(i);
if (seg->type == SEG DATA) {
// Look for any bytes in the data segment that
// aren't data (possibly code).
for (ea t a = seg->startEA; a < seg->endEA; a++)
flags t flags = get flags novalue (a);
if (isHead(flags) && !isData(flags))
msg ("Non-data at %a in segment: %s.\n",
a,
get segm name (seq));

5.13.6 isUnknown

inline bool idaapi

Definition isUnknown (flags_t F)
. Does the flagset, F, denote a byte that hasn't been successfully analysed by
Synopsis
IDA?
#include <segment.hpp> // For segment functions
#include <bytes.hpp>
// Loop through every segment
for (int 1 = 0; i < get segm gty (); i++) {
segment t *seg = getnseg(i);
// Look for any unexplored bytes in this segment
Example for (ea_t a = seg->startEA; a < seg->endEA; a++)

flags t flags = get flags novalue(a);
if (isUnknown (flags))
msg ("Unknown bytes at %a in segment: %$s.\n",
a,
get segm name (seq)) ;

5.14 Data

When working with a disassembled file, it can often be very useful to bypass the disassembler
and work directly with the bytes in the binary file itself. IDA provides the functionality to do this
with the below functions (plus some more). All of the below are defined in bytes.hpp. These
functions work with bytes, however there are also functions to work with words, longs and qwords
(get _word(), patch word() and so on), which are also to be found in bytes.hpp. Aside
from using these functions to read data from the binary file itself, they can also be used to read
process memory while a process is executing under the debugger. More on this under the
Debugger functions section.

5.14.1 get_byte

Definiti idaman uchar ida_export
etinition get byte(ea_t ea)
Returns the byte at address ea within the disassembled file(s) currently open in
Svnobsis IDA. Returns BADADDR if ea doesn't exist. Also available for working with larger
ynop chunks is get _word (), get long() and get gword(). Use
get many bytes () for working with multiple byte chunks.
#include <kernwin.hpp> // For get screen ea() definition
#include <bytes.hpp>
Example // Display the byte value for the current cursor
// position. The values returned should correspond
// to those in your IDA Hex view.
msqg ("%$x\n", get byte(get screen ea()));

5.14.2 get_many_bytes

idaman bool ida_export

Definition get many bytes(ea_t ea, void *buf, ssize_ t size)

Synopsis Fetch size bytes starting at ea, and store them into *buf.

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <bytes.hpp>

char string[MAXSTR];
flags t flags = get flags novalue (get screen ea());

// Only get a string if we're at actual data.
if (isData(flags)) {
// Get a string from the binary
get many bytes(get screen ea(),
string,
sizeof (string)-2);
// NULL terminate the string, if not already
// terminated in the binary (so strlen doesn't barf)
string [MAXSTR-1] = '\0';
msg ("String length: %d\n", strlen(string));

5.14.3 get_dbg_byte

idaman bool ida_export

SE get_dbg byte(ea_t ea, uint32 *x)
Fetch a single byte of memory from address ea of the process currently being
Synopsis debugged and store it at *x. Returns false if the memory could not be
accessed of if the process is not currently running.
#include <dbg.hpp> // For get reg val() definition
#include <bytes.hpp>
uint32 stackdata;
regval t regval;
if (get reg val("ESP", ®val)) {
Example // regval.ival holds the current stack pointer taken

// from the ESP register by get reg val()
get dbg byte(regval.ival, &stackdata);

} else {
msg ("Stack couldn't be read");

}

msg ("First byte on stack is: 0x%$x\n", stackdata);

5.14.4 patch_byte

Definition

idaman bool ida_export
patch byte(ea_t ea, uint32 x)

Replace the byte at ea with x. The original byte is saved to the IDA database,
and can be retrieved using get _original byte () (see bytes.hpp). To not
save the original byte, use put byte (ea t ea, ulong x) instead. Also

Synopsis) X) :
ynop available for working with larger chunks is put_word (), put long () and

put gword().Use put many bytes () for working with multiple byte
chunks. Returns true if the modification was successful.
#include <kernwin.hpp> // For get screen eaf()
#include <bytes.hpp>
// Get the flags for the byte at the cursor position.
flags t flags = get flags novalue (get screen ea());

Example

// Replace the instruction at the cursor position with
// a NOP instruction (0x90).
// Unless used carefully, your executable will probably
// not work correctly after this :-)
if (isCode(flags))

patch byte(get screen ea(), 0x90);

5.14.5 patch_many_bytes

idaman void ida export

R patch_many_byte;(ea_t ea, const void *buf, size_t size)
Synopsis Replace size bytes at ea with the contents of *buf.
#include <kernwin.hpp> // For get screen ea() et al
#include <bytes.hpp>
// Prompt the user for an address, then a string
ea t addr = get screen eal();
Example askaddr (&addr, "Address to put string:");
char *string = askstr (0, "", "Please enter a string");
// Write the user supplied string to the address
// the user specified.
patch many bytes (addr, string, strlen(string));
5.151/0

As mentioned in section 5.1, a lot of standard C library functions for I/O have IDA SDK
equivalents, and it's recommended you use them instead of their standard C counterparts. These
are all defined in diskio.hpp.

5.15.1 fopenWT

idaman FILE *ida_export

Definition fopenWT (const char *file)
Open the text file, *fi1le, in write mode, return a FILE pointer or NULL if
Synopsis opening the file failed. To open the file in read mode, use fopenRT (), and for
binary files, replace the R with w. For read/write, use fopenM ().
#include <diskio.hpp>
Example FILE *fp = fopenWT ("c:\\temp\\txtfile.txt");
if (fp == NULL)
warning ("Failed to open output file.");
5.15.2 openR
Definiti idaman FILE *ida_ export
SUICT openR (const char *file)
Open the binary file, *f£ile, in read-only mode, return a FILE pointer or exit
Synopsis (display an error and close IDA) if it fails. To open a text file in read-only mode,
exiting on failure, use openRT (), for read-write use openM ().
#include <diskio.hpp>
Example

FILE *fp = openR("c:\\temp\\binfile.exe");

5.15.3 ecreate

idaman FILE *ida_export

Definition ecreate (const char *file)
Create the binary file, *£ile, returning a FILE pointer of the file for write only.
Synopsis Displays an error and exits if it is unable to create the file. To create a text file,
use ecreateT ().
#include <diskio.hpp>
Example

FILE *fp = ecreate("c:\\temp\\newbinfile.exe");

5.15.4 eclose

Definition

idaman void ida_export
eclose (FILE *fp)

Synopsis

Closes the file represented by FILE pointer * £p. Displays an error and exits if
it is unable to close the file.

Example

#include <diskio.hpp>

// Open the file first.
FILE *fp = openR("c:\\temp\\binfile.exe");

// Close it
eclose (fp);

5.15.5 eread

Definition

idaman void ida_export
eread (FILE *fp, void *buf, ssize_t size)

Synopsis

Read size bytes from file represented by FILE pointer * fp, into buffer *buf.
If the read is unsuccessful, an error is displayed followed by exiting IDA.

Example

#include <diskio.hpp>
char buf [MAXSTR];

// Open the text file
FILE *fp = openRT ("c:\\temp\\txtfile.txt");

// Read MAXSTR bytes from the start of the file.
eread (fp, buf, MAXSTR-1);

eclose (fp);

5.15.6 ewrite

Definition

idaman void ida_export
ewrite (FILE *fp, const void *buf, ssize t size)

Synopsis

Write size bytes of *buf to the file represented by FILE pointer * fp. If the
write operation fails, an error is displayed followed by exiting IDA.

#include <kernwin.hpp> // For read selection|()
#include <bytes.hpp> // For get many bytes()
#include <diskio.hpp>

char buf [MAXSTR];
ea_t saddr, eaddr;

// Create the binary dump file
FILE *fp = ecreate ("c:\\bindump") ;
Example
// Get the address range selected, or return false if
// there was no selection
if (read selection(&saddr, &eaddr)) {

int size = eaddr - saddr;

// Dump the selected address range to a binary file

get many bytes(saddr, buf, size);

ewrite (fp, buf, size);
}

eclose (fp);

5.16 Debugging

The next three sections are for working with a binary during execution. This section in particular is
for high level operations (like process and thread control) on a binary/process. Debugging and
tracing is covered in the following two sections. All functions below are defined in dbg.hpp with
the exception of invalidate dbg contents () and invalidate dbg config (), which are
defined in bytes.hpp. To get the most out of the examples, you should run them (i.e. invoke
your plug-in) whilst a binary is being debugged in IDA.

You will probably notice that all of these functions aren't prefixed with ida export. They don't
need to be because they are all inlined wrappers to callui (), and use event notifications to
carry out their respective functionality.

5.16.0 A Note on Requests

Unlike most functions in the SDK, most debugger functions (and some tracing functions too)
come in two forms; their normal asynchronous form, for example run_to (), and a synchronous,
or request form, like request run to(). Both forms of the function will take the same
arguments, but it's the way they carry out the respective operation that makes the difference.

The synchronous form of the function (request) will enter the function into a queue, and
eventually be executed by IDA when you call run_requests (). The other, asynchronous form,
will run straight away, just like a normal function.

The synchronous form of a function can be very handy when you want to queue a bunch of things
to be run by IDA in one hit. 5.17.5 is a good example of this, where deleting a bunch of
breakpoints using del bpt () would fail unless done synchronously, as the ID number of the
breakpoints would be re-organised by the time you went to fetch the next one using
getn bpt (). Something important worth noting is that you must use the synchronous form of a
function when you are in an debugger event notification handler (see section 4.5, specifically
4.5.3).

All functions in sections 5.16, 5.17 and 5.18 that are also available as requests will have a *
following the function name.

5.16.1 run_requests

bool idaapi

Definition run_requests (void)

Synopsis Runs any requests (synchronous functions) that have been queued.

#include <dbg.hpp>

// Run to the entry point of the binary
request run to(inf.startIP);

Example // Enable function tracing
request enable func trace();

// Run the above requests
run_requests();

5.16.2 get_process_state

int idaapi

Definition get_process_state (void)

Returns the state of the process currently being debugged. If the process is
Synopsis suspended, -1 is returned, 1 if the process is running or 0 if there is no
process running under the debugger.

Example #include <dbg.hpp>

switch (get process state()) {

case DSTATE SUSP FOR EVENT:
msg ("Suspended to react to debug event.\n");
break;

case DSTATE NOTASK:
msg ("No process running.\n");
break;

case DSTATE SUSP:
msg ("Process is suspended.\n");
break;

case DSTATE RUN:
msg ("Process is running.\n");
break;

case DSTATE RUN WAIT ATTACH
msg ("Process is running, waiting for attach.\n");
break;

case DSTATE RUN WAIT END
msg ("Running, user requested kill/detach.\n");
break;

default:
msg ("Unknown status.\n");

5.16.3 get_process_qty

int idaapi

Definition get process_qgty(void)
Returns the number of running processes matching the image of the
Svnoosis executable currently open in IDA. This function also needs to be called to
ynop initialise the process snapshot, which is used by IDA for populating data
structures utilised by other process-related functions.
#include <dbg.hpp>
Example

msg ("There are %d processes running.\n",
get process gty());

5.16.4 get_process_info

pid_t idaapi

Definition get process_info(int n, process_info_t *process_info);
Populate *process_info with information about process number n (this is
Synopsis not the PID). The process ID of the process number n is returned. If

*process_info is NULL, only the PID of the process is returned.

Example

#include <dbg.hpp>

// Only get the info if a process is actually running..
if (get process gty() > 0) {

process info t pif;

// Populate pif

get process _info (0, &pif);

msg ("ID: %d, Name: %$s\n", pif.pid, pif.name);
} else {

msg ("No process running!\n");

}

5.16.5 start_process *

Definition

int idaapi
start_process(const char *path = NULL, const char *args =
NULL, const char *sdir = NULL) ;

Synopsis

Start debugging the process *path, with the arguments *args, in the
directory *sdir. If any of the arguments are NULL, they are taken from the
process options specified under Debugger->Process Options.... This is
essentially the same as pressing F9 in IDA.

Example

#include <kernwin.hpp> // For askstr()
#include <dbg.hpp>

// Ask the user for arguments to supply.
char *args = askstr (HIST IDENT, "", "Arguments");

// Run the process with those arguments
start process(NULL, args, NULL);

5.16.6 continue_process *

Definition

bool idaapi
continue_process (void)

Synopsis

Continue the execution of a process. Returns false if continuing the process
fails. This is equivalent to pressing F9 in IDA when a process is in the
suspended state (breakpoint-hit or suspended).

Example

#include <dbg.hpp>

// Continue running the process when the user
// involkes this plug-in.
if (continue process())
msg ("Continuing process..\n");
else
msg ("Failed to continue process execution.\n");

5.16.7 suspend_process *

Definition

bool idaapi
suspend_process (void)

Synopsis

Suspend the process currently being debugged. Returns false if suspending
the process failed. This is the same as pressing the 'Pause Process' button in
IDA.

Example

#include <dbg.hpp>

// Suspend the process being debugged.
if (suspend process())

msg ("Suspended process.\n");
else

msg ("Failed to suspend process.\n");

5.16.8 attach_process *

int idaapi

DEED attach process(pid_t pid=NO_PROCESS, int event id=-1)
Attach to the process with PID pid. The process being attached to must be the
same executable image as the one currently being disassembled in IDA. If the
pid argumentis NO PROCESS, the user is prompted with a list of potential
processes to attach to. The possible return codes are as follows, which is taken
from dbg . hpp:

// -2 - impossible to find a compatible process

Synopsis // -1 - impossible to attach to the given process
// (process died, privilege
// needed, not supported by the debugger
// plugin, ...)

// 0 - the user cancelled the attaching to the

// process

// 1 - the debugger properly attached to the

// process

#include <dbg.hpp>

// Present the user with a list of processes to

// attach to. If there is no executable running that

// matches what's open in IDA, no dialog box will
Example // be presented.

int err;
if ((err = attach process (NO PROCESS)) == 1)
msg ("Successfully attached to process.\n");
else
msg ("Unable to attach, error: %d\n", err);

5.16.9 detach_process *

Definition

bool idaapi
detach process(void)

Synopsis

Detach from the process currently being debugged. This can be a process that
was attached to or run through IDA. Returns false if it was unable to detach.
Detaching from a process is only supported on Windows XP SP2+.

Example

#include <dbg.hpp>

// Detach from the debugged process.
if (detach process())

msg ("Successfully detached from process.\n");
else

msg ("Failed to detach.\n");

5.16.10 exit_process *

bool idaapi

Definition exit process (void)
s . Terminate the process currently being debugged. Returns false if it was unable
ynopsis .
to terminate the process.
#include <dbg.hpp>
// Terminate the debugged process.
Example if (exit process())

msg ("Successfully terminated the process.\n");
else

msg ("Failed to terminate the proces.\n");

5.16.11 get_thread_qty

int idaapi

Definition get thread gty (void)
Synopsis Returns the number of threads that exist in the debugged process.
Example #include <dbg.hpp>

// Only display if there is a process being debugged.
if (get process _gty() > 0)

msg ("Threads running: %d\n", get thread gty ());

5.16.12 get_current_thread

thid t idaapi

Definition get current_ thread(void)

Synopsis Returns the ID of the currently active thread in the debugged process.
#include <dbg.hpp>

Example // Only display if there is a process being debugged.

if (get process gty() > 0)
msg ("Thread ID running: %d\n", get current thread());

5.16.13 getn_thread

thid t idaapi

Definition getn_thread(int n)
Svnobsis Returns the thread ID of thread number n. n refers to the thread number
ynop between 0 and get thread gty () -1.
#include <dbg.hpp>
Eamee // Only display if there is a process being debugged.

for (int i = 0; i < get thread gty(); i++) {
msg ("Thread %d ID: %d \n", i, getn thread(i));

5.16.14 get_reg_val

bool idaapi

Definition get reg val(const char *regname, regval_t *regval)
Get the value stored in register *regname and store it in *regval. Returns
Synopsis false if it was unable to retrieve the value from the register. The register name

is case insenstive.

Example

#include <dbg.hpp>
// Process needs to be suspended for this to work.

regval t eax;

regval t eax upper;

char *regname = "eax";

char *regname upper = "EAX";

// Prooving that the register name is case insenstive
if (get reg val(regname, &eax))
msg ("eax = %08a\n", eax.ival);

if (get reg val(regname upper, &eax upper))
msg ("EAX = %08a\n", eax upper.ival);

5.16.15 thread_get_sreg_base (member of dbg)

int idaapi

Definition thread get sreg base(thid t tid, int sreg _value, ea t
*answer)
For thread tid, place in *answer the base linear address pointed to by
segment register value sreg value. There are sometimes cases where you
Synopsis need to use segmented addressing when reading a debugged process's
memory (FS: 0 on Windows systems, for instance), which this method is
specifically for.
#include <idd.hpp>
#include <dbg.hpp>
// x86 segment registers
Char *Srs[] = { "CS", "DS", "ES", "FS", "GS", "SS", O };
for (int i = 0; srs[i] !'= 0; i++) {
ea_t addr;
regval t sreg val;
// Because it's done on a thread-by-thread basis, we
Example

// need to get the thread ID.
thid t tid = get current thread();

// Fetch the segment register's value
get reg val(srs[i], é&sreg val);

// Get the base address
dbg->thread get sreg base(tid, sreg val.ival, &addr);

msg ("%s base is %a\n", srs[i], addr);

5.16.16 read_memory (member of dbg)

Definition

ssize_t idaapi
read memory(ea_t ea, void *buffer, size t size)

Synopsis

Read size bytes of memory from address ea of the currently debugged
process into buf fer. Returns -1 on error.

Example

#include <dbg.hpp>
#include <idd.hpp>

ea t saddr;
char chunk[1024];
int 1 = 0;

// Ask the user what address to dump a string from
askaddr (&saddr, "Address to dump a string from");

// Read 1KB of data from that address
dbg->read memory (saddr, (void *)é&chunk, 1024);

while (i < 1024 && chunk[i] !'= '"\0"') ¢{
msg ("%c", chunk[i++]);

}

msg (u\nu) ;

5.16.17 write_memory (member of dbg)

Definition

ssize_t idaapi
write memory(ea_t ea, const void *buffer, size t size);

Synopsis

Write size bytes of buffer to address ea of the currently debugged process.
Returns -1 on error

Example

#include <dbg.hpp>
#include <idd.hpp>

ea_t saddr;
char chunk[1024];

// Fill up the buffer with As
memset (chunk, 'A', 1024);
askaddr (&saddr, "Address to f£ill");

// Overwrite 1KB of memory with our 'A' buffer
int res = dbg->write memory (saddr, (void *)&chunk, 1024);
if (res <= 0) {

msg ("There was an error writing to memory.");

}

5.16.18 set_reg_val *

Definition

bool idaapi
set_reg_val(const char *regname, const regval_t *regval)

Synopsis

Set the register *regname to value *regval in the current thread. If
the write fails, false is returned. Like get reg val (), *regname is case
insensitive. Unlike other asynchronous functions, this is safe to call from a
debug event notification handler.

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <dbg.hpp>

// Suspend the currently executing process.
suspend process () ;

// Continue execution from the user's cursor position.
ea t addr = get screen ea();
char *regname = "EIP";

if (set reg val(regname, addr)) {
msg ("Continuing execution from %a\n", addr);
continue process();

5.16.19 invalidate_dbgmem_contents

idaman void ida_export

Definition invalidate_dbgmem contents(ea_t ea, asize t size)
Invalidate size bytes of memory, starting at ea. If you want to invalidate the
whole of a process's memory, set ea to BADADDR and size to 0.

Synopsis Invalidating memory contents is essentially flushing the IDA kernel's memory

cache for a process, which ensures you are accessing the latest memory
contents from a process's memory. You should call this function after a process
is suspended, or if you suspect the memory contents have changed.

Example

#include <dbg.hpp>
#include <bytes.hpp>

// Process must be suspended for this to work
// Get the address stored in the ESP register
regval t esp;

get reg val ("ESP", é&esp);

// Get the value at the address stored in the ESP reg.
uchar before = get byte(esp.ival);

// Invalidate memory contents
invalidate dbgmem contents (BADADDR, 0);

// Re-fetch contents of the address stored in ESP
uchar after = get byte(esp.ival);

msg ("%08a: Before: %a, After: %a\n",
esp.ival, before, after);

5.16.20 invalidate_dbgmem_config

idaman void ida_export

e invalidate_dbgmem config(void)
Like invalidate dbgmem contents (), you use this function to ensure
IDA is looking at the latest memory configuration. You need to run this function
Synopsis if the debugged process has allocated or deallocated memory since it was last
suspended. This function also flushes the IDA memory cache, however is
much slower than invalidate dbgmem contents ().
#include <dbg.hpp>
#include <bytes.hpp>
regval t esp;
// Get ESP before invalidate config
get reg val ("ESP", é&esp);
Example uchar before = get byte(esp.ival);

// Invalidate memory config
invalidate dbgmem config();

// After invalidate

uchar after = get byte(esp.ival);

msg ("%08a Before: %a, After: %a\n",
esp.ival, before, after);

5.16.21 run_to *

bool idaapi

Definition run_to(ea_t ea)
Run the process until execution gets to address ea. If there is no process
Synopsis running, the currently disassembled file is executed. Returns false if it was
unable to execute the process.
#include <kernwin.hpp> // For get screen ea() definition
#include <dbg.hpp>
Example

// Replicate F4 functionality
if (!run _to(get screen ea()))
msg ("Failed to run to %a\n", get screen ea());

5.16.22 step_into *

Definition

bool idaapi
step_into(void)

Synopsis

Run one instruction within the current thread of the debugged process. This is
the same as F7 in IDA. Returns false if it was unable to step into the
instruction.

Example

#include <dbg.hpp>

// Go to the entry point (queued)
request run to(inf.startIP);

// Run 20 instructions (queued)
for (int i = 0; 1 < 20; 1 ++)
request step into();

// Run through the queue
run_requests();

5.16.23 step_over *

bool idaapi

Definition step_over (void)
Run one instruction within the current thread of the debugged process, but
Synopsis don't step into functions, treat them as one instruction. This is the same as F8

in IDA. Returns false if it was unable to step over the instruction.

#include <dbg.hpp>
// This can only run when the process is suspended

Example // Step over 5 instructions. This needs to be done as
// a request, otherwise only one step will execute.
for (int i = 0; 1 < 5; 1 ++)

request step over();
run_requests();

5.16.24 step_until_ret *

Definiti bool idaapi
efinition step _until ret(void)
Svnobsis Execute each instruction in the current thread of the debugged process until
ynop the current function returns. This is the same as CTRL-F7 in IDA.
#include <dbg.hpp>
// Get the address of where the function named
// 'myfunc' is.
ea t addr = get name ea (BADADDR, "myfunc");
if (addr != BADADDR) {
// Run until execution hits myfunc (queued)
Example request run_ to(addr);
// Step into the function (queued)
request step into();
// Continue executing until myfunc returns (queued)
request step until ret();
// Run through the queue
run_requests();
1

5.17 Breakpoints

An essential part of debugging is having the ability to set and manipulate breakpoints, which can
be set on any address within a process memory space and be hardware or software breakpoints.
The following set of functions work with breakpoints, and are defined in dbg . hpp.

5.17.1 get_bpt_qty

int idaapi

Definition get_bpt gty (void)

Synopsis

Return the current number of breakpoints that exist (regardless of whether they
are enabled or not).

Example

#include <dbg.hpp>

msqg ("There are currently %d breakpoints set.\n",
get_bpt qty());

5.17.2 getn_bpt

Definition

bool idaapi
getn bpt(int n, bpt t *bpt)

Synopsis

Fill *bpt with information about breakpoint number n. Returns false if there is
no such breakpoint number.

Example

#include <dbg.hpp>

// Go through all breakpoints, displaying the address
// of where they are set.
for (int 1 = 0; 1 < get bpt gty(); i++) {
bpt t bpt;
if (getn bpt(i, &bpt))
msg ("Breakpoint found at %a\n", bpt.ea);

5.17.3 get_bpt

bool idaapi

Definition get_bpt(ea_t ea, bpt t *bpt)
Fill *bpt with information about the breakpoint set at ea. If no breakpoint is set
Synopsis at ea, false is returned. If *bpt is NULL, this function simply returns true or

false depending if a breakpoint is set at ea.

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <dbg.hpp>

if (get bpt(get screen ea(), NULL))

msg ("Breakpoint is set at %a.\n", get screen ea());
else

msg ("No breakpoint set at %a.\n", get screen ea());

5.17.4 add_bpt *

Definition

bool idaapi
add bpt(ea_t ea, asize t size = 0, bpttype t type =
BPT_SOFT)

Synopsis

Add a breakpoint at ea of type type and size size. Returns false if it was
unable to set the breakpoint. Refer to section 4.4.2 for an explanation of
different breakpoint types. size is irrelevant when setting software
breakpoints.

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <dbg.hpp>

// Add a software breakpoint at the cursor position
if (add bpt(get screen ea(), 0, BPT SOFT))
msg ("Successfully set software breakpoint at %a\n",
get screen ea());

5.17.5 del_bpt *

bool idaapi

Definition del bpt(ea_t ea)
. Delete the breakpoint defined at ea. If there is no breakpoint defined there,
Synopsis
returns false.
Example #include <dbg.hpp>

// Go through all breakpoints, deleting each one.
for (int i = 0; i < get bpt gty(); i++) {
bpt t bpt;
if (getn bpt (i, &bpt)) |
// Because we are performing many delete
// operations, queue the request, otherwise the
// getn bpt call will fail when the id
// numbers change after the delete operation.

if (request del bpt (bpt.ea))
msg ("Queued deleting breakpoint at %a\n",
bpt.ea);

}

// Run through request queue
run_requests();

// Make sure there are no breakpoints left over
if (get bpt agty() > 0)
msg ("Failed to delete all breakpoints.\n");

5.17.6 update_bpt

bool idaapi

EtiliEn update bpt(const bpt t *bpt)
. Update modifiable elements of the breakpoint represented by *bpt. Returns
Synopsis . o
false if the modification was unsuccessful.
#include <dbg.hpp>
// Loop through all breakpoints
for (int i = 0; i < get bpt gty (); i++) {
bpt t bpt;
if (getn bpt(i, &bpt)) {
// Change the breakpoint to not pause
// execution when it's hit
bpt.flags "= BPT BRK;
// Change the breakpoint to a trace breakpoint
Example bpt.flags |= BPT TRACE;

// Run a little IDC every time it's hit
gstrncpy (bpt.condition,
"Message (\"Trace hit!\")",
sizeof (bpt.condition));

// Update the breakpoint
if (!update bpt (&bpt))
msg ("Failed to update breakpoint at %al\n",
bpt.ea);

5.17.7 enable_bpt *

Definition

bool idaapi
enable bpt(ea_t ea, bool enable = true)

Synopsis

Enable or disable the breakpoint set at ea. If no breakpoint is defined at ea, or
there was an error enabling/disabling the breakpoint, false is returned. If
enable is set to false, the breakpoint is disabled.

Example

#include <kernwin.hpp> // For get screen ea() definition
#include <dbg.hpp>

bpt t bpt;

// If a breakpoint exists at the user's cursor, disable
// it.
if (get bpt(get screen ea(), &bpt)) {
if (enable bpt(get screen ea(), false))
msg ("Disabled breakpoint.\n");

5.18 Tracing

The functions available for tracing mostly revolve around checking whether a certain type of
tracing is enabled, enabling or disabling a type of tracing and retrieving trace events. All the
below are defined in dbg. hpp.

5.18.1 set_trace_size

Definition

bool idaapi
set_trace_size(int size)

Synopsis

Set the tracing buffer size to size. Returns false if there was an error
allocating size. Setting size to 0 sets an unlimited buffer size (dangerous). If
you set size to a value lower than the current number of trace events, size
events are deleted.

Example

#include <dbg.hpp>

// 1000 trace events allowed
if (set trace size(1000))
msg ("Successfully set the trace buffer to 1000\n");

5.18.2 clear_trace *

void idaapi

Definition clear_trace(void)
Synopsis Clear the trace buffer.

#include <dbg.hpp>
Example

// Start our plug-in with a clean slate
clear trace();

5.18.3 is_step_trace_enabled

bool idaapi

Definition is_step_ trace_enabled(void)

Synopsis Returns true if step tracing is currently enabled.
#include <dbg.hpp>

Example

if (is_step trace enabled())
msg ("Step tracing is enabled.\n");

5.18.4 enable_step_trace *

bool idaapi

Definition enable_step_ trace(int enable = true)

Synopsis Enable step tracing. If enable is set to false, step tracing is disabled.
#include <dbg.hpp>
// Toggle step tracing

Example if (is_step trace enabled())

enable step trace(false);
else
enable step trace();

5.18.5 is_insn_trace_enabled

Definiti bool idaapi
efinition is_insn_trace_enabled (void)
Synopsis Returns true if instruction tracing is enabled.
#include <dbg.hpp>
Example if (is_insn_trace enabled())
msg ("Instruction tracing is enabled.\n");

5.18.6 enable_insn_trace *

bool idaapi

Definition enable_insn_trace(int enable = true)

Synopsls disabled.

Enable instruction tracing. If enable is set to false, instruction tracing is

#include <dbg.hpp>

// Toggle instruction tracing
Example if (is_insn_trace enabled())
enable insn trace(false);
else
enable insn trace();

5.18.7 is_func_trace_enabled

Definiti bool idaapi
efinition is_func_trace_enabled (void)
Synopsis Returns true if function tracing is enabled.
#include <dbg.hpp>
Example if (is_func trace enabled())
msg ("Function tracing is enabled.\n");

5.18.8 enable_func_trace *

bool idaapi

Definition enable func_trace(int enable = true)

Synopsis Enable function tracing. If enable is set to false, function tracing is disabled.

#include <dbg.hpp>

// Toggle function tracing
Example if (is_func_trace enabled())
enable func trace(false);
else
enable func trace();

5.18.9 get_tev_qty

N int idaapi
Definition get_tev_qgty (void)
Synopsis Returns the number of trace events in the trace buffer.
#include <dbg.hpp>
Exan"“e msg ("There are %d trace events in the trace buffer.\n",
get_tev_qty());

5.18.10 get_tev_info

bool idaapi

Definition get_tev_info(int n, tev_info_t *tev_info)

Fills *tev_info about the trace buffer entry number n. Returns false if there is

Synopsis
ynop no such trace event number n.

#include <dbg.hpp>

// Loop through all trace events

for (int i = 0; 1 < get _tev _gty(); i++) {
tev _info t tev;

Example // Get the trace event information

get tev _info (i, &tev);

// Display the address the event took place
msg ("Trace event occurred at %a\n", tev.ea);

5.18.11 get_insn_tev_reg_val

bool idaapi

Definition get _insn tev_reg val (int n, const char *regname, regval t
*regval)
Store the value of register *regname into *regval when instruction trace
event number n happened, before execution of the instruction. Returns false if
Synopsis the event wasn't an instruction trace event.
See get _insn tev reg result () for obtaining registers after execution.
#include <dbg.hpp>
// Loop through all trace events
for (int i = 0; i < get tev gty(); 1i++) {
regval t esp;
tev_info t tev;
// Get the trace event information
get tev info (i, &tev);
Example

// If it's an instruction trace event...
if (tev.type == tev_insn) {
// Get ESP, store into &esp
if (get insn tev reg val (i, "ESP", ¢&esp))
// Display the value of ESP
msg ("TEV #%d before exec: %a\n", 1, esp.ival);
else
msg ("No ESP change for TEV #%d\n", 1i);

5.18.12 get_insn_tev_reg_result

bool idaapi

Definition get_insn tev_reg result(int n, const char *regname,
regval_t *regval)
Store the value of register *regname into *regval when instruction trace
event number n happened, after execution of the instruction. Returns false if
Synopsis the register wasn't modified or n doesn't represent an instruction trace event.

See get_insn tev reg val () for obtaining registers before execution.

Example

#include <dbg.hpp>

// Loop through all trace events

for (int i = 0; i < get tev gty(); i++) {
regval t esp;
tev_info t tev;

// Get the trace event information
get tev info (i, &tev);

// If it's an instruction trace event...
if (tev.type == tev_insn) {
// Get ESP, store into &esp
if (get insn tev reg result (i, "ESP", &esp))
// Display the value of ESP
msg ("TEV #%d after exec: %a\n", 1, esp.ival);
else
msg ("No ESP change for TEV #%d\n", 1i);

5.18.13 get_call_tev_callee

Definition

ea_t idaapi
get call tev_callee(int n)

Synopsis

Returns the address of the function called for function trace event number n.
Returns BADADDR if there is no such function trace event number n. The type
of the function trace event must be tev_call.

Example

#include <dbg.hpp>

// Loop through all trace events

for (int i = 0; 1 < get _tev gty(); i++) {
regval t esp;
tev_info t tev;

// Get the trace event information
get tev info (i, &tev);

// If it's an function call trace event...

if (tev.type == tev_call) {
ea_t addr;
// Get ESP, store into &esp
if ((addr = get call tev callee(i)) != BADADDR)

msg ("Function at %a was called\n", addr);

5.18.14 get_ret_tev_return

Definiti ea_t idaapi
etinition get_ret_ tev_return(int n)
Returns the address of the calling function for function trace event number n.
Synopsis Returns BADADDR if there is no such function trace event number n. The type
of the function trace event must be tev ret.
#include <dbg.hpp>
// Loop through all trace events
for (int i = 0; 1 < get _tev gty(); i++) {
tev_info t tev;
// Get the trace event information
et tev info (i, &tev);
Example get_tev_t (1, V)
// If it's an function return trace event...
if (tev.type == tev _ret) ({
ea t addr;
if ((addr = get ret tev return(i)) != BADADDR)
msg ("Function returned to %a\n", addr);
}
}

5.18.15 get_bpt_tev_ea

ea_t idaapi

DTl get bpt tev_ea(int n)
Svnopsis Returns the address of the read/write/execution trace number n. Returns false
ynop if the trace event wasn't that of a read/write/execution trace.
#include <dbg.hpp>
// Loop through all trace events
for (int i = 0; i < get tev gty(); i++) {
tev_info t tev;
// Get the trace event information
et te info (1 s&tev) ;
Example get_tev_t (1, v)

// If it's an breakpoint trace event...

if (tev.type == tev _bpt) ({
ea_t addr;
if ((addr = get bpt tev _ea(i)) != BADADDR)

msg ("Breakpoint trace hit at %a\n", addr);

5.19 Strings

The following functions are used for reading the list of strings in IDA's Strings window, which is
derived from strings found in the currently disassembled file(s). The below functions are defined
in strlist.hpp.

5.19.1 refresh_strlist

idaman void ida_export

EtiliEn refresh strlist(ea_t eal, ea_t ea2)
s . Refresh the list of strings in IDA's Strings window. Search between eal and
ynopsis ea? in the currently disassembled file(s) for these strings.
#include <strlist.hpp>
Example

// Refresh the string list.
refresh strlist();

5.19.2 get_strlist_qty

idaman size_t ida_export

Definition get_strlist gty (void)

Synopsis Returns the number of strings found in the currently disassembled file(s).
#include <strlist.hpp>

Example

msg ("%d strings were found in the currently open file(s)",
get strlist gty());

5.19.3 get_strlist_item

idaman bool ida_export

Definition get_strlist item(int n, string info_t *si)
. Fills *s1i with information about string number n. Returns false if there is no
Synopsis .
such string number n.
#include <strlist.hpp>
int largest = 0;
// Loop through all strings, finding the largest one.
for (int i = 0; 1 < get strlist gty(); i++) {
string info t si;
Example I -

get strlist item(i, &si);
if (si.length > largest)
largest = si.length;

}

msg ("Largest string is %d characters long.\n", largest);

5.20 Miscellaneous

These are functions that don'’t really fit into any particular category. The headers they are defined
in are mentioned in each case.

5.20.1 tag_remove

idaman int ida_export

Definition tag_remove (const char *instr, char *buf, int bufsize)

Remove any colour tags from *instr, and store the result in *buf, limited by
Synopsis bufsize. Supplying the same pointer for *instr and *buf is also supported,
in which case bufsize is 0. This function is defined in 1ines.hpp.

#include <ua.hpp> // For ua_ functions
#include <lines.hpp>

// Get the entry point address
ea t addr = inf.startIP;

// Fill cmd with information about the instruction
// at the entry point
decode_ insn (addr);
Example // Loop through each operand (until one of o void type
// is reached), displaying the operand text.
for (int i = 0; cmd.Operands[i].type != o void; i++) {
char op[MAXSTR];
ua_outop (addr, op, sizeof(op)-1, 1i);

// Strip the colour tags off
tag_remove (op, op, 0);
msg ("Operand %d: %s\n", i, op);

5.20.2 open_url

Definiti inline void
LU open_url (const char *url)
. Opens *url in the system default web browser. This function is defined in

Synopsis .
kernwin.hpp.
#include <kernwin.hpp>

Example
open_url ("http://www.binarypool.com/idapluginwriting/");

5.20.3 call_system

Definition

idaman int ida_export
call system(const char *command)

Synopsis

Runs the command, *command, from a system shell. This function is defined in
diskio.hpp.

Example

#include <diskio.hpp>

// Run notepad
call system("notepad.exe");

5.20.4 idadir

Definition

idaman const char *ida export
idadir (const char *subdir)

Synopsis

Returns the IDA path if *subdir is NULL. If *subdir is not NULL, the IDA
sub-directory path is returned. These are the possible sub-directories, as taken
from diskio.hpp:

#define
#define
#define
#define
#define
#define
#define
#define

CFG_SUBDIR
IDC_SUBDIR
IDS_SUBDIR
IDP_SUBDIR
LDR_SUBDIR
SIG SUBDIR
TIL SUBDIR
PLG_SUBDIR

"Cfg"
"idC"
"ids"
"procs"
"loaders"
"Sig"
"til"
"plugins"

This function is defined in diskio.hpp.

Example

#include <diskio.hpp>

msg ("IDA directory is %s and your plug-in lives in %s.\n",
idadir (NULL), idadir (PLG_SUBDIR)) ;

5.20.5 getdspace

Definition

idaman uint64 ida_ export
getdspace (const char *path)

Synopsis

Returns the amount of disk space available on the disk hosting *path. This
function can be found in diskio.hpp.

#include <diskio.hpp>

// Get the disk space on the disk with IDA installed on

Example /) it
if (getdspace(idadir (NULL)) < 100*1024%1024)
msg ("You need at least 100 MB free to run this.");
5.20.6 str2ea
Definiti idaman bool ida_export
etinition str2ea(const char *str, ea_t *ea_ptr, ea_t screenEA)
Convert the string *str to an address stored in *ea ptr if it exists within the
Synopsis currently disassembled file(s), return true on success. This function is defined
in kernwin.hpp.
#include <kernwin.hpp>
// Just some random address
char *addr s = "010100FO0";
Example ea t addr;

// If 010100F0 is in the binary, print the address
if (str2ea(addr_s, &addr, 0))
msg ("Address: %a\n", addr);

5.20.7 ea2str

idaman char *ida_ export

Definition eal2str(ea_t ea, char *buf, int bufsize)
Convert the address, ea, to string, stored in *buf, limited by bufsize. The
Svnopsis format of the string produced is segmentname:address, so for example,
ynop supplying the 01001022 address from the . text segment would produce
.text:0100102A. This function is defined in kernwin.hpp.
#include <kernwin.hpp>
ea t addr = get screen ea();
char addr s[MAXSTR];
Example -

// Convert addr into addr_ s
eaZstr (addr, addr_ s, sizeof (addr_s)-1);
msg ("Address: %s\n", addr s);

5.20.8 get_nice_colored_name

idaman ssize_t ida_export

Definition get nice colored name(ea_t ea, char *buf, size_ t bufsize,
int flags=0);
Get the formatted name of ea, store it in *buf limited by bufsize. If flags is
set to GNCN_NOCOLOR, no colour codes will be included in the name. If ea
Synopsis doesn't have a name, its address will be returned in a "human readable" form,
like start+56 or .text:01002010 for example. This function is defined in
name . hpp.
#include <kernwin.hpp> // For get screen ea() definition
#include <name.hpp>
char buf [MAXSTR];
// Get the nicely formatted name/address of the
// current cursor position. No colour codes will
// be included.
Example

get nice colored name(get screen ea(),
buf,
sizeof (buf) -1,
GNCN_NOCOLOR) ;

msg ("Name at cursor position: %$s\n", buf);

6. Examples

The below examples have been included to provide a bit of context to the use of the structures
and functions covered in this tutorial. All are extensively commented and will compile as-is, i.e.
not requiring any modification or inclusion of headers, etc. like previous examples did.

The code for each of the below is also available at http://www.binarypool.com/idapluginwriting/.

6.1 Looking for Calls to sprintf, strcpy, and sscanf

The below example will find “low hanging fruit” when auditing a binary. It does this by finding calls
to usually misused functions like sprintf, strcpy and sscanf (feel free to add more of your
choosing). It first finds the address of the extern definitions of these functions, then uses IDA’s
cross referencing functionality to find all the addresses within the binary that reference those
extern definitions.

//
// unsafefunc.cpp

//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <lines.hpp>
#include <name.hpp>

int IDAP init(void)
{
if (inf.filetype != f ELF && inf.filetype != f PE) {
warning ("Executable format must be PE or ELF, sorry.");
return PLUGIN SKIP;
}

return PLUGIN KEEP;
}

void IDAP term(void)
{
return;

}

void IDAP_ run(int arg)

{
// The functions we're interested in. Names might need some
// re-adjustment depending on your platform.
char *funcs[] = { "sprintf", "strcpy", "sscanf", 0 };

// Loop through all segments
for (int i = 0; i < get segm gty (); i++) {
segment t *seg = getnseg(i);

// We are only interested in the pseudo segment created by
// IDA, which is of type SEG XTRN. This segment holds all

http://www.binarypool.com/idapluginwriting/

// function 'extern' definitions.
if (seg->type == SEG XTRN) {

// Loop through each of the functions we're interested in.

for (int i = 0; funcs[i] !'= 0; i++) {
// Get the address of the function by its name
ea t loc = get name ea(seg->startEA, funcsl[i]);

// If the function was found, loop through it's
// referrers.
if (loc != BADADDR) {
msqg ("Finding callers to %s (%a)\n", funcs[i], loc);
xrefblk t xb;
// Loop through all the TO xrefs to our function.
for (bool ok = xb.first to(loc, XREF DATA);
ok;
ok = xb.next to()) {
// Get the instruction (as text) at that address.
char instr[MAXSTR];
char instr clean[MAXSTR];
generate disasm line(xb.from, instr, sizeof (instr)-1);
// Remove the colour coding and format characters
tag remove (instr, instr clean, sizeof(instr clean)-1);
msg ("Caller to %s: %a [%s]\n",
funcs[i],
xb.from,
instr clean);

return;
}
char IDAP comment[] = "Insecure Function Finder";
char IDAP help[] = "Searches for all instances"
" of strcpy(), sprintf () and sscanf().\n";
char IDAP name[] = "Insecure Function Finder";
char IDAP hotkey[] = "Alt-I";

plugin_ t PLUGIN =
{
IDP_INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey

6.2 Listing Functions Containing MOVS et al.

When looking for the use of vulnerable functions like strcpy for example, you might need to look
deeper than simple uses of the function and identify functions that use instructions in the movs
family (movsb, movsd, etc.). This plug-in will go through all the functions, then each of their
instructions looking for anything that uses a movs-like mnemonic.

//

// movsfinder.cpp

//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <allins.hpp>

int IDAP_init(void)
{
// Only support x86 architecture
if (strncmp (inf.procName, "metapc", 8) != 0) {
warning ("Only x86 binary type supported, sorry.");
return PLUGIN SKIP;
}

return PLUGIN KEEP;
}

void IDAP term(void)
{
return;

}

void IDAP run(int arg)

{
// Instructions we're interested in. NN movs covers movsd,
// movsw, etc.
int movinstrs[] = { NN movsx, NN movsd, NN movs, 0 };

// Loop through all segments
for (int s = 0; s < get _segm gty(); s++) {
segment t *seg = getnseg(s);

// We are only interested in segments containing code.
if (seg->type == SEG CODE) {

// Loop through each function

for (int x = 0; x < get func gty (); x++) {
func t *f = getn func(x);
char funcName [MAXSTR];

// Get the function name
get func name (f->startEA, funcName, sizeof (funcName)-1);

// Loop through the instructions in each function

for (ea t addr = f->startEA; addr < f->endEA; addr++) {

// Get the flags for this address
flags t flags = get flags novalue (addr);

// Only look at the address if it's a head byte, i.e.
// the start of an instruction and is code.
if (isHead(flags) && isCode(flags)) {

char mnem[MAXSTR];

// Fill the cmd structure with the disassembly of
// the current address and get the mnemonic text.
ua_mnem (addr, mnem, sizeof (mnem)-1);

// Check the mnemonic of the address against all
// mnemonics we're interested in.
for (int i = 0; movinstrs[i] !'= 0; i++) {
if (cmd.itype == movinstrs[i])
msg ("%s: found %s at %a!\n", funcName, mnem, addr);

return;

char IDAP comment[] = "MOVSx Instruction Finder";
char IDAP help[] =
"Searches for all MOVS-like instructions.\n"
n\nn
"This will display a list of all functions along with\n"
"the movs instruction used within.";

char IDAP name[] = "MOVSx Instruction Finder";
char IDAP hotkey[] = "Alt-M";

plugin_t PLUGIN =
{
IDP_INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey

6.3 Auto-loading DLLs into the IDA Database

Most binaries will spread their functionality across multiple files (DLLs), loading them at runtime
using LoadLibrary. In these cases, it can be useful to have IDA auto-load these DLLs into the
one IDB. This plug-in will search through the strings in a binary looking for anything containing
.d11. For strings that do, it is assumed they are DLLs intended to be loaded by the binary and
will prompt the user for the full path of that DLL and load it into the IDB.

//
// loadlib.cpp

//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <strlist.hpp>

// Maximum number of library files to load into the IDB
##define MAXLIBS 5

int IDAP_init(void)
{
if (inf.filetype '= f PE) {
warning ("Only PE executable file format supported.\n");
return PLUGIN_SKIP;

}

return PLUGIN_KEEP;
}

void IDAP_term(void)
{
return;

}

void IDAP run(int argqg)
{
char loadLibs[MAXLIBS] [MAXSTR] ;
int libno = 0, i, strcount = get_strlist gty():;

if (strcount == 0) {
msg ("No strings found in this binary or IDA hasn't finished"
" processing the binary yet.");
return;

}
msg ("%d strings found, checking for DLL use..", strcount);

// Loop through all strings to find any string that contains
// .dll. This will eventuall be our list of DLLs to load.
for (i = 0; i < strcount; i++) {

char string[MAXSTR];

string_info_t si;

// Get the string item
get_strlist item(i, &si);

if (si.length < sizeof(string)) ({

// Retrieve the string from the binary'
get_many bytes(si.ea, string, si.length);

// We're only interested in C strings.
if (si.type == 0) {

// .. and if the string contains .dll
if (stristr(string, ".dll") && libno < MAXLIBS) ({

// Add the string to the list of DLLs to load later on.
gstrncpy (loadLibs[libno++], string, MAXSTR-1) ;
}

}

if (libno == 0) {
msg("No DLL files found in strings.");
return;

}

// Now go through the list of libraries found and load them.
msg ("Loading the first %d libraries found...\n", MAXLIBS) ;

for (i = 0; i < libno; i++) {
msg ("Lib: %s\n", loadLibs[i]);

// Ask the user for the full path to the DLL (the executable will
// only have the file name).
char *file = askfile cv (0, loadLibs[i], "File path...\n", NULL);

// Load the DLL using the pe loader module.
if (load loader module (NULL, "pe", file, 0)) {
msg ("Successfully loaded %s\n", loadLibs[i]);
} else {
msg ("Failed to load %s\n", loadLibs[i]) ;

}

char IDAP comment[] = "DLL Auto-Loader";
char IDAP help[] = "Loads the first 5 DLLs"
" mentioned in a binary file\n";

char IDAP name[] = "DLL Auto-Loader";
char IDAP hotkey[] = "Alt-D";

plugin_t PLUGIN =

IDP_INTERFACE VERSION,
0,

IDAP_init,

IDAP_ term,

IDAP_run,
IDAP_comment,
IDAP help,
IDAP name,
IDAP hotkey

6.4 Bulk Breakpoint Setter & Saver

This single plug-in gives you the ability to save the currently set breakpoints to a file, as well as
load a list of addresses from a file and set breakpoints on them. To keep the plug-in simple, it
expects the format of the input file to be sane, otherwise it will fail. You will also need to modify
your plugins.cfg file to be able to use the one plug-in for both functions (setting and saving),
as shown below.

//
// bulkbpt.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <diskio.hpp>
#include <dbg.hpp>

// Maximum number of breakpoints that can be set
#define MAX BPT 100

// Insert the following two lines into your plugins.cfg file
// Replace pluginname with the filename of your plugin minus
// the extension

//

// Write Breakpoints pluginname Alt-D 0
// Read Breakpoints pluginname Alt-E 1
//

void read breakpoints () {

char ¢, eal9];
int x = 0, b = 0;
ea t ea list[MAX BPT];

// Ask the user for the file containing the breakpoints
char *file = askfile cv (0, "", "Breakpoint list file...", NULL);

// Open the file in read-only mode
FILE *fp = fopenRT (file);

if (fp == NULL) {
warning ("Unable to open breakpoint list file, %$s\n", file);
return;

}

// Grab 8-byte chunks from the file

while ((c = gfgetc(fp)) != EOF && b < MAX BPT) {
if (isalnum(c)) {
ea[x++] = c;
if (x == 8) {
// NULL terminate the string
eal[x] = 0;
x = 0;

// Convert the 8 character string to an address

str2ea(ea, &ea list[b], 0);

msg ("Adding breakpoint at %a\n", ea list[b]);
// Add the breakpoint as a software breakpoint
add bpt (ea list[b], 0, BPT_SOFT);

b++;

}

// Close the file handle
gfclose (fp) ;
}

void write breakpoints () {
char c, eal[9];
int x = 0, b = 0;
ea t ea list[MAX BPT];

// Ask the user for the file to save the breakpoints to
char *file = askstr (0, "", "Breakpoint list file...", NULL);

// Open the file in write-only mode
FILE *fp = ecreateT (file);

for (int i = 0; 1 < get bpt gty (); i++) {
bpt t bpt;
char buf [MAXSTR];

getn_bpt (i, &bpt);

gsnprintf (buf, sizeof (buf)-1, "%08a\n", bpt.ea);
ewrite (fp, buf, strlen(buf));
}

// Close the file handle
eclose (fp);
}

void IDAP run(int arg)
{
// Depending on the argument supplied,
// read the breakpoint list from a file and
// apply it, or write the current breakpoints
// to a file.
switch (arg) {
case O:
write breakpoints();
break;
case 1:
default:
read breakpoints();
break;

}

int IDAP init(void)

{
return PLUGIN KEEP;

void IDAP term(void)
{
return;

}

// These are irrelevant because they will be overridden by
// plugins.cfg.
char IDAP comment[] = "Bulk Breakpoint Setter and Recorder";
char IDAP help[] =
"Sets breakpoints at a list of addresses in a text file"
" or saves the current breakpoints to file.\n"
"The read list must have one address per line.\n";

char IDAP name[] = "Bulk Breakpoint Setter and Recorder";
char IDAP hotkey[] = "Alt-B";

plugin_t PLUGIN =
{
IDP INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP_ run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey

6.5 Selective Tracing (Method 1)

This plug-in gives you the ability to turn on instruction tracing only for a specific address range. It
does this by running to the start address, turning on instruction tracing, running to the end
address, and then turning instruction tracing off. Method 2 demonstrates a more flexible
approach, utilising step tracing.

//
// snaptrace.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <dbg.hpp>

int IDAP init(void)
{

return PLUGIN KEEP;
}

void IDAP_ term(void)
{
return;

}

void IDAP_ run(int arg)

{
// Set the default start address to the user cursur position
ea t eaddr, saddr = get screen ea();

// Allow the user to specify a start address
askaddr (&saddr, "Address to start tracing at");

// Set the end address to the end of the current function
func t *func = get func(saddr);
eaddr = func->endEA;

// Allow the user to specify an end address
askaddr (&eaddr, "Address to end tracing at");

// Queue the following

// Run to the start address

request run to(saddr);

// Then enable tracing

request enable insn trace();

// Run to the end address, tracing all stops in between
request run_ to(eaddr);

// Turn off tracing once we've hit the end address
request disable insn trace();

// Stop the process once we have what we want
request exit process();

// Run the above queued requests
run_requests();

char IDAP comment[] = "Snap Tracer";
char IDAP help[] = "Allow tracing only between user "
"specified addresses\n";

char IDAP name[] = "Snap Tracer";
char IDAP hotkey[] = "Alt-T";

plugin_ t PLUGIN =
{
IDP_INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey

6.6 Selective Tracing (Method 2)

Utilising step tracing, this plug-in sets up a debug event notification handler to handle a trace
event (one instruction executed). Within this handler, it checks whether EIP is within the user-
defined range, and if is, displays ESP. Obviously there are much more interesting things you can
do with this sort of functionality like alerting based on the contents of registers and/or memory.

//
// snaptrace?2.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <dbg.hpp>
ea t start ea = 0;
ea t end ea = 0;

// Handler for HT DBG events
int idaapi trace handler(void *udata, int dbg event id, va list va)
{

regval t esp, eip;

// Get ESP register value
get reg val ("esp", é&esp);
// Get EIP register value
get reg val ("eip", é&eip);

// We'll also receive debug events unrelated to tracing,
// make sure those are filtered out
if (dbg event id == dbg trace) {
// Make sure EIP is between the user-specified range
if (eip.ival > start ea && eip.ival < end ea)
msg ("ESP = %a\n", esp.ival);

}

return 0;

}

int IDAP init(void)

{
// Receive debug event notifications
hook to notification point (HT DBG, trace handler, NULL);
return PLUGIN KEEP;

}

void IDAP term(void)

{
// Unhook from the notification point on exit
unhook from notification point (HT DBG, trace handler, NULL);
return;

void IDAP run(int arg)

{
// Ask the user for a start and end address
askaddr (&start ea, "Start Address:");
askaddr (&end ea, "End Address:");

// Queue the following

// Run to the binary entry point
request run_ to(inf.startIP);

// Enable step tracing
request enable step trace();

// Run queued requests
run_requests() ;

char IDAP comment[] = "Snap Tracer 2";
char IDAP help[] = "Allow tracing only between user "
"specified addresses\n";

char IDAP name[] = "Snap Tracer 2";
char IDAP hotkey[] = "Alt-I";

plugin_t PLUGIN =
{
IDP_ INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey

6.7 Binary Copy & Paste

Seeing there isn’t any binary copy-and-paste functionality in IDA, this plug-in will take care of both

copy and paste operations allowing you to take a chunk of binary from one place and overwrite

another with it. You need to modify your plugins.cfg file as this is a multi-function plug-in, needing

one invocation for copy and another for paste. Obviously it only supports copying and pasting
within IDA, however it could probably be extended to go beyond that.

//

// copypaste.cpp

//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>

#define

MAX COPYPASTE 1024

// This will hold our copied buffer for pasting
char data[MAX COPYPASTE];

// Bytes copied into the above buffer

ssize t

filled = 0;

// Insert the following two lines into your plugins.cfg file
// Replace pluginname with the filename of your plugin minus
// the extension.

//

// Copy Buffer
// Paste Buffer

//

int IDAP_ init(void)

{

return PLUGIN KEEP;

}

void IDAP term(void)

{

return;

}

void copy buffer () {
ea_t saddr, eaddr;
ssize t size;

pluginname
pluginname

Alt-C O
Alt-v 1

// Get the boundaries of the user selection
if (read selection(&saddr,

// Work out the size,

// we have allocated.
size = eaddr - saddr;

if

(size > MAX COPYPASTE)

&eaddr)) {

make sure it doesn't exceed the buffer

{

warning ("You can only copy a max of %d bytes\n", MAX COPYPASTE);

return;

}

// Get the bytes from the file, store it in our buffer
if (get many bytes(saddr, data, size)) {
filled = size;
msg ("Successfully copied %d bytes from %a into memory.\n",

size,
saddr) ;
} else {
filled = 0;
}
} else {
warning ("No bytes selected!\n");
return;

}
void paste buffer() {

// Get the cursor position. This is where we will paste to
ea t curpos = get screen ea();

// Make sure the buffer has been filled with a Copy operation first.
if (filled) {

// Patch the binary (paste)

patch many bytes (curpos, data, filled);

msg ("Patched %d bytes at %a.\n", filled, curpos);
} else {

warning ("No data to paste!\n");

return;

}
void IDAP run(int arg) {

// Based on the argument supplied in plugins.cfg,
// we can use the one plug-in for both the copy
// and paste operations.
switch (arg) {
case 0:
copy buffer();
break;
case 1:
paste buffer();
break;
default:
warning ("Invalid usage!\n");
return;

}

// These are actually pointless because we'll be overriding them
// in plugins.cfg

char IDAP comment[] = "Binary Copy and Paster";

char IDAP help[] = "Allows the user to copy and paste binary\n";

char IDAP name[] = "Binary Copy and Paster";

char IDAP hotkey[] = "Alt-I";

plugin_ t PLUGIN =
{
IDP_INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey

6.8 BeingDebugged Flipper (Windows only)

For any executable that may behave differently when being debugged, it can be useful to trick the

executable into thinking it isn’t being debugged by modifying a field in the Process Environment

Block. Of course, this isn't the only method you can use, but it illustrates how you can use IDA to
grab a chunk of data from a debugged process's memory space, cast it, manipulate it and write it

back.

//
// beingdebugged.cpp
//

#include <ida.hpp>
#include <idp.hpp>
#include <loader.hpp>
#include <kernwin.hpp>
#include <idd.hpp>
#include <dbg.hpp>

int IDAP_init (void) {

}

// Only support x86 architecture

if (strncmp (inf.procName, "metapc", 8) != 0 && inf.filetype != f PE)
warning ("Only x86 PE binary type supported, sorry.");
return PLUGIN SKIP;

}

return PLUGIN KEEP;

void IDAP term(void) {

}

return;

void IDAP run(int arg) {

// PEB structure, built from NT Internals:
// http://undocumented.ntinternals.net
struct PEB {

bool InheritedAddressSpace;

bool ReadImageFileExecOptions;

bool BeingDebugged;

unsigned char Junk;

long MoreJdunk;

void *ImageBaseAddress;

// The rest has been left out seeing as we don't

// need it for this example.
} peb;

// Get the current thread ID
thid t thread id = get current thread();

// FS:[0] points to the Thread Information Block
ea t seg;

regval t fs;

get reg val("FS", &fs);

dbg->thread get sreg base(thread id, fs.ival, &segq);

// Load the PEB, the address of which is 0x30 bytes into the TIB
ea_ t peb addr;
msg ("Reading TIB at %a\n", seq);

// PEB address lives at 0x30 bytes into the TIB
dbg->read memory ((ea t)seg+0x30, (void *)&peb addr, sizeof (void *));

// Read the contents of the PEB into buffer
dbg->read memory (peb addr, (void *)é&peb, sizeof(PEB));
msg ("PEB Address: %a, Being debugged (before change): %d, "
"Image base address: %a\n",
peb_ addr,
peb.BeingDebugged,
peb.ImageBaseAddress) ;

// Change the flag in the structure and write it to memory
peb.BeingDebugged ?

peb.BeingDebugged = false : peb.BeingDebugged = true;
dbg->write memory (peb addr, (void *)é&peb, sizeof (PEB));

// Re-read the contents of the PEB into buffer

dbg->read memory (peb addr, (void *)é&peb, sizeof(PEB));

msg ("Being debugged (after change): $d\n", peb.BeingDebugged) ;
}

char IDAP comment[] = "PEB BeingDebugged flipper";

char IDAP help[] = "Switches the BeingDebugged flag in the PEB\n";
char IDAP name[] = "BeingDebugged flipper";

char IDAP hotkey[] = "Alt-I";

plugin_t PLUGIN =
{
IDP INTERFACE VERSION,
0,
IDAP init,
IDAP term,
IDAP run,
IDAP comment,
IDAP help,
IDAP name,
IDAP hotkey

